1
|
Sanchez M, Gallego D, Oraevsky AA, Lamela H. A laser ultrasound emitter based on high-power diode laser in overdrive operation mode for biomedical imaging applications. ULTRASONICS 2025; 148:107548. [PMID: 39709749 DOI: 10.1016/j.ultras.2024.107548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
The most common transducers used to generate ultrasound in medical applications are based on short electrical pulses applied to piezoelectric transducers and capacitive micromachined ultrasound transducers. However, piezoelectric transducers have a limited frequency bandwidth, defined by their physical thickness, and capacitive micromachined ultrasound transducers have poor transmission efficiency. The high frequency cutoff limits the spatial resolution of ultrasonic images. The low frequency cutoff limits volumetric contrast of objects on ultrasound images so that typically only tissue boundaries are displayed. These limitations can be overcome with laser generated ultrasound. Laser ultrasound generation is based on the optoacoustic effect, which greatly increases the bandwidth of ultrasound signals. We show the generation of ultra-wideband ultrasound pulses using high power diode lasers operating in the overdrive regime, and thin composite films of candle soot in polydimethylsiloxane matrix as transmitters. We achieved a peak pressure of 228.59 kPa and a ultrawive bandwidth of 0.1 MHz-to-30 MHz (BW6dB≈200%) at -6 dB level with an optoacoustic conversion efficiency of 6.27 × 10-3 [Pa/(W/m2)] or 3.35 × 106 [Pa/(mJ/cm2)]. We present a compact and low-cost ultra-wideband laser ultrasound emitter with the possibility to adjust the bandwidth of the transmitted frequency and the ability to generate ultrasonic images in ex-vivo tissues.
Collapse
Affiliation(s)
- Miguel Sanchez
- Universidad Carlos III de Madrid, Avenida de la Universidad, 30, Leganes, Madrid, Spain.
| | - Daniel Gallego
- Universidad Carlos III de Madrid, Avenida de la Universidad, 30, Leganes, Madrid, Spain
| | | | - Horacio Lamela
- Universidad Carlos III de Madrid, Avenida de la Universidad, 30, Leganes, Madrid, Spain
| |
Collapse
|
2
|
Zhang T, Yuan J, Li J, Li W, Qin Y, Ge X, Ou-Yang J, Yang X, Zhu B. Design and prediction of laser-induced damage threshold of CNT-PDMS optoacoustic transducer. ULTRASONICS 2024; 142:107377. [PMID: 38901151 DOI: 10.1016/j.ultras.2024.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
The optoacoustic transducer has emerged as a new candidate for medical ultrasound applications and attracts considerable attention. Optoacoustic diagnosis and treatment sometimes require high-intensity acoustic pressure, which is often accompanied by the problem of laser-induced damage. Addressing the laser-induced damage phenomenon from a theoretical perspective holds paramount importance. In this study, the theoretical model of laser-induced damage of the carbon nanotubes-polydimethylsiloxane (CNT-PDMS) composite optoacoustic transducer is established. It is found that this laser-induced damage belongs to thermal ablation damage. Furthermore, the correctness of this theory can be confirmed by experimental results. Most importantly, when the laser energy density is less than threshold value of laser energy density, the optoacoustic transducer can work stable for long time. These encouraging results demonstrate that this work can provide significant guidance for the exploration and utilization of optoacoustic transducers.
Collapse
Affiliation(s)
- Tao Zhang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junru Yuan
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiapu Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenbo Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yijie Qin
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Ge
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ou-Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofei Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
3
|
Zhang T, Li CH, Li W, Wang Z, Gu Z, Li J, Yuan J, Ou-Yang J, Yang X, Zhu B. A Self-Healing Optoacoustic Patch with High Damage Threshold and Conversion Efficiency for Biomedical Applications. NANO-MICRO LETTERS 2024; 16:122. [PMID: 38372850 PMCID: PMC10876513 DOI: 10.1007/s40820-024-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
Compared with traditional piezoelectric ultrasonic devices, optoacoustic devices have unique advantages such as a simple preparation process, anti-electromagnetic interference, and wireless long-distance power supply. However, current optoacoustic devices remain limited due to a low damage threshold and energy conversion efficiency, which seriously hinder their widespread applications. