1
|
Cudeiro-Blanco J, Cueto C, Bates O, Strong G, Robins T, Toulemonde M, Warner M, Tang MX, Agudo OC, Guasch L. Design and Construction of a Low-Frequency Ultrasound Acquisition Device for 2-D Brain Imaging Using Full-Waveform Inversion. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1995-2008. [PMID: 35902276 DOI: 10.1016/j.ultrasmedbio.2022.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The main techniques used to image the brain and obtain structural data are magnetic resonance imaging and X-ray computed tomography. These techniques produce images with high spatial resolution, but with the disadvantage of requiring very large equipment with special installation needs. In addition, X-ray tomography uses ionizing radiation, which limits their use. Ultrasound imaging is a safe technology that is delivered using compact and mobile devices. However, conventional ultrasound reconstruction techniques have failed to obtain images of the brain because of, fundamentally, the presence of the skull and the distortion that it produces on ultrasound. Recent studies have indicated that full-waveform inversion, a computational technique originally from Earth science, has the potential to generate accurate 3-D images of the brain. This technology can overcome the limitations of conventional ultrasound imaging, but a prototype for transcranial applications does not yet exist. Here, we investigate different designs of an annular array of ultrasound transducers to optimize the number of elements and rotations needed to conduct transcranial imaging with full-waveform inversion. This device uses small-diameter, low-frequency transducers that readily propagate ultrasound through the skull with good signal-to-noise ratios. It also incorporates the use of rotations to produce a high-density coverage of the target and acquire redundant traces that are beneficial for full-waveform inversion. We have built a ring of 40 transducers to illustrate that this design is capable of reconstructing images of the brain, retrieving its anatomy and acoustic properties with millimeter resolution. Laboratory results reveal the ability of this device to successfully image a 2.5-D brain- and skull-mimicking phantom using full-waveform inversion. To our knowledge, this is the first prototype ever used for transcranial-like imaging. The importance of these findings and their implications for the design of a 3-D reconstruction system with possible clinical applications are discussed.
Collapse
Affiliation(s)
- Javier Cudeiro-Blanco
- Department of Earth Science and Engineering, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK.
| | - Carlos Cueto
- Department of Bioengineering, Imperial College London, London, UK
| | - Oscar Bates
- Department of Bioengineering, Imperial College London, London, UK
| | - George Strong
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Tom Robins
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Mike Warner
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, UK
| | - Oscar Calderón Agudo
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Lluis Guasch
- Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
2
|
Zhang Q, Mao J, Zhang Y, Lu M, Li R, Liu X, Liu Y, Yang R, Wang X, Geng Y, Qi T, Wan M. Multiple-Focus Patterns of Sparse Random Array Using Particle Swarm Optimization for Ultrasound Surgery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:565-579. [PMID: 34757903 DOI: 10.1109/tuffc.2021.3127222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aims to investigate the feasibility and potential of sparse random arrays driven by the particle swarm optimization (PSO) algorithm to generate multiple-focus patterns and a large scanning range without grating lobes, which extends the scanning range of focused ultrasound in the treatment of brain tumors, opening the blood-brain barrier, and neuromodulation. Operating at 1.1 MHz, a random spherical array with 200 square elements (sparseness 58%) and a sparse random array with 660 square elements (sparseness 41%) driven by PSO are employed to simulate different focus patterns. With the same radius of curvature and diameter of transducer and element size, the scanning range of the off-axis single focus of a random 200-element array is two times that of an ordinary array using symmetric arrangement. The focal volume of multiple-focus patterns of the random array is 18 times that of the single focus. The single focus of the sparse random array with 660 elements could steer up to ±23 mm in the radial direction, without grating lobes. The maximum distance between two foci in a multiple-focus "S"-shaped deflection is approximately 25 mm. Simulation results illustrate the capability of a focused beam steered in 3-D space. Multiple-focus patterns could significantly increase the focal volume and shorten the treatment time for large target volumes. Simulation results show the feasibility and potential of the method combining PSO with a sparse random array to generate flexible focus patterns that can adapt to different needs in different tissue treatments.
Collapse
|
3
|
Abstract
Focused ultrasound (FUS/HIFU) relies on ablation of pathological tissues by delivering a sufficiently high level of acoustic energy in situ of the human body. Magnetic Resonance guided FUS (MRgFUS/HIFU) and Ultrasound guided (USgFUS/HIFU) are image guided techniques combined with therapeutic FUS for monitoring purposes. The principles and technologies of FUS/HiFU are described in this paper including the basics of MR guidance techniques and MR temperature mapping. Clinical applications of FUS/HIFU gained CE and FDA approvals for the treatment of various benign and few malignant lesions in the last two decades. Current technical limitations of ultrasound guided and MRI guided Focused Ultrasound, as well as adverse effects for the application of this technique are outlined including challenges of ablating moving organs (liver and kidney). An outlook to possible applications is provided; exampling clinical trials discussing future options.
