1
|
Dang C, Luo X, Zhu Y, Li B, Feng Y, Xu C, Kang S, Yin G, Johnstone SJ, Wang Y, Song Y, Sun L. Automatic sensory change processing in adults with attention deficit and hyperactivity disorder: a visual mismatch negativity study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1651-1660. [PMID: 37831221 DOI: 10.1007/s00406-023-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
In addition to higher-order executive functions, underlying sensory processing ability is also thought to play an important role in Attention-Deficit/Hyperactivity Disorder (AD/HD). An event-related potential feature, the mismatch negativity, reflects the ability of automatic sensory change processing and may be correlated with AD/HD symptoms and executive functions. This study aims to investigate the characteristics of visual mismatch negativity (vMMN) in adults with AD/HD. Twenty eight adults with AD/HD and 31 healthy controls were included in this study. These two groups were matched in age, IQ and sex. In addition, both groups completed psychiatric evaluations, a visual ERP task used to elicit vMMN, and psychological measures about AD/HD symptoms and day-to-day executive functions. Compared to trols, the late vMMN (230-330 ms) was significantly reduced in the AD/HD group. Correlation analyses showed that late vMMN was correlated with executive functions but not AD/HD symptoms. However, further mediation analyses showed that different executive functions had mediated the relationships between late vMMN and AD/HD symptoms. Our findings indicate that the late vMMN, reflecting automatic sensory change processing ability, was impaired in adults with AD/HD. This impairment could have negative impact on AD/HD symptoms via affecting day-to-day executive functions.
Collapse
Affiliation(s)
- Chen Dang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiangsheng Luo
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yu Zhu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Bingkun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Yuan Feng
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chenyang Xu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Simin Kang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Gaohan Yin
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Stuart J Johnstone
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
- Brain and Behavior Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Yufeng Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| | - Li Sun
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
2
|
Xiao XZ, Wang Y, Wong GCS, Zhao K, Tse CY. Frontotemporal network in automatic / pre-attentive detection of abstract change: An event-related optical signal (EROS) study. Neuropsychologia 2022; 164:108093. [PMID: 34822860 DOI: 10.1016/j.neuropsychologia.2021.108093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/31/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022]
Abstract
The human brain constantly monitors the environment for unexpected changes. Under the prediction violation account, the Inferior Frontal Cortex (IFC) is involved in prediction-related processes for deviance detection processes in the Superior Temporal Cortex (STC). Consistent with this account, previous studies revealed an IFC-to-STC-followed-by-IFC mismatch response pattern to physical changes using event-related optical signals (EROS). However, detecting physical changes can be achieved by direct comparison of physical features between stimuli without making predictions, thus direct evidence supporting the prediction nature of the IFC-STC network in pre-attentive change detection was lacking. To address this issue, this study examined the EROS mismatch responses of the IFC-STC network when detecting the violation of an abstract rule. The rule "the higher the frequency of a tone, the stronger the intensity" established by standards was violated by deviants of 12 deviance levels. When deviants were preceded by a short train of standards, early IFC, STC, and late IFC EROS mismatch responses linearly increased with the deviance levels. When deviants were preceded by a longer train of standards, the STC but not the early or late IFC EROS mismatch responses were elicited by all the deviants without modulation by deviance levels. These results demonstrate a functional role of the IFC in the abstract change detection when insufficient rule-conforming information could be extracted from the preceding standards and are consistent with the predictive violation account of pre-attentive change detection.
Collapse
Affiliation(s)
- Xue-Zhen Xiao
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang Wang
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, China
| | | | - Kunyang Zhao
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Yu Tse
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Tse CY, Shum YH, Xiao XZ, Wang Y. Fronto-occipital mismatch responses in pre-attentive detection of visual changes: Implication on a generic brain network underlying Mismatch Negativity (MMN). Neuroimage 2021; 244:118633. [PMID: 34624501 DOI: 10.1016/j.neuroimage.2021.118633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/21/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022] Open
Abstract
Current theories of pre-attentive change detection suggest a regularity or prediction violation mechanism involving a frontotemporal network. Modulations of the early inferior frontal cortex (IFC) mismatch response representing the effort in comparing a stimulus to the prediction, the superior temporal cortex (STC) response indicating deviance detection, and the late IFC response representing prediction model updating were consistently demonstrated in auditory change detection using event-related optical signal (EROS). If the prediction violation hypothesis is universal, a generic neural mechanism should be found in all sensory modalities. We postulated a generic fronto-sensory cortical network underlying the prediction violation mechanism: the IFC is responsible for non-modality-specific prediction processes while the sensory cortices are responsible for modality-specific error signal generation process. This study examined the involvement of the IFC-occipital cortex (OC) network in visual pre-attentive change detection. The EROS mismatch responses to deviant bar arrays violating a fixed orientation regularity (low in regularity abstractness) were compared to that of deviant violating a rotational orientation regularity (high in abstractness) while the information available for establishing the prediction model was manipulated by varying the number of standards preceding the deviants. Modulations of the IFCOC mismatch response patterns by abstractness and train length reflected the processing demands on the prediction processes and were similar to that of the IFC-STC network in auditory change detection. These findings demonstrated that the fronto-sensory cortical network is not unique to auditory pre-attentive change detection and provided supports for a universal neural mechanism across sensory modalities as suggested by the prediction violation hypothesis.
