1
|
Cao A, Xie X, Zhang R, Tian Y, Fan M, Zhang H, Wu Y. Team-Scouter: Simulative Visual Analytics of Soccer Player Scouting. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1-11. [PMID: 39255095 DOI: 10.1109/tvcg.2024.3456216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In soccer, player scouting aims to find players suitable for a team to increase the winning chance in future matches. To scout suitable players, coaches and analysts need to consider whether the players will perform well in a new team, which is hard to learn directly from their historical performances. Match simulation methods have been introduced to scout players by estimating their expected contributions to a new team. However, they usually focus on the simulation of match results and hardly support interactive analysis to navigate potential target players and compare them in fine-grained simulated behaviors. In this work, we propose a visual analytics method to assist soccer player scouting based on match simulation. We construct a two-level match simulation framework for estimating both match results and player behaviors when a player comes to a new team. Based on the framework, we develop a visual analytics system, Team-Scouter, to facilitate the simulative-based soccer player scouting process through player navigation, comparison, and investigation. With our system, coaches and analysts can find potential players suitable for the team and compare them on historical and expected performances. For an in-depth investigation of the players' expected performances, the system provides a visual comparison between the simulated behaviors of the player and the actual ones. The usefulness and effectiveness of the system are demonstrated by two case studies on a real-world dataset and an expert interview.
Collapse
|
2
|
Cabouat AF, He T, Isenberg P, Isenberg T. PREVis: Perceived Readability Evaluation for Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1083-1093. [PMID: 39283793 DOI: 10.1109/tvcg.2024.3456318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We developed and validated an instrument to measure the perceived readability in data visualization: PREVis. Researchers and practitioners can easily use this instrument as part of their evaluations to compare the perceived readability of different visual data representations. Our instrument can complement results from controlled experiments on user task performance or provide additional data during in-depth qualitative work such as design iterations when developing a new technique. Although readability is recognized as an essential quality of data visualizations, so far there has not been a unified definition of the construct in the context of visual representations. As a result, researchers often lack guidance for determining how to ask people to rate their perceived readability of a visualization. To address this issue, we engaged in a rigorous process to develop the first validated instrument targeted at the subjective readability of visual data representations. Our final instrument consists of 11 items across 4 dimensions: understandability, layout clarity, readability of data values, and readability of data patterns. We provide the questionnaire as a document with implementation guidelines on osf.io/9cg8j. Beyond this instrument, we contribute a discussion of how researchers have previously assessed visualization readability, and an analysis of the factors underlying perceived readability in visual data representations.
Collapse
|
3
|
Wang J, Ma J, Zhou Z, Xie X, Zhang H, Wu Y, Qu H. TacPrint: Visualizing the Biomechanical Fingerprint in Table Tennis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2955-2967. [PMID: 38619948 DOI: 10.1109/tvcg.2024.3388555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Table tennis is a sport that demands high levels of technical proficiency and body coordination from players. Biomechanical fingerprints can provide valuable insights into players' habitual movement patterns and characteristics, allowing them to identify and improve technical weaknesses. Despite the potential, few studies have developed effective methods for generating such fingerprints. To address this gap, we propose TacPrint, a framework for generating a biomechanical fingerprint for each player. TacPrint leverages machine learning techniques to extract comprehensive features from biomechanics data collected by inertial measurement units (IMU) and employs the attention mechanism to enhance model interpretability. After generating fingerprints, TacPrint provides a visualization system to facilitate the exploration and investigation of these fingerprints. In order to validate the effectiveness of the framework, we designed an experiment to evaluate the model's performance and conducted a case study with the system. The results of our experiment demonstrated the high accuracy and effectiveness of the model. Additionally, we discussed the potential of TacPrint to be extended to other sports.
Collapse
|
4
|
Cao A, Xie X, Zhou M, Zhang H, Xu M, Wu Y. Action-Evaluator: A Visualization Approach for Player Action Evaluation in Soccer. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:880-890. [PMID: 37878455 DOI: 10.1109/tvcg.2023.3326524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
In soccer, player action evaluation provides a fine-grained method to analyze player performance and plays an important role in improving winning chances in future matches. However, previous studies on action evaluation only provide a score for each action, and hardly support inspecting and comparing player actions integrated with complex match context information such as team tactics and player locations. In this work, we collaborate with soccer analysts and coaches to characterize the domain problems of evaluating player performance based on action scores. We design a tailored visualization of soccer player actions that places the action choice together with the tactic it belongs to as well as the player locations in the same view. Based on the design, we introduce a visual analytics system, Action-Evaluator, to facilitate a comprehensive player action evaluation through player navigation, action investigation, and action explanation. With the system, analysts can find players to be analyzed efficiently, learn how they performed under various match situations, and obtain valuable insights to improve their action choices. The usefulness and effectiveness of this work are demonstrated by two case studies on a real-world dataset and an expert interview.
Collapse
|
5
|
Wang J, Ma J, Hu K, Zhou Z, Zhang H, Xie X, Wu Y. Tac-Trainer: A Visual Analytics System for IoT-based Racket Sports Training. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:951-961. [PMID: 36179004 DOI: 10.1109/tvcg.2022.3209352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional racket sports training highly relies on coaches' knowledge and experience, leading to biases in the guidance. To solve this problem, smart wearable devices based on Internet of Things technology (IoT) have been extensively investigated to support data-driven training. Considerable studies introduced methods to extract valuable information from the sensor data collected by IoT devices. However, the information cannot provide actionable insights for coaches due to the large data volume and high data dimensions. We proposed an IoT + VA framework, Tac-Trainer, to integrate the sensor data, the information, and coaches' knowledge to facilitate racket sports training. Tac-Trainer consists of four components: device configuration, data interpretation, training optimization, and result visualization. These components collect trainees' kinematic data through IoT devices, transform the data into attributes and indicators, generate training suggestions, and provide an interactive visualization interface for exploration, respectively. We further discuss new research opportunities and challenges inspired by our work from two perspectives, VA for IoT and IoT for VA.
Collapse
|
6
|
Mariani J, Francopoulo G, Paroubek P, Vernier F. NLP4NLP+5: The Deep (R)evolution in Speech and Language Processing. Front Res Metr Anal 2022; 7:863126. [PMID: 35965665 PMCID: PMC9363593 DOI: 10.3389/frma.2022.863126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
This paper aims at analyzing the changes in the fields of speech and natural language processing over the recent past 5 years (2016–2020). It is in continuation of a series of two papers that we published in 2019 on the analysis of the NLP4NLP corpus, which contained articles published in 34 major conferences and journals in the field of speech and natural language processing, over a period of 50 years (1965–2015), and analyzed with the methods developed in the field of NLP, hence its name. The extended NLP4NLP+5 corpus now covers 55 years, comprising close to 90,000 documents [+30% compared with NLP4NLP: as many articles have been published in the single year 2020 than over the first 25 years (1965–1989)], 67,000 authors (+40%), 590,000 references (+80%), and approximately 380 million words (+40%). These analyses are conducted globally or comparatively among sources and also with the general scientific literature, with a focus on the past 5 years. It concludes in identifying profound changes in research topics as well as in the emergence of a new generation of authors and the appearance of new publications around artificial intelligence, neural networks, machine learning, and word embedding.
Collapse
Affiliation(s)
- Joseph Mariani
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, France
- *Correspondence: Joseph Mariani
| | | | - Patrick Paroubek
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, France
| | - Frédéric Vernier
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, France
| |
Collapse
|
7
|
Tovanich N, Soulie N, Heulot N, Isenberg P. MiningVis: Visual Analytics of the Bitcoin Mining Economy. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:868-878. [PMID: 34596542 DOI: 10.1109/tvcg.2021.3114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a visual analytics tool, MiningVis, to explore the long-term historical evolution and dynamics of the Bitcoin mining ecosystem. Bitcoin is a cryptocurrency that attracts much attention but remains difficult to understand. Particularly important to the success, stability, and security of Bitcoin is a component of the system called "mining." Miners are responsible for validating transactions and are incentivized to participate by the promise of a monetary reward. Mining pools have emerged as collectives of miners that ensure a more stable and predictable income. MiningVis aims to help analysts understand the evolution and dynamics of the Bitcoin mining ecosystem, including mining market statistics, multi-measure mining pool rankings, and pool hopping behavior. Each of these features can be compared to external data concerning pool characteristics and Bitcoin news. In order to assess the value of MiningVis, we conducted online interviews and insight-based user studies with Bitcoin miners. We describe research questions tackled and insights made by our participants and illustrate practical implications for visual analytics systems for Bitcoin mining.
