1
|
Heo D, Kim H, Katagiri W, Yoon C, Lim HG, Kim C, Choi HS, Kashiwagi S, Kim HH. Enhanced model antigen retention in tissue through topical high-frequency ultrasound treatment. Biomed Eng Lett 2025; 15:273-282. [PMID: 40026896 PMCID: PMC11871201 DOI: 10.1007/s13534-024-00445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 03/05/2025] Open
Abstract
Reproducible control of tissue delivery and retention of a therapeutic agent facilitates the maximization of the efficacy of pharmacotherapy. Despite the proposal of various chemical and physical methods for modulating drug delivery and retention, the choice of the physical modality for this purpose has been limited in clinical practice. Thus, this study proposes a novel strategy for modulating the retention of a model antigen in tissues by using non-tissue-damaging high-frequency ultrasoundAfter the injection of a fluorescently labeled model antigen, followed by brief treatment with high-frequency ultrasound (5-20 MHz), the clearance of the antigen was monitored using a real-time near-infrared (NIR) fluorescence imaging system in vivo. Further, ultrasound treatment increased tissue retention at the site of model antigen administration. The results suggested that high-frequency ultrasound could change the response to a macromolecule injected into the tissue, such as a vaccine, thereby modulating the immune response. The proposed ultrasound-based technology is translatable to clinical settings and benefits from well-established ultrasound technologies that have been employed in various medical applications for decades. Moreover, this approach can be broadly applied to enhance the therapeutic effects of current and future immune-mediated therapeutic systems.
Collapse
Affiliation(s)
- Dasom Heo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Hyunhee Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Boston, MA 02129 USA
| | - Changhan Yoon
- Department of Biomedical Engineering, Inje University, Gimhae, 50834 Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | - Chulhong Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Graduate School of Convergence Science and Technology, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Boston, MA 02129 USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Boston, MA 02129 USA
| | - Hyung Ham Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Graduate School of Convergence Science and Technology, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
2
|
Patel PB, Latt S, Ravi K, Razavi M. Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases. Biomimetics (Basel) 2024; 9:645. [PMID: 39451851 PMCID: PMC11506587 DOI: 10.3390/biomimetics9100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Nanomedicine, leveraging the unique properties of nanoparticles, has revolutionized the diagnosis and treatment of neurological diseases. Among various nanotechnological advancements, ultrasound-mediated drug delivery using micro- and nanobubbles offers promising solutions to overcome the blood-brain barrier (BBB), enhancing the precision and efficacy of therapeutic interventions. This review explores the principles, current clinical applications, challenges, and future directions of ultrasound-mediated drug delivery systems in treating stroke, brain tumors, neurodegenerative diseases, and neuroinflammatory disorders. Additionally, ongoing clinical trials and potential advancements in this field are discussed, providing a comprehensive overview of the impact of nanomedicine on neurological diseases.
Collapse
Affiliation(s)
- Parth B. Patel
- University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.B.P.); (K.R.)
| | - Sun Latt
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Karan Ravi
- University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.B.P.); (K.R.)
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Biomedical Engineering Program, Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
3
|
Effect of acoustic standing waves on cellular viability and metabolic activity. Sci Rep 2020; 10:8493. [PMID: 32444830 PMCID: PMC7244593 DOI: 10.1038/s41598-020-65241-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Acoustic standing wave devices offer excellent potential applications in biological sciences for drug delivery, cell manipulation and tissue engineering. However, concerns have been raised about possible destructive effects on cells due to the applied acoustic field, in addition to other produced secondary factors. Here, we report a systematic study employing a 1D resonant acoustic trapping device to evaluate the cell viability and cell metabolism for a healthy cell line (Human Dermal Fibroblasts, HDF) and a cervical cancer cell line (HeLa), as a function of time and voltages applied (4-10 Vpp) under temperature-controlled conditions. We demonstrate that high cell viability can be achieved reliably when the device is operated at its minimum trapping voltage and tuned carefully to maximise the acoustic standing wave field at the cavity resonance. We found that cell viability and reductive metabolism for both cell lines are kept close to control levels at room temperature and at 34 °C after 15 minutes of acoustic exposure, while shorter acoustic exposures and small changes on temperature and voltages, had detrimental effects on cells. Our study highlights the importance of developing robust acoustic protocols where the operating mode of the acoustic device is well defined, characterized and its temperature carefully controlled, for the application of acoustic standing waves when using live cells and for potential clinical applications.
Collapse
|
4
|
Jegal U, Lee JH, Lee J, Jeong H, Kim MJ, Kim KH. Ultrasound-assisted gatifloxacin delivery in mouse cornea, in vivo. Sci Rep 2019; 9:15532. [PMID: 31664145 PMCID: PMC6820539 DOI: 10.1038/s41598-019-52069-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
Gatifloxacin is a 4th generation fluoroquinolone antibiotic used in the clinic to treat ocular infection. One limitation of gatifloxacin is its relatively poor corneal penetration, and the increase of its trans-corneal delivery would be beneficial to reduce the amount or frequency of daily dose. In this study, ultrasound treatment was applied to enhance the trans-corneal delivery of gatifloxacin without damage. Experiments were conducted on mouse eyes in ex vivo and in vivo conditions. Ultrasound waves with 1 MHz in frequency, 1.3 W/cm2 in intensity were applied onto the mouse cornea for 5 minutes, and then gatifloxacin ophthalmic solution was instilled and left there for 10 minutes. 3D gatifloxacin distribution in the cornea was measured by two-photon microscopy (TPM) imaging based on its intrinsic fluorescence. Longitudinal TPM imaging of ultrasound treated mouse corneas showed the increase of initial gatifloxacin intensities on the corneal surface compared to untreated mouse corneas by 67%, and then the increased gatifloxacin delivery into the cornea from the surface at later time. The delivered gatifloxacin in the corneal epithelium stayed longer in the ultrasound treated corneas than in the untreated corneas. The enhanced trans-corneal delivery and extended stay of gatifloxacin in the mouse cornea by ultrasound treatment could be beneficial for therapeutic effects. This study demonstrated the detail process of enhanced trans-corneal gatifloxacin delivery by ultrasound treatment.
Collapse
Affiliation(s)
- Uk Jegal
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Jun Ho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Jungbin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Hyerin Jeong
- Department of Ophthalmology, Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Myoung Joon Kim
- Department of Ophthalmology, Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea. .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea.
| |
Collapse
|
5
|
van Rooij T, Skachkov I, Beekers I, Lattwein KR, Voorneveld JD, Kokhuis TJ, Bera D, Luan Y, van der Steen AF, de Jong N, Kooiman K. Viability of endothelial cells after ultrasound-mediated sonoporation: Influence of targeting, oscillation, and displacement of microbubbles. J Control Release 2016; 238:197-211. [DOI: 10.1016/j.jconrel.2016.07.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
|
6
|
Li T, Chen H, Khokhlova T, Wang YN, Kreider W, He X, Hwang JH. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1523-34. [PMID: 24613635 PMCID: PMC4048799 DOI: 10.1016/j.ultrasmedbio.2014.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/17/2013] [Accepted: 01/06/2014] [Indexed: 05/03/2023]
Abstract
Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped over the first few pulses ex vivo. Cavitation activity depended on the interplay between the destruction and circulation of cavitation nuclei, which are not only used up by HIFU treatment but also replenished or carried away by circulation in vivo. These findings are important for treatment planning and optimization in pHIFU-induced drug delivery, in particular for pancreatic tumors.
Collapse
Affiliation(s)
- Tong Li
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| | - Hong Chen
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Tatiana Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA; Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Xuemei He
- Department of Ultrasound Imaging, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Joo Ha Hwang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA; Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 2014; 72:28-48. [PMID: 24667643 DOI: 10.1016/j.addr.2014.03.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/11/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Ultrasound contrast agents are valuable in diagnostic ultrasound imaging, and they increasingly show potential for drug delivery. This review focuses on the acoustic behavior of flexible-coated microbubbles and rigid-coated microcapsules and their contribution to enhanced drug delivery. Phenomena relevant to drug delivery, such as non-spherical oscillations, shear stress, microstreaming, and jetting will be reviewed from both a theoretical and experimental perspective. Further, the two systems for drug delivery, co-administration and the microbubble as drug carrier system, are reviewed in relation to the microbubble behavior. Finally, future prospects are discussed that need to be addressed for ultrasound contrast agents to move from a pre-clinical tool into a clinical setting.