Collapse
Affiliation(s)
- Chun-Yu Tse
- Department of Social and Behavioral Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Yu-Hei Shum
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xue-Zhen Xiao
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Wang
- Department of Social and Behavioral Sciences, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Lui TKY, Shum YH, Xiao XZ, Wang Y, Cheung ATC, Chan SSM, Neggers SFW, Tse CY. The critical role of the inferior frontal cortex in establishing a prediction model for generating subsequent mismatch negativity (MMN): A TMS-EEG study. Brain Stimul 2020; 14:161-169. [PMID: 33346067 DOI: 10.1016/j.brs.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The prediction violation account of automatic or pre-attentive change detection assumed that the inferior frontal cortex (IFC) is involved in establishing a prediction model for detecting unexpected changes. Evidence supporting the IFC's contribution to prediction model is mainly based on the Mismatch Negativity (MMN) to deviants violating predictions that are established based on the frequently presented standard events. However, deviant detection involves processes, such as events comparison, other than prediction model establishment. OBJECTIVE The current study investigated the critical role of the IFC in establishing a prediction model during standards processing for subsequent deviant detection. METHODS Transcranial Magnetic Stimulation (TMS) was applied at the IFC to disrupt the processing of the initial 2 or 5 standards of a 3-, 6-, or 9-standard train, while the MMN responses to pitch deviant presented after the standard trains were recorded and compared. RESULTS An abolishment of MMN was only observed when TMS was delivered to the IFC at the initial 2 standards of the 3-standard train, but not at the initial 5 standards, or when TMS at the vertex or TMS sound recording was applied. The MMNs were also preserved when IFC TMS, vertex TMS, or TMS sound recording was applied at the initial 2 or 5 standards of longer trains. CONCLUSION The IFC plays a critical role in processing the initial standards of a short standard train for subsequent deviant detection. This result is consistent with the prediction violation account that the IFC is important for establishing the prediction model.
Collapse
Affiliation(s)
- Troby Ka-Yan Lui
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu-Hei Shum
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xue-Zhen Xiao
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Wang
- Department of Social and Behavioral Sciences, City University of Hong Kong, Hong Kong SAR, China
| | | | - Sandra Sau-Man Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Chun-Yu Tse
- Department of Social and Behavioral Sciences, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Xiao X, Shum Y, Lui TK, Wang Y, Cheung AT, Chu WCW, Neggers SFW, Chan SS, Tse C. Functional connectivity of the frontotemporal network in preattentive detection of abstract changes: Perturbs and observes with transcranial magnetic stimulation and event-related optical signal. Hum Brain Mapp 2020; 41:2883-2897. [PMID: 32170910 PMCID: PMC7336140 DOI: 10.1002/hbm.24984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
Current theories of automatic or preattentive change detection suggest a regularity or prediction violation mechanism involving functional connectivity between the inferior frontal cortex (IFC) and the superior temporal cortex (STC). By disrupting the IFC function with transcranial magnetic stimulation (TMS) and recording the later STC mismatch response with event-related optical signal (EROS), previous study demonstrated a causal IFC-to-STC functional connection in detecting a pitch or physical change. However, physical change detection can be achieved by memory comparison of the physical features and may not necessarily involve regularity/rule extraction and prediction. The current study investigated the IFC-STC functional connectivity in detecting rule violation (i.e., an abstract change). Frequent standard tone pairs with a constant relative pitch difference, but varying pitches, were presented to establish a pitch interval rule. This abstract rule was violated by deviants with reduced relative pitch intervals. The EROS STC mismatch response to the deviants was abolished by the TMS applied at the IFC 80 ms after deviance onset, but preserved in the spatial (TMS on vertex), auditory (TMS sound), and temporal (200 ms after deviance onset) control conditions. These results demonstrate the IFC-STC connection in preattentive abstract change detection and support the regularity or prediction violation account.
Collapse
Affiliation(s)
- Xue‐Zhen Xiao
- Department of Psychology and Center for Cognition and Brain StudiesThe Chinese University of Hong KongHong Kong SARChina
| | - Yu‐Hei Shum
- Department of Psychology and Center for Cognition and Brain StudiesThe Chinese University of Hong KongHong Kong SARChina
| | - Troby K.‐Y. Lui
- Department of Psychology and Center for Cognition and Brain StudiesThe Chinese University of Hong KongHong Kong SARChina
| | - Yang Wang
- Department of Psychology and Center for Cognition and Brain StudiesThe Chinese University of Hong KongHong Kong SARChina
| | - Alexandra T.‐C. Cheung
- Department of Psychology and Center for Cognition and Brain StudiesThe Chinese University of Hong KongHong Kong SARChina
| | - Winnie C. W. Chu
- Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong Kong SARChina
| | - Sebastiaan F. W. Neggers
- Department of Psychiatry, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Sandra S.‐M. Chan
- Department of PsychiatryThe Chinese University of Hong KongHong Kong SARChina
| | - Chun‐Yu Tse
- Department of Psychology and Center for Cognition and Brain StudiesThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
6
|
Fantini S, Sassaroli A. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy. Front Neurosci 2020; 14:300. [PMID: 32317921 PMCID: PMC7154496 DOI: 10.3389/fnins.2020.00300] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
This article reviews the basic principles of frequency-domain near-infrared spectroscopy (FD-NIRS), which relies on intensity-modulated light sources and phase-sensitive optical detection, and its non-invasive applications to the brain. The simpler instrumentation and more straightforward data analysis of continuous-wave NIRS (CW-NIRS) accounts for the fact that almost all the current commercial instruments for cerebral NIRS have embraced the CW technique. However, FD-NIRS provides data with richer information content, which complements or exceeds the capabilities of CW-NIRS. One example is the ability of FD-NIRS to measure the absolute optical properties (absorption and reduced scattering coefficients) of tissue, and thus the absolute concentrations of oxyhemoglobin and deoxyhemoglobin in brain tissue. This article reviews the measured values of such optical properties and hemoglobin concentrations reported in the literature for animal models and for the human brain in newborns, infants, children, and adults. We also review the application of FD-NIRS to functional brain studies that focused on slower hemodynamic responses to brain activity (time scale of seconds) and faster optical signals that have been linked to neuronal activation (time scale of 100 ms). Another example of the power of FD-NIRS data is related to the different regions of sensitivity featured by intensity and phase data. We report recent developments that take advantage of this feature to maximize the sensitivity of non-invasive optical signals to brain tissue relative to more superficial extracerebral tissue (scalp, skull, etc.). We contend that this latter capability is a highly appealing quality of FD-NIRS, which complements absolute optical measurements and may result in significant advances in the field of non-invasive optical sensing of the brain.
Collapse
Affiliation(s)
- Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | | |
Collapse
|
7
|
Tse CY, Yip LY, Lui TKY, Xiao XZ, Wang Y, Chu WCW, Parks NA, Chan SSM, Neggers SFW. Establishing the functional connectivity of the frontotemporal network in pre-attentive change detection with Transcranial Magnetic Stimulation and event-related optical signal. Neuroimage 2018; 179:403-413. [DOI: 10.1016/j.neuroimage.2018.06.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 06/17/2018] [Indexed: 11/16/2022] Open
|
8
|
Proulx N, Samadani AA, Chau T. Online classification of the near-infrared spectroscopy fast optical signal for brain-computer interfaces. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aada1a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Proulx N, Samadani AA, Chau T. Quantifying fast optical signal and event-related potential relationships during a visual oddball task. Neuroimage 2018; 178:119-128. [PMID: 29777826 DOI: 10.1016/j.neuroimage.2018.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022] Open
Abstract
Event-related potentials (ERPs) have previously been used to confirm the existence of the fast optical signal (FOS) but validation methods have mainly been limited to exploring the temporal correspondence of FOS peaks to those of ERPs. The purpose of this study was to systematically quantify the relationship between FOS and ERP responses to a visual oddball task in both time and frequency domains. Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) sensors were co-located over the prefrontal cortex while participants performed a visual oddball task. Fifteen participants completed 2 data collection sessions each, where they were instructed to keep a mental count of oddball images. The oddball condition produced a positive ERP at 200 ms followed by a negativity 300-500 ms after image onset in the frontal electrodes. In contrast to previous FOS studies, a FOS response was identified only in DC intensity signals and not in phase delay signals. A decrease in DC intensity was found 150-250 ms after oddball image onset with a 400-trial average in 10 of 15 participants. The latency of the positive 200 ms ERP and the FOS DC intensity decrease were significantly correlated for only 6 (out of 15) participants due to the low signal-to-noise ratio of the FOS response. Coherence values between the FOS and ERP oddball responses were found to be significant in the 3-5 Hz frequency band for 10 participants. A significant Granger causal influence of the ERP on the FOS oddball response was uncovered in the 2-6 Hz frequency band for 7 participants. Collectively, our findings suggest that, for a majority of participants, the ERP and the DC intensity signal of the FOS are spectrally coherent, specifically in narrow frequency bands previously associated with event-related oscillations in the prefrontal cortex. However, these electro-optical relationships were only found in a subset of participants. Further research on enhancing the quality of the event-related FOS signal is required before it can be practically exploited in applications such as brain-computer interfacing.