Collapse
|
8
|
Wang J, Wu J, Cao A, Zhou Z, Zhang H, Wu Y. Tac-Miner: Visual Tactic Mining for Multiple Table Tennis Matches. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2770-2782. [PMID: 33891553 DOI: 10.1109/tvcg.2021.3074576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In table tennis, tactics specified by three consecutive strokes represent the high-level competition strategies in matches. Effective detection and analysis of tactics can reveal the playing styles of players, as well as their strengths and weaknesses. However, tactical analysis in table tennis is challenging as the analysts can often be overwhelmed by the large quantity and high dimension of the data. Statistical charts have been extensively used by researchers to explore and visualize table tennis data. However, these charts cannot support efficient comparative and correlation analysis of complicated tactic attributes. Besides, existing studies are limited to the analysis of one match. However, one player's strategy can change along with his/her opponents in different matches. Therefore, the data of multiple matches can support a more comprehensive tactical analysis. To address these issues, we introduced a visual analytics system called Tac-Miner to allow analysts to effectively analyze, explore, and compare tactics of multiple matches based on the advanced embedding and dimension reduction algorithms along with an interactive glyph. We evaluate our glyph's usability through a user study and demonstrate the system's usefulness through a case study with insights approved by coaches and domain experts.
Collapse
|
9
|
|
10
|
Liu J, Gao Y, Shan G, Chi X. VASEM: visual analytics system for electron microscopy data bank. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Mariani J, Francopoulo G, Paroubek P, Vernier F. The NLP4NLP Corpus (II): 50 Years of Research in Speech and Language Processing. Front Res Metr Anal 2019. [DOI: 10.3389/frma.2018.00037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Zhang M, Chen L, Yuan X, Huang R, Liu S, Yong J. Visualization of technical and tactical characteristics in fencing. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0521-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Weng D, Chen R, Deng Z, Wu F, Chen J, Wu Y. SRVis: Towards Better Spatial Integration in Ranking Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:459-469. [PMID: 30188825 DOI: 10.1109/tvcg.2018.2865126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interactive ranking techniques have substantially promoted analysts' ability in making judicious and informed decisions effectively based on multiple criteria. However, the existing techniques cannot satisfactorily support the analysis tasks involved in ranking large-scale spatial alternatives, such as selecting optimal locations for chain stores, where the complex spatial contexts involved are essential to the decision-making process. Limitations observed in the prior attempts of integrating rankings with spatial contexts motivate us to develop a context-integrated visual ranking technique. Based on a set of generic design requirements we summarized by collaborating with domain experts, we propose SRVis, a novel spatial ranking visualization technique that supports efficient spatial multi-criteria decision-making processes by addressing three major challenges in the aforementioned context integration, namely, a) the presentation of spatial rankings and contexts, b) the scalability of rankings' visual representations, and c) the analysis of context-integrated spatial rankings. Specifically, we encode massive rankings and their cause with scalable matrix-based visualizations and stacked bar charts based on a novel two-phase optimization framework that minimizes the information loss, and the flexible spatial filtering and intuitive comparative analysis are adopted to enable the in-depth evaluation of the rankings and assist users in selecting the best spatial alternative. The effectiveness of the proposed technique has been evaluated and demonstrated with an empirical study of optimization methods, two case studies, and expert interviews.
Collapse
|
14
|
Wu Y, Lan J, Shu X, Ji C, Zhao K, Wang J, Zhang H. iTTVis: Interactive Visualization of Table Tennis Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:709-718. [PMID: 28866531 DOI: 10.1109/tvcg.2017.2744218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rapid development of information technology paved the way for the recording of fine-grained data, such as stroke techniques and stroke placements, during a table tennis match. This data recording creates opportunities to analyze and evaluate matches from new perspectives. Nevertheless, the increasingly complex data poses a significant challenge to make sense of and gain insights into. Analysts usually employ tedious and cumbersome methods which are limited to watching videos and reading statistical tables. However, existing sports visualization methods cannot be applied to visualizing table tennis competitions due to different competition rules and particular data attributes. In this work, we collaborate with data analysts to understand and characterize the sophisticated domain problem of analysis of table tennis data. We propose iTTVis, a novel interactive table tennis visualization system, which to our knowledge, is the first visual analysis system for analyzing and exploring table tennis data. iTTVis provides a holistic visualization of an entire match from three main perspectives, namely, time-oriented, statistical, and tactical analyses. The proposed system with several well-coordinated views not only supports correlation identification through statistics and pattern detection of tactics with a score timeline but also allows cross analysis to gain insights. Data analysts have obtained several new insights by using iTTVis. The effectiveness and usability of the proposed system are demonstrated with four case studies.
Collapse
|