Collapse
|
8
|
Kedjarune-Leggat U, Supaprutsakul C, Chotigeat W. Ultrasound treatment increases transfection efficiency of low molecular weight chitosan in fibroblasts but not in KB cells. PLoS One 2014; 9:e92076. [PMID: 24651870 PMCID: PMC3961286 DOI: 10.1371/journal.pone.0092076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/18/2014] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to optimize transfection efficiency (TE) of the depolymerized low molecular weight (LW) chitosan with molecular weight (Mw) at 16 kDa and 54% degree of deacetylation (DDA) on three primary cells of fibroblast (F), dental pulp (P), and periodontal ligament (PDL). The effect of low frequency ultrasound treatment on the chitosan-DNA complexes prior transfection on TE was also evaluated. This LW chitosan required high N/P ratio (>34) to bind DNA completely. An N/P ratio above 56 tended to improve TE in most primary cells nearly at the level of Lipofectamine. Ultrasonication can reduce the aggregation and sizes of the chitosan-DNA microparticles. It increased TE of F cells at an N/P ratio above 34, which was higher than Lipofectamine. However, this ultrasound treatment caused loss of TE in KB cells. MTT assay of these chitosan-DNA complexes revealed no significant cytotoxicity to both KB and F cells. This LW chitosan has potential for further development into a safer alternative to gene delivery systems in various cells of interest; however the optimal conditions have to be adjusted, depending on each cell source.
Collapse
Affiliation(s)
- Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
- * E-mail:
| | - Chanyapat Supaprutsakul
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| |
Collapse
|
9
|
Oh JS, Kwon YS, Lee KH, Jeong W, Chung SK, Rhee K. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles. Comput Biol Med 2014; 44:37-43. [DOI: 10.1016/j.compbiomed.2013.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/19/2013] [Indexed: 12/20/2022]
|
10
|
Hu Y, Wan JMF, Yu ACH. Membrane perforation and recovery dynamics in microbubble-mediated sonoporation. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2393-405. [PMID: 24063956 DOI: 10.1016/j.ultrasmedbio.2013.08.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/10/2013] [Accepted: 08/04/2013] [Indexed: 05/05/2023]
Abstract
Transient sonoporation can essentially be epitomized by two fundamental processes: acoustically induced membrane perforation and its subsequent resealing. To provide insight into these processes, this article presents a new series of direct evidence on the membrane-level dynamics during and after an episode of sonoporation. Our direct observations were obtained from anchored fetal fibroblasts whose membrane topography was imaged in situ using real-time confocal microscopy. To facilitate controlled sonoporation at the single-cell level, microbubbles that can passively adhere to the cell membrane were first introduced at a 1:1 cell-to-bubble ratio. Single-pulse ultrasound exposure (1-MHz frequency, 10-cycle pulse duration, 0.85-MPa peak negative pressure in situ) was then applied to trigger microbubble pulsation/collapse, which, in turn, instigated membrane perforation. With this protocol, five membrane-level phenomena were observed: (i) localized perforation of the cell membrane was synchronized with the instant of ultrasound pulsing; (ii) perforation sites with temporal peak area <30 μm(2) were resealed successfully; (iii) during recovery, a thickened pore rim emerged, and its temporal progression corresponded with the pore closure action; (iv) membrane resealing, if successful, would generally be completed within 1 min of the onset of sonoporation, and the resealing time constant was estimated to be below 20 s; (v) membrane resealing would fail for overly large pores (>100 μm(2)) or in the absence of extracellular calcium ions. These findings serve to underscore the spatiotemporal complexity of membrane-level dynamics in sonoporation.