Collapse
Affiliation(s)
- Nicole Proulx
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, Ontario, M4G 1R8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Ali-Akbar Samadani
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, Ontario, M4G 1R8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Tom Chau
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, Ontario, M4G 1R8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.
| |
Collapse
|
10
|
Xiao XZ, Wong HK, Wang Y, Zhao K, Zeng GQ, Yip LY, Wong GCS, Tse CY. Detecting violation in abstract pitch patterns with mismatch negativity. Psychophysiology 2018; 55:e13078. [DOI: 10.1111/psyp.13078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Xue-Zhen Xiao
- Department of Psychology & Center for Cognition and Brain Studies; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Hoi Ki Wong
- Department of Psychology & Center for Cognition and Brain Studies; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Yang Wang
- Department of Psychology & Center for Cognition and Brain Studies; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Kunyang Zhao
- Department of Psychology & Center for Cognition and Brain Studies; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Ginger Qinghong Zeng
- Department of Psychology & Center for Cognition and Brain Studies; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Long-Yin Yip
- Department of Psychology & Center for Cognition and Brain Studies; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Geoffrey Chun-Sung Wong
- Department of Psychology & Center for Cognition and Brain Studies; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Chun-Yu Tse
- Department of Psychology & Center for Cognition and Brain Studies; The Chinese University of Hong Kong; Hong Kong SAR China
| |
Collapse
|
11
|
Gratton G, Chiarelli AM, Fabiani M. From brain to blood vessels and back: a noninvasive optical imaging approach. NEUROPHOTONICS 2017; 4:031208. [PMID: 28413807 PMCID: PMC5384652 DOI: 10.1117/1.nph.4.3.031208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/10/2017] [Indexed: 06/01/2023]
Abstract
The seminal work of Grinvald et al. has paved the way for the use of intrinsic optical signals measured with reflection methods for the analysis of brain function. Although this work has focused on the absorption signal associated with deoxygenation, due to its detailed mapping ability and good signal-to-noise ratio, Grinvald's group has also described other intrinsic signals related to increased blood flow, scattering effects directly related to neural activation, and pulsation effects related to arterial function. These intrinsic optical signals can also be measured using noninvasive diffuse optical topographic and tomographic imaging (DOT) methods that can be applied to humans. Here we compare the reflection and DOT methods and the evidence for each type of intrinsic signal in these two domains, with particular attention to work that has been conducted in our laboratory. This work reveals the refined two-way relationship that exists between vascular and neural phenomena in the brain: arterial health is related to normal brain structure and function, both across individuals and across brain regions within an individual, and neural function influences blood flow to specific cortical regions. DOT methods can provide quantitative tools for investigating these relationships in normal human subjects.
Collapse
Affiliation(s)
- Gabriele Gratton
- University of Illinois at Urbana Champaign, Psychology Department, Champaign, Illinois, United States
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| | - Antonio M. Chiarelli
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| | - Monica Fabiani
- University of Illinois at Urbana Champaign, Psychology Department, Champaign, Illinois, United States
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| |
Collapse
|
12
|
Tse CY, Gratton G, Garnsey SM, Novak MA, Fabiani M. Read My Lips: Brain Dynamics Associated with Audiovisual Integration and Deviance Detection. J Cogn Neurosci 2015; 27:1723-37. [DOI: 10.1162/jocn_a_00812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Information from different modalities is initially processed in different brain areas, yet real-world perception often requires the integration of multisensory signals into a single percept. An example is the McGurk effect, in which people viewing a speaker whose lip movements do not match the utterance perceive the spoken sounds incorrectly, hearing them as more similar to those signaled by the visual rather than the auditory input. This indicates that audiovisual integration is important for generating the phoneme percept. Here we asked when and where the audiovisual integration process occurs, providing spatial and temporal boundaries for the processes generating phoneme perception. Specifically, we wanted to separate audiovisual integration from other processes, such as simple deviance detection. Building on previous work employing ERPs, we used an oddball paradigm in which task-irrelevant audiovisually deviant stimuli were embedded in strings of non-deviant stimuli. We also recorded the event-related optical signal, an imaging method combining spatial and temporal resolution, to investigate the time course and neuroanatomical substrate of audiovisual integration. We found that audiovisual deviants elicit a short duration response in the middle/superior temporal gyrus, whereas audiovisual integration elicits a more extended response involving also inferior frontal and occipital regions. Interactions between audiovisual integration and deviance detection processes were observed in the posterior/superior temporal gyrus. These data suggest that dynamic interactions between inferior frontal cortex and sensory regions play a significant role in multimodal integration.
Collapse
Affiliation(s)
- Chun-Yu Tse
- 1University of Illinois at Urbana-Champaign
- 2The Chinese University of Hong Kong
| | | | | | | | | |
Collapse
|
13
|
Fulham WR, Michie PT, Ward PB, Rasser PE, Todd J, Johnston PJ, Thompson PM, Schall U. Mismatch negativity in recent-onset and chronic schizophrenia: a current source density analysis. PLoS One 2014; 9:e100221. [PMID: 24949859 PMCID: PMC4064992 DOI: 10.1371/journal.pone.0100221] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/23/2014] [Indexed: 01/09/2023] Open
Abstract
Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia.
Collapse
Affiliation(s)
- W. Ross Fulham
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Patricia T. Michie
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip B. Ward
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Schizophrenia Research Unit, South Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Paul E. Rasser
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Juanita Todd
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Patrick J. Johnston
- Department of Psychology and York Neuroimaging Centre, University of York, Heslington, United Kingdom
| | - Paul M. Thompson
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics, and Ophthalmology, University of Southern California, Los Angeles, California, United States of America
| | - Ulrich Schall
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
14
|
The functional role of the frontal cortex in pre-attentive auditory change detection. Neuroimage 2013; 83:870-9. [DOI: 10.1016/j.neuroimage.2013.07.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 11/20/2022] Open
|
15
|
Chiarelli AM, Romani GL, Merla A. Fast optical signals in the sensorimotor cortex: General Linear Convolution Model applied to multiple source-detector distance-based data. Neuroimage 2013; 85 Pt 1:245-54. [PMID: 23867556 DOI: 10.1016/j.neuroimage.2013.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/27/2013] [Accepted: 07/03/2013] [Indexed: 11/24/2022] Open
Abstract
In this study, we applied the General Linear Convolution Model to detect fast optical signals (FOS) in the somatosensory cortex, and to study their dependence on the source-detector separation distance (2.0 to 3.5 cm) and irradiated light wavelength (690 and 830 nm). We modeled the impulse response function as a rectangular function that lasted 30 ms, with variable time delay with respect to the stimulus onset. The model was tested in a cohort of 20 healthy volunteers who underwent supra-motor threshold electrical stimulation of the median nerve. The impulse response function quantified the time delay for the maximal response at 70 ms to 110 ms after stimulus onset, in agreement with classical somatosensory-evoked potentials in the literature, previous optical imaging studies based on a grand-average approach, and grand-average based processing. Phase signals at longer wavelength were used to identify FOS for all the source-detector separation distances, but the shortest one. Intensity signals only detected FOS at the greatest distance; i.e., for the largest channel depth. There was no activation for the shorter wavelength light. Correlational analysis between the phase and intensity of FOS further confirmed diffusive rather than optical absorption changes associated with neuronal activity in the activated cortical volume. Our study demonstrates the reliability of our method based on the General Linear Convolution Model for the detection of fast cortical activation through FOS.
Collapse
Affiliation(s)
- Antonio Maria Chiarelli
- Infrared Imaging Laboratory, Institute for Advanced Biomedical Technologies (ITAB), Foundation of the 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy; Department of Neurosciences and Imaging, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | | |
Collapse
|
16
|
Lappe C, Steinsträter O, Pantev C. A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity. PLoS One 2013; 8:e61296. [PMID: 23585888 PMCID: PMC3621767 DOI: 10.1371/journal.pone.0061296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
To localize the neural generators of the musically elicited mismatch negativity with high temporal resolution we conducted a beamformer analysis (Synthetic Aperture Magnetometry, SAM) on magnetoencephalography (MEG) data from a previous musical mismatch study. The stimuli consisted of a six-tone melodic sequence comprising broken chords in C- and G-major. The musical sequence was presented within an oddball paradigm in which the last tone was lowered occasionally (20%) by a minor third. The beamforming analysis revealed significant right hemispheric neural activation in the superior temporal (STC), inferior frontal (IFC), superior frontal (SFC) and orbitofrontal (OFC) cortices within a time window of 100-200 ms after the occurrence of a deviant tone. IFC and SFC activation was also observed in the left hemisphere. The pronounced early right inferior frontal activation of the auditory mismatch negativity has not been shown in MEG studies so far. The activation in STC and IFC is consistent with earlier electroencephalography (EEG), optical imaging and functional magnetic resonance imaging (fMRI) studies that reveal the auditory and inferior frontal cortices as main generators of the auditory MMN. The observed right hemispheric IFC is also in line with some previous music studies showing similar activation patterns after harmonic syntactic violations. The results demonstrate that a deviant tone within a musical sequence recruits immediately a distributed neural network in frontal and prefrontal areas suggesting that top-down processes are involved when expectation violation occurs within well-known stimuli.
Collapse
Affiliation(s)
- Claudia Lappe
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | | | | |
Collapse
|
17
|
Foster SM, Kisley MA, Davis HP, Diede NT, Campbell AM, Davalos DB. Cognitive function predicts neural activity associated with pre-attentive temporal processing. Neuropsychologia 2013; 51:211-9. [DOI: 10.1016/j.neuropsychologia.2012.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 12/17/2022]
|
18
|
Chiarelli AM, Di Vacri A, Romani GL, Merla A. Fast optical signal in visual cortex: Improving detection by General Linear Convolution Model. Neuroimage 2012; 66:194-202. [PMID: 23110889 DOI: 10.1016/j.neuroimage.2012.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/30/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022] Open
Abstract
In this study we applied the General Linear Convolution Model to fast optical signals (FOS). We modeled the Impulse Response Function (IRF) as a rectangular function lasting 30ms, with variable time delay with respect to the stimulus onset. Simulated data confirmed the feasibility of this approach and its capability of detecting simulated activations in case of very unfavorable Signal to Noise Ratio (SNR), providing better results than the grand average method. The model was tested in a cohort of 10 healthy volunteers who underwent to hemi-field visual stimulation. Experimental data quantified the IRF time delay at 80-100ms after the stimulus onset, in agreement with classical visual evoked potential literature and previous optical imaging studies based on grand average approach and a larger number of trails. FOS confirmed the expected contralateral activation in the occipital region. Correlational analysis between hemodynamic intensity signal, phase and intensity FOS supports diffusive rather than optical absorption changes associated with neuronal activity in the activated cortical volume. Our study provides a feasible method for detecting fast cortical activations by means of FOS.
Collapse
Affiliation(s)
- Antonio Maria Chiarelli
- Infrared Imaging Lab, ITAB - Institute for Advanced Biomedical Technologies, Foundation University G. d'Annunzio, Chieti, Italy; Department of Neurosciences and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy
| | - Assunta Di Vacri
- Infrared Imaging Lab, ITAB - Institute for Advanced Biomedical Technologies, Foundation University G. d'Annunzio, Chieti, Italy; Department of Neurosciences and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy
| | - Gian Luca Romani
- Infrared Imaging Lab, ITAB - Institute for Advanced Biomedical Technologies, Foundation University G. d'Annunzio, Chieti, Italy; Department of Neurosciences and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy
| | - Arcangelo Merla
- Infrared Imaging Lab, ITAB - Institute for Advanced Biomedical Technologies, Foundation University G. d'Annunzio, Chieti, Italy; Department of Neurosciences and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy.
| |
Collapse
|
19
|
Tse CY, Low KA, Fabiani M, Gratton G. Rules Rule! Brain Activity Dissociates the Representations of Stimulus Contingencies with Varying Levels of Complexity. J Cogn Neurosci 2012; 24:1941-59. [DOI: 10.1162/jocn_a_00229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The significance of stimuli is linked not only to their nature but also to the sequential structure in which they are embedded, which gives rise to contingency rules. Humans have an extraordinary ability to extract and exploit these rules, as exemplified by the role of grammar and syntax in language. To study the brain representations of contingency rules, we recorded ERPs and event-related optical signal (EROS; which uses near-infrared light to measure the optical changes associated with neuronal responses). We used sequences of high- and low-frequency tones varying according to three contingency rules, which were orthogonally manipulated and differed in processing requirements: A Single Repetition rule required only template matching, a Local Probability rule required relating a stimulus to its context, and a Global Probability rule could be derived through template matching or with reference to the global sequence context. ERP activity at 200–300 msec was related to the Single Repetition and Global Probability rules (reflecting access to representations based on template matching), whereas longer-latency activity (300-450 msec) was related to the Local Probability and Global Probability rules (reflecting access to representations incorporating contextual information). EROS responses with corresponding latencies indicated that the earlier activity involved the superior temporal gyrus, whereas later responses involved a fronto-parietal network. This suggests that the brain can simultaneously hold different models of stimulus contingencies at different levels of the information processing system according to their processing requirements, as indicated by the latency and location of the corresponding brain activity.
Collapse
Affiliation(s)
- Chun-Yu Tse
- 1University of Illinois at Urbana-Champaign
- 2National University of Singapore
| | | | | | | |
Collapse
|
20
|
Gratton G, Fabiani M. Fast optical imaging of human brain function. Front Hum Neurosci 2010; 4:52. [PMID: 20631845 PMCID: PMC2903192 DOI: 10.3389/fnhum.2010.00052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/02/2010] [Indexed: 11/29/2022] Open
Abstract
Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods) emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so) interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years) may provide descriptions of localized (to sub-cm level) brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.
Collapse
Affiliation(s)
- Gabriele Gratton
- Department of Psychology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Monica Fabiani
- Department of Psychology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
21
|
Tse CY, Gordon BA, Fabiani M, Gratton G. Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults. Biol Psychol 2010; 85:79-89. [PMID: 20566389 DOI: 10.1016/j.biopsycho.2010.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/19/2010] [Accepted: 05/22/2010] [Indexed: 11/29/2022]
Abstract
Relatively high frequency activity (>4Hz) carries important information about the state of the brain or its response to high frequency events. The electroencephalogram (EEG) is commonly used to study these changes because it possesses high temporal resolution and a good signal-to-noise ratio. However, it provides limited spatial information. Non-invasive fast optical signals (FOS) have been proposed as a neuroimaging tool combining spatial and temporal resolution. Yet, this technique has not been applied to study high frequency brain oscillations because of its relatively low signal-to-noise ratio. Here we investigate the sensitivity of FOS to relatively high-frequency brain oscillations. We measured the steady-state optical response elicited in medial and lateral occipital cortex by checkerboard reversals occurring at 4, 6, and 8Hz in younger and older adults. Stimulus-dependent oscillations were observed at the predicted stimulation frequency. In addition, in the younger adults the FOS steady-state response was smaller in lateral than medial areas, whereas in the older adults it was reversed in these two cortical regions. This may reflect diminished top-down inhibitory control in the older adults. The results indicate that FOS can be used to study the modulation of relatively high-frequency brain oscillations in adjacent cortical regions.
Collapse
Affiliation(s)
- Chun-Yu Tse
- Beckman Institute and Department of Psychology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801-2325, USA
| | | | | | | |
Collapse
|
22
|
Tse CY, Penney TB. On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance. Neuroimage 2008; 41:1462-70. [PMID: 18474433 DOI: 10.1016/j.neuroimage.2008.03.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 03/03/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022] Open
Abstract
The superior temporal cortex (STC) and inferior frontal cortex (IFC) are active during pre-attentive change detection. According to one influential model, the temporal cortex is responsible for memory trace comparison and the frontal cortex for attention switching. However, fMRI studies that used parametric designs revealed frontal cortex activity that is inconsistent with this model. In response, alternative accounts of frontal cortex activity, such as contrast enhancement and response inhibition, have been suggested. In this study, we measured the event related potential (ERP) and event related optical signal (EROS) responses elicited by pitch deviants in a parametric design. The ERP results revealed the typical modulation of mismatch negativity (MMN) amplitude by degree of deviance. The EROS results showed a similar modulation effect in the temporal cortex and a general temporal cortex followed by frontal cortex activation pattern. Interestingly, medium deviants elicited a greater frontal EROS response than did large or small deviants. Moreover, regression analyses showed that the EROS measures, specifically the linear trend in the temporal cortex and the inverse quadratic trend in the frontal cortex, correlated with the linear trend of the ERP MMN response. Taken together, these results indicate that 1) deviance magnitude modulates the brain activity elicited by pitch stimuli in the STC and IFC within the same time range as electrophysiological measures of passive deviance detection, 2) EROS measures of deviance detection are highly correlated with the ERP MMN, and 3) the functional relationship of STC and IFC is consistent with both the contrast enhancement and response inhibition accounts of IFC activity in passive deviance detection.
Collapse
Affiliation(s)
- Chun-Yu Tse
- Beckman Institute and Department of Psychology, The University of Illinois at Urbana Champaign, USA
| | | |
Collapse
|
23
|
Brannon EM, Libertus ME, Meck WH, Woldorff MG. Electrophysiological measures of time processing in infant and adult brains: Weber's Law holds. J Cogn Neurosci 2008; 20:193-203. [PMID: 18275328 DOI: 10.1162/jocn.2008.20016] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Behavioral studies have demonstrated that time perception in adults, children, and nonhuman animals is subject to Weber's Law. More specifically, as with discriminations of other features, it has been found that it is the ratio between two durations rather than their absolute difference that controls the ability of an animal to discriminate them. Here, we show that scalp-recorded event-related electrical brain potentials (ERPs) in both adults and 10-month-old human infants, in response to changes in interstimulus interval (ISI), appear to obey the scalar property found in time perception in adults, children, and nonhuman animals. Using a timing-interval oddball paradigm, we tested adults and infants in conditions where the ratio between the standard and deviant interval in a train of homogeneous auditory stimuli varied such that there was a 1:4 (only for the infants), 1:3, 1:2, and 2:3 ratio between the standard and deviant intervals. We found that the amplitude of the deviant-triggered mismatch negativity ERP component (deviant-ISI ERP minus standard-ISI ERP) varied as a function of the ratio of the standard to deviant interval. Moreover, when absolute values were varied and ratio was held constant, the mismatch negativity did not vary.
Collapse
|
24
|
Schirmer A, Escoffier N, Zysset S, Koester D, Striano T, Friederici AD. When vocal processing gets emotional: on the role of social orientation in relevance detection by the human amygdala. Neuroimage 2008; 40:1402-10. [PMID: 18299209 DOI: 10.1016/j.neuroimage.2008.01.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/14/2007] [Accepted: 01/13/2008] [Indexed: 10/22/2022] Open
Abstract
Previous work on vocal emotional processing provided little evidence for involvement of emotional processing areas such as the amygdala or the orbitofrontal cortex (OFC). Here, we sought to specify whether involvement of these areas depends on how relevant vocal expressions are for the individual. To this end, we assessed participants' social orientation--a measure of the interest and concern for other individuals and hence the relevance of social signals. We then presented task-irrelevant syllable sequences that contained rare changes in tone of voice that could be emotional or neutral. Processing differences between emotional and neutral vocal change in the right amygdala and the bilateral OFC were significantly correlated with the social orientation measure. Specifically, higher social orientation scores were associated with enhanced amygdala and OFC activity to emotional as compared to neutral change. Given the presumed role of the amygdala in the detection of emotionally relevant information, our results suggest that social orientation enhances this detection process and the activation of emotional representations mediated by the OFC. Moreover, social orientation may predict listener responses to vocal emotional cues and explain interindividual variability in vocal emotional processing.
Collapse
Affiliation(s)
- Annett Schirmer
- Department of Psychology, Faculty of Arts and Social Sciences, National University of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
25
|
Tse CY, Lee CL, Sullivan J, Garnsey SM, Dell GS, Fabiani M, Gratton G. Imaging cortical dynamics of language processing with the event-related optical signal. Proc Natl Acad Sci U S A 2007; 104:17157-62. [PMID: 17942677 PMCID: PMC2040398 DOI: 10.1073/pnas.0707901104] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Indexed: 11/18/2022] Open
Abstract
Language processing involves the rapid interaction of multiple brain regions. The study of its neurophysiological bases would therefore benefit from neuroimaging techniques combining both good spatial and good temporal resolution. Here we use the event-related optical signal (EROS), a recently developed imaging method, to reveal rapid interactions between left superior/middle temporal cortices (S/MTC) and inferior frontal cortices (IFC) during the processing of semantically or syntactically anomalous sentences. Participants were presented with sentences of these types intermixed with nonanomalous control sentences and were required to judge their acceptability. ERPs were recorded simultaneously with EROS and showed the typical activities that are elicited when processing anomalous stimuli: the N400 and the P600 for semantic and syntactic anomalies, respectively. The EROS response to semantically anomalous words showed increased activity in the S/MTC (corresponding in time with the N400), followed by IFC activity. Syntactically anomalous words evoked a similar sequence, with a temporal-lobe EROS response (corresponding in time with the P600), followed by frontal activity. However, the S/MTC activity corresponding to a semantic anomaly was more ventral than that corresponding to a syntactic anomaly. These data suggest that activation related to anomaly processing in sentences proceeds from temporal to frontal brain regions for both semantic and syntactic anomalies. This first EROS study investigating language processing shows that EROS can be used to image rapid interactions across cortical areas.
Collapse
Affiliation(s)
- Chun-Yu Tse
- Beckman Institute, University of Illinois at Urbana–Champaign, 405 North Mathews Avenue, Urbana, IL 61801-2325
| | - Chia-Lin Lee
- Beckman Institute, University of Illinois at Urbana–Champaign, 405 North Mathews Avenue, Urbana, IL 61801-2325
| | - Jason Sullivan
- Beckman Institute, University of Illinois at Urbana–Champaign, 405 North Mathews Avenue, Urbana, IL 61801-2325
| | - Susan M. Garnsey
- Beckman Institute, University of Illinois at Urbana–Champaign, 405 North Mathews Avenue, Urbana, IL 61801-2325
| | - Gary S. Dell
- Beckman Institute, University of Illinois at Urbana–Champaign, 405 North Mathews Avenue, Urbana, IL 61801-2325
| | - Monica Fabiani
- Beckman Institute, University of Illinois at Urbana–Champaign, 405 North Mathews Avenue, Urbana, IL 61801-2325
| | - Gabriele Gratton
- Beckman Institute, University of Illinois at Urbana–Champaign, 405 North Mathews Avenue, Urbana, IL 61801-2325
| |
Collapse
|