1
|
Abstract
Infantile hemangiomas (IHs) are a type of vascular tumors that affect around 10% of newborns. The measurement of the lesion size and the assessment of the evolution is done manually by the physician. This paper presents an algorithm for the automatic computation of the IH lesion surface. The image scale is computed by using the Hough transform and the total variation. As pre-processing, a geometric correction step is included, which ensures that the lesions are viewed as perpendicular to the camera. The image segmentation is based on K-means clustering applied on a five-plane image; the five planes being selected from seven planes with the use of the Karhunen-Loeve transform. Two of the seven planes are 2D total variation filters, based on symmetrical kernels, designed to highlight the IH specific texture. The segmentation performance was assessed on 30 images, and a mean border error of 9.31% was obtained.
Collapse
|
2
|
An Uncertainty Descriptor for Quantitative Measurement of the Uncertainty of Remote Sensing Images. REMOTE SENSING 2019. [DOI: 10.3390/rs11131560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reliable image classification results are crucial for the application of remote sensing images, but the reliability of image classification has received less attention. In particular, the inherent uncertainty of remote sensing images has been disregarded. The uncertainty of a remote sensing image accumulates and propagates continuously in the classification process and ultimately affects the reliability of the classification results. Therefore, quantitative description and investigation of the inherent uncertainty of remote sensing images are crucial in achieving reliable remote sensing image classification. In this study, we analyze the sources of uncertainty of remote sensing images in detail and propose a quantitative descriptor for measuring image uncertainty comprehensively and effectively. In addition, we also design two verification schemes to verify the validity of the proposed uncertainty descriptor. Finally, the validity of the proposed uncertainty descriptor is confirmed by experimental results on three real remote sensing images. Our study on the uncertainty of remote sensing images may help the development of uncertainty control methods and reliable classification schemes of remote sensing images.
Collapse
|