1
|
Cole ER, Connolly MJ, Ghetiya M, Sendi MES, Kashlan A, Eggers TE, Gross RE. SAFE-OPT: a Bayesian optimization algorithm for learning optimal deep brain stimulation parameters with safety constraints. J Neural Eng 2024; 21:046054. [PMID: 39116891 DOI: 10.1088/1741-2552/ad6cf3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Objective.To treat neurological and psychiatric diseases with deep brain stimulation (DBS), a trained clinician must select parameters for each patient by monitoring their symptoms and side-effects in a months-long trial-and-error process, delaying optimal clinical outcomes. Bayesian optimization has been proposed as an efficient method to quickly and automatically search for optimal parameters. However, conventional Bayesian optimization does not account for patient safety and could trigger unwanted or dangerous side-effects.Approach.In this study we develop SAFE-OPT, a Bayesian optimization algorithm designed to learn subject-specific safety constraints to avoid potentially harmful stimulation settings during optimization. We prototype and validate SAFE-OPT using a rodent multielectrode stimulation paradigm which causes subject-specific performance deficits in a spatial memory task. We first use data from an initial cohort of subjects to build a simulation where we design the best SAFE-OPT configuration for safe and accurate searchingin silico. Main results.We then deploy both SAFE-OPT and conventional Bayesian optimization without safety constraints in new subjectsin vivo, showing that SAFE-OPT can find an optimally high stimulation amplitude that does not harm task performance with comparable sample efficiency to Bayesian optimization and without selecting amplitude values that exceed the subject's safety threshold.Significance.The incorporation of safety constraints will provide a key step for adopting Bayesian optimization in real-world applications of DBS.
Collapse
Affiliation(s)
- Eric R Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Mark J Connolly
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
- Emory National Primate Research Center, Atlanta, GA 30322, United States of America
| | - Mihir Ghetiya
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, United States of America
| | - Mohammad E S Sendi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
| | - Adam Kashlan
- College of Sciences, Georgia Institute of Technology, Atlanta, GA 30322, United States of America
| | - Thomas E Eggers
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, United States of America
| |
Collapse
|
2
|
Cole ER, Eggers TE, Weiss DA, Connolly MJ, Gombolay MC, Laxpati NG, Gross RE. Irregular optogenetic stimulation waveforms can induce naturalistic patterns of hippocampal spectral activity. J Neural Eng 2024; 21:036039. [PMID: 38834054 DOI: 10.1088/1741-2552/ad5407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Objective. Therapeutic brain stimulation is conventionally delivered using constant-frequency stimulation pulses. Several recent clinical studies have explored how unconventional and irregular temporal stimulation patterns could enable better therapy. However, it is challenging to understand which irregular patterns are most effective for different therapeutic applications given the massively high-dimensional parameter space.Approach. Here we applied many irregular stimulation patterns in a single neural circuit to demonstrate how they can enable new dimensions of neural control compared to conventional stimulation, to guide future exploration of novel stimulation patterns in translational settings. We optogenetically excited the septohippocampal circuit with constant-frequency, nested pulse, sinusoidal, and randomized stimulation waveforms, systematically varying their amplitude and frequency parameters.Main results.We first found equal entrainment of hippocampal oscillations: all waveforms provided similar gamma-power increase, whereas no parameters increased theta-band power above baseline (despite the mechanistic role of the medial septum in driving hippocampal theta oscillations). We then compared each of the effects of each waveform on high-dimensional multi-band activity states using dimensionality reduction methods. Strikingly, we found that conventional stimulation drove predominantly 'artificial' (different from behavioral activity) effects, whereas all irregular waveforms induced activity patterns that more closely resembled behavioral activity.Significance. Our findings suggest that irregular stimulation patterns are not useful when the desired mechanism is to suppress or enhance a single frequency band. However, novel stimulation patterns may provide the greatest benefit for neural control applications where entraining a particular mixture of bands (e.g. if they are associated with different symptoms) or behaviorally-relevant activity is desired.
Collapse
Affiliation(s)
- Eric R Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Thomas E Eggers
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - David A Weiss
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
| | - Mark J Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Matthew C Gombolay
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Nealen G Laxpati
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Newark, NJ 07103, United States of America
| |
Collapse
|