Collapse
Affiliation(s)
- Senay Mihcin
- a Institute for Medical Science and Technology , Universities Dundee & St. Andrews Ninewells Hospital and Medical School , Dundee , UK
| | - Andreas Melzer
- b Division Medical Technology, Institute for Medical Science and Technology , Universities Dundee & St. Andrews Ninewells Hospital and Medical School , Dundee , UK
| |
Collapse
|
4
|
Malietzis G, Monzon L, Hand J, Wasan H, Leen E, Abel M, Muhammad A, Price P, Abel P. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology. Br J Radiol 2013; 86:20130044. [PMID: 23403455 DOI: 10.1259/bjr.20130044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) is a rapidly maturing technology with diverse clinical applications. In the field of oncology, the use of HIFU to non-invasively cause tissue necrosis in a defined target, a technique known as focused ultrasound surgery (FUS), has considerable potential for tumour ablation. In this article, we outline the development and underlying principles of HIFU, overview the limitations and commercially available equipment for FUS, then summarise some of the recent technological advances and experimental clinical trials that we predict will have a positive impact on extending the role of FUS in cancer therapy.
Collapse
Affiliation(s)
- G Malietzis
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Stephens D, Kruse D, Qin S, Ferrara K. Design aspects of focal beams from high-intensity arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:1590-602. [PMID: 21859578 PMCID: PMC3174850 DOI: 10.1109/tuffc.2011.1986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As the applications of ultrasonic thermal therapies expand, the design of the high-intensity array must address both the energy delivery of the main beam and the character and relevance of off-target beam energy. We simulate the acoustic field performance of a selected set of circular arrays organized by array format, including flat versus curved arrays, periodic versus random arrays, and center void diameter variations. Performance metrics are based on the -3-dB focal main lobe (FML) positioning range, axial grating lobe (AGL) temperatures, and side lobe levels. Using finite-element analysis, we evaluate the relative heating of the FML and the AGLs. All arrays have a maximum diameter of 100λ, with element count ranging from 64 to 1024 and continuous wave frequency of 1.5 MHz. First, we show that a 50% spherical annulus produces focus beam side lobes which decay as a function of lateral distance at nearly 87% of the exponential rate of a full aperture. Second, for the arrays studied, the efficiency of power delivery over the -3-dB focus positioning range for spherical arrays is at least 2-fold greater than for flat arrays; the 256-element case shows a 5-fold advantage for the spherical array. Third, AGL heating can be significant as the focal target is moved to its distal half-intensity depth from the natural focus. Increasing the element count of a randomized array to 256 elements decreases the AGL-to-FML heating ratio to 0.12 at the distal half-intensity depth. Further increases in element count yield modest improvements. A 49% improvement in the AGL-to-peak heating ratio is predicted by using the Sumanaweera spiral element pattern with randomization.
Collapse
|
6
|
Hu J, Qian S, Ding Y. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer. ULTRASONICS 2010; 50:628-633. [PMID: 20156630 DOI: 10.1016/j.ultras.2010.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 01/17/2010] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
Temperature control of hyperthermia treatments is generally implemented with multipoint feedback system comprised of phased-array transducer, which is complicated and high cost. Our simulations to the acoustic field induced by a self-focused concave spherical transducer (0.5MHz, 9cm aperture width, 8.0cm focal length) show that the distribution of temperature can keep the same "cigar shape" in the focal region during ultrasound insonation. Based on the characteristic of the temperature change, a two-dimensional model of a "cigar shape" tumor is designed and tested through numerical simulation. One single-point on the border of the "cigar shape" tumor is selected as the control target and is controlled at the temperature of 43 degrees C by using a self-tuning regulator (STR). Considering the nonlinear effects of biological medium, an accurate state-space model obtained via the finite Fourier integral transformation to the bioheat equation is presented and used for calculating temperature. Computer simulations were performed with the perfusion rates of 2.0kg/(m(3)s) and 4.5kg/(m(3)s) to the different targets, it was found that the temperatures on the border of the "cigar shape" tumor can achieve the desired temperature of 43 degrees C by control of one single-point. A larger perfusion rate requires a higher power output to obtain the same temperature elevation under the same insonation time and needs a higher cost for compensating the energy loss carried away by blood flow after steady state. The power output increases with the controlled region while achieving the same temperature at the same time. Especially, there is no overshoot during temperature elevation and no oscillation after steady state. The simulation results demonstrate that the proposed approach may offers a way for obtaining a single-point, low-cost hyperthermia system.
Collapse
Affiliation(s)
- Jiwen Hu
- College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
| | | | | |
Collapse
|
7
|
Ji X, Bai JF, Shen GF, Chen YZ. High-intensity focused ultrasound with large scale spherical phased array for the ablation of deep tumors. J Zhejiang Univ Sci B 2009; 10:639-47. [PMID: 19735096 DOI: 10.1631/jzus.b0920130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Under some circumstances surgical resection is feasible in a low percentage for the treatment of deep tumors. Nevertheless, high-intensity focused ultrasound (HIFU) is beginning to offer a potential noninvasive alternative to conventional therapies for the treatment of deep tumors. In our previous study, a large scale spherical HIFU-phased array was developed to ablate deep tumors. In the current study, taking into account the required focal depth and maximum acoustic power output, 90 identical circular PZT-8 elements (diameter =1.4 cm and frequency=1 MHz) were mounted on a spherical shell with a radius of curvature of 18 cm and a diameter of 21 cm. With the developed array, computer simulations and ex vivo experiments were carried out. The simulation results theoretically demonstrate the ability of the array to focus and steer in the specified volume (a 2 cmx2 cmx3 cm volume) at the focal depth of 15 to 18 cm. Ex vivo experiment results also verify the capability of the developed array to ablate deep target tissue by either moving single focal point or generating multiple foci simultaneously.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | |
Collapse
|