Collapse
Affiliation(s)
- Yaxin Hu
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
11
|
Chen H, Hwang JH. Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors. J Ther Ultrasound 2013; 1:10. [PMID: 25512858 PMCID: PMC4265893 DOI: 10.1186/2050-5736-1-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022] Open
Abstract
Ultrasound-targeted microbubble destruction (UTMD) is a promising technique for non-invasive, targeted drug delivery, and its applications in chemotherapeutic drug delivery to solid tumors have attracted growing interest. Ultrasound, which has been conventionally used for diagnostic imaging, has evolved as a promising tool for therapeutic applications mainly because of its ability to be focused deep inside the human body, providing a modality for targeted delivery. Although originally being introduced into clinics as ultrasound contrast agents, microbubbles (MBs) have been developed as a diagnostic and therapeutic agent that can both be tracked through non-invasive imaging and deliver therapeutic agents selectively at ultrasound-targeted locations. Whereas free drugs often possess harmful side effects, their encapsulation in MBs and subsequent local release at the targeted tissue by ultrasound triggering may help improve the margin of safety. In the past 10 years, the feasibility and safety of UTMD have been extensively tested using normal animal models. Most recently, a growing number of preclinical studies have been reported on the therapeutic benefits of UTMD in the delivery of chemotherapeutic drugs to various malignant tumors, such as brain, liver, eyelid, pancreas, and breast tumors. Increased drug concentration in tumors and reduced tumor sizes were achieved in those tumors treated with UTMD in combination with chemotherapeutic drugs, when compared to tumors treated with chemotherapy drugs alone. This review presents an overview of current preclinical applications of UTMD in chemotherapeutic drug delivery for the treatment of cancers along with a discussion of its future developments.
Collapse
Affiliation(s)
- Hong Chen
- Division of Gastroenterology, Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Sridhar-Keralapura M, Thirumalai S, Mobed-Miremadi M. Structural changes and imaging signatures of acoustically sensitive microcapsules under ultrasound. ULTRASONICS 2013; 53:1044-1057. [PMID: 23499137 DOI: 10.1016/j.ultras.2013.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/19/2013] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
The ultrasound drug delivery field is actively designing new agents that would obviate the problems of just using microbubbles for drug delivery. Microbubbles have very short circulation time (minutes), low payload and large size (2-10μm), all of these aspects are not ideal for systemic drug delivery. However, microbubble carriers provide excellent image contrast and their use for image guidance can be exploited. In this paper, we suggest an alternative approach by developing acoustically sensitive microcapsule reservoirs that have future applications for treating large ischemic tumors through intratumoral therapy. We call these agents Acoustically Sensitized Microcapsules (ASMs) and these are not planned for the circulation. ASMs are very simple in their formulation, robust and reproducible. They have been designed to offer high payload (because of their large size), be acoustically sensitive and reactive (because of the Ultrasound Contrast Agents (UCAs) encapsulated) and mechanically robust for future injections/implantations within tumors. We describe three different aspects - (1) effect of therapeutic ultrasound; (2) mechanical properties and (3) imaging signatures of these agents. Under therapeutic ultrasound, the formation of a cavitational bubble was seen prior to rupture. The time to rupture was size dependent. Size dependency was also seen when measuring mechanical properties of these ASMs. % Alginate and permeability also affected the Young's modulus estimates. For study of imaging signatures of these agents, we show six schemes. For example, with harmonic imaging, tissue phantoms and controls did not generate higher harmonic components. Only ASM phantoms created a harmonic signal, whose sensitivity increased with applied acoustic pressure. Future work includes developing schemes combining both sonication and imaging to help detect ASMs before, during and after release of drug substance.
Collapse
|
13
|
Chen X, Wan JMF, Yu ACH. Sonoporation as a cellular stress: induction of morphological repression and developmental delays. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1075-1086. [PMID: 23499345 DOI: 10.1016/j.ultrasmedbio.2013.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
For sonoporation to be established as a drug/gene delivery paradigm, it is essential to account for the biological impact of this membrane permeation strategy on living cells. Here we provide new insight into the cellular impact of sonoporation by demonstrating in vitro that this way of permeating the plasma membrane may inadvertently induce repressive cellular features even while enhancing exogenous molecule uptake. Both suspension-type (HL-60) and monolayer (ZR-75-30) cells were considered in this investigation, and they were routinely exposed to 1-MHz pulsed ultrasound (pulse length, 100 cycles; pulse repetition frequency, 1 kHz; exposure period, 60 s) with calibrated field profile (spatial-averaged peak negative pressure, 0.45 MPa) and in the presence of microbubbles (cell:bubble ratio, 10:1). The post-exposure morphology of sonoporated cells (identified as those with calcein internalization) was examined using confocal microscopy, and their cell cycle progression kinetics were analyzed using flow cytometry. Results show that for both cell types investigated, sonoporated cells exhibited membrane shrinkage and intra-cellular lipid accumulation over a 2-h period. Also, as compared with normal cells, the deoxyribonucleic acid synthesis duration of sonoporated cells was significantly lengthened, indicative of a delay in cell cycle progression. These features are known to be characteristics of a cellular stress response, suggesting that sonoporation indeed constitutes as a stress to living cells. This issue may need to be addressed in optimizing sonoporation for drug/gene delivery purposes. On the other hand, it raises opportunities for developing other therapeutic applications via sonoporation.
Collapse
Affiliation(s)
- Xian Chen
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | |
Collapse
|
14
|
Zhang JZ, Saggar JK, Zhou ZL, Hu B. Different effects of sonoporation on cell morphology and viability. Bosn J Basic Med Sci 2012; 12:64-8. [PMID: 22642588 DOI: 10.17305/bjbms.2012.2497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The objective of our study was to investigate changes in cell morphology and viability after sonoporation. Sonoportion was achieved by ultrasound (21 kHz) exposure on adherent human prostate cancer DU145 cells in the cell culture dishes with the presence of microbubble contrast agents and calcein (a cell impermeant dye). We investigated changes in cell morphology immediately after sonoporation under scanning electron microscope (SEM) and changes in cell viability immediately and 6 h after sonoporation under fluorescence microscope. It was shown that various levels of intracellular calcein uptake and changes in cell morphology can be caused immediately after sonoporation: smooth cell surface, pores in the membrane and irregular cell surface. Immediately after sonoporation, both groups of cells with high levels of calcein uptake and low levels of calcein uptake were viable; 6 h after sonoporation, group of cells with low levels of calcein uptake still remained viable, while group of cells with high levels of calcein uptake died. Sonoporation induces different effects on cell morphology, intracellular calcein uptake and cell viability.
Collapse
Affiliation(s)
- Ji-Zhen Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai Institute of Ultrasound in Medicine, 600 Yi Shan Road, Shanghai 200233, China
| | | | | | | |
Collapse
|
15
|
Ando T, Sato S, Ashida H, Obara M. Propagation characteristics of photomechanical waves and their application to gene delivery into deep tissue. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:75-84. [PMID: 22104529 DOI: 10.1016/j.ultrasmedbio.2011.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
Targeted gene transfection can be achieved by the use of photomechanical waves (PMWs) generated by irradiating a solid material with high-power nanosecond laser pulses. To examine the treatable tissue depth, we investigated propagation characteristics of PMWs and depth-dependent properties of gene transfection with different laser fluences and spot diameters. Pressure characteristics of PMWs were measured at different propagation distances using tissue phantoms and their propagation was imaged by shadowgraphing. Phantoms with various thicknesses were placed on rat dorsal skin that had been injected with plasmid DNA coding for a reporter gene and three pulses of PMWs were applied from the top of each phantom. Significant gene expression was observed in the skin even under a 15-mm-thick tissue phantom and the depth-dependent relationships between PMW parameters and gene expression level were revealed. The data obtained will be useful for determining appropriate laser parameters for PMW-based gene transfer into deep-located tissue.
Collapse
Affiliation(s)
- Takahiro Ando
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | | | | | | |
Collapse
|
16
|
Zhong W, Sit WH, Wan JMF, Yu ACH. Sonoporation induces apoptosis and cell cycle arrest in human promyelocytic leukemia cells. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:2149-2159. [PMID: 22033133 DOI: 10.1016/j.ultrasmedbio.2011.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
Despite being a transient biophysical phenomenon, sonoporation is known to disturb the homeostasis of living cells. This work presents new evidence on how sonoporation may lead to antiproliferation effects including cell-cycle arrest and apoptosis through disrupting various cell signaling pathways. Our findings were obtained from sonoporation experiments conducted on HL-60 human promyelocytic leukemia cells (with 1% v/v microbubbles; 1 MHz ultrasound; 0.3 or 0.5MPa peak negative pressure; 10% duty cycle; 1 kHz pulse repetition frequency; 1 min exposure period). Membrane resealing in these sonoporated cells was first verified using scanning electron microscopy. Time-lapse flow cytometry analysis of cellular deoxyribonucleic acid (DNA) contents was then performed at four post-sonoporation time points (4 h, 8 h, 12 h and 24 h). Results indicate that an increasing trend in the apoptotic cell population can be observed for at least 12 h after sonoporation, whilst viable sonoporated cells are found to temporarily accumulate in the G(2)/M (gap-2/mitosis) phase of the cell cycle. Further analysis using western blotting reveals that sonoporation-induced apoptosis involves cleavage of poly adenosine diphosphate ribose polymerase (PARP) proteins: a pro-apoptotic hallmark related to loss of DNA repair functionality. Also, mitochondrial signaling seems to have taken part in triggering this cellular event as the expression of two complementary regulators for mitochondrial release of pro-apoptotic molecules, Bcl-2 (B-cell lymphoma 2) and Bax (Bcl-2-associated X), are seen to be imbalanced in sonoporated cells. Furthermore, sonoporation is found to induce cell-cycle arrest through perturbing the expression of various cyclin and Cdk (cyclin-dependent kinase) checkpoint proteins that play an enabling role in cell-cycle progression. These bioeffects should be taken into account when using sonoporation for therapeutic purposes.
Collapse
Affiliation(s)
- Wenjing Zhong
- Medical Engineering Program, The University of Hong Kong, Hong Kong SAR
| | | | | | | |
Collapse
|
17
|
Ultrasound Activated Nano-Encapsulated Targeted Drug Delivery and Tumour Cell Poration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011. [DOI: 10.1007/978-94-007-2555-3_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
18
|
Sonoporation of endothelial cells by vibrating targeted microbubbles. J Control Release 2011; 154:35-41. [PMID: 21514333 DOI: 10.1016/j.jconrel.2011.04.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/01/2011] [Accepted: 04/06/2011] [Indexed: 12/20/2022]
Abstract
Molecular imaging using ultrasound makes use of targeted microbubbles. In this study we investigated whether these microbubbles could also be used to induce sonoporation in endothelial cells. Lipid-coated microbubbles were targeted to CD31 and insonified at 1 MHz at low peak negative acoustic pressures at six sequences of 10 cycle sine-wave bursts. Vibration of the targeted microbubbles was recorded with the Brandaris-128 high-speed camera (~13 million frames per second). In total, 31 cells were studied that all had one microbubble (1.2-4.2 micron in diameter) attached per cell. After insonification at 80 kPa, 30% of the cells (n=6) had taken up propidium iodide, while this was 20% (n=1) at 120 kPa and 83% (n=5) at 200 kPa. Irrespective of the peak negative acoustic pressure, uptake of propidium iodide was observed when the relative vibration amplitude of targeted microbubbles was greater than 0.5. No relationship was found between the position of the microbubble on the cell and induction of sonoporation. This study shows that targeted microbubbles can also be used to induce sonoporation, thus making it possible to combine molecular imaging and drug delivery.
Collapse
|
19
|
Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Parker DL, Jeong EK, Kennedy AM. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 2011; 153:4-15. [PMID: 21277919 DOI: 10.1016/j.jconrel.2011.01.022] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 01/08/2023]
Abstract
Perfluorocarbon nanoemulsions can deliver lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or (19)F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent hard to control phenomenon of irreversible droplet-to-bubble transition upon injection. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. PFCE nanodroplets manifest both ultrasound and fluorine ((19)F) MR contrast properties, which allows using multimodal imaging and (19)F MR spectroscopy for monitoring nanodroplet pharmacokinetics and biodistribution. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. As manifested by the (19)F MR spectroscopy, PFCE nanodroplets are long circulating, with about 50% of the injected dose remaining in circulation 2h after the systemic injection. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization of nanodroplets underwent stable cavitation. The nanodroplet size (200nm to 350nm depending on a type of the shell and conditions of emulsification) as well as long residence in circulation favored their passive accumulation in tumor tissue that was confirmed by ultrasonography. In the breast and pancreatic cancer animal models, ultrasound-mediated therapy with paclitaxel-loaded PFCE nanoemulsions showed excellent therapeutic properties characterized by tumor regression and suppression of metastasis. Anticipated mechanisms of the observed effects are discussed.
Collapse
Affiliation(s)
- Natalya Rapoport
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Melzer A. [Principles of MR-guided interventions, surgery, navigation, and robotics]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2010; 53:768-75. [PMID: 20700775 DOI: 10.1007/s00103-010-1101-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.
Collapse
Affiliation(s)
- A Melzer
- IMSaT Institute for Medical Science and Technology, Dundee, UK.
| |
Collapse
|
21
|
Fabiilli ML, Haworth KJ, Sebastian IE, Kripfgans OD, Carson PL, Fowlkes JB. Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1364-75. [PMID: 20691925 PMCID: PMC2933659 DOI: 10.1016/j.ultrasmedbio.2010.04.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 05/05/2023]
Abstract
Ultrasound-mediated delivery systems have mainly focused on microbubble contrast agents as carriers of drugs or genetic material. This study uses micron-sized, perfluoropentane (PFP) emulsions as carriers of chlorambucil (CHL), a lipophilic chemotherapeutic. The release of CHL is achieved via acoustic droplet vaporization (ADV), whereby the superheated emulsion is converted into gas bubbles using ultrasound. Emulsions were made using an albumin shell and soybean oil as the CHL carrier. The ratio of the PFP to soybean oil phases in the droplets and the fraction of droplets that vaporize per ultrasound exposure were shown to correlate with droplet diameter. A 60-min incubation with the CHL-loaded emulsion caused a 46.7% cellular growth inhibition, whereas incubation with the CHL-loaded emulsion that was exposed to ultrasound at 6.3 MHz caused an 84.3% growth inhibition. This difference was statistically significant (p < 0.01), signifying that ADV can be used as a method to substantially enhance drug delivery.
Collapse
Affiliation(s)
- Mario L Fabiilli
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Ultrasound is a very effective modality for drug delivery and gene therapy because energy that is non-invasively transmitted through the skin can be focused deeply into the human body in a specific location and employed to release drugs at that site. Ultrasound cavitation, enhanced by injected microbubbles, perturbs cell membrane structures to cause sonoporation and increases the permeability to bioactive materials. Cavitation events also increase the rate of drug transport in general by augmenting the slow diffusion process with convective transport processes. Drugs and genes can be incorporated into microbubbles, which in turn can target a specific disease site using ligands such as the antibody. Drugs can be released ultrasonically from microbubbles that are sufficiently robust to circulate in the blood and retain their cargo of drugs until they enter an insonated volume of tissue. Local drug delivery ensures sufficient drug concentration at the diseased region while limiting toxicity for healthy tissues. Ultrasound-mediated gene delivery has been applied to heart, blood vessel, lung, kidney, muscle, brain, and tumour with enhanced gene transfection efficiency, which depends on the ultrasonic parameters such as acoustic pressure, pulse length, duty cycle, repetition rate, and exposure duration, as well as microbubble properties such as size, gas species, shell material, interfacial tension, and surface rigidity. Microbubble-augmented sonothrombolysis can be enhanced further by using targeting microbubbles.
Collapse
Affiliation(s)
- H-D Liang
- School of Engineering, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
23
|
Xing Y, Pua EC, Lu X, Zhong P. Low-amplitude ultrasound enhances hydrodynamic-based gene delivery to rat kidney. Biochem Biophys Res Commun 2009; 386:217-22. [PMID: 19523454 DOI: 10.1016/j.bbrc.2009.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022]
Abstract
The synergistic combination of hydrodynamic-based gene delivery and ultrasound was investigated to achieve improved gene transfer to the kidney. Plasmids encoding firefly luciferase and Erythropoietin (EPO) gene were delivered into the left kidney of rats by single or combinative application of renal vein hydrodynamic injection and ultrasound treatment with or without the addition of ultrasound contrast agents (UCA). Ultrasound exposure was found to enhance the efficiency of hydrodynamic-based gene delivery for both luciferase and EPO expression. An ultrasound exposure intensity of 2 W/cm2 at 10% duty cycle for 15 min, produced a maximal gene expression 4.5 times higher than hydrodynamic delivery alone. Duration, location, and tissue-specificity of gene expression were not changed by ultrasound exposure. Application of UCA reduced the intensity and exposure duration of ultrasound treatment needed for optimal expression. Appropriate application of ultrasound and UCA did not alter histological structure or impair physiological function of the treated kidney.
Collapse
Affiliation(s)
- Yifei Xing
- Department of Mechanical Engineering and Materials Sciences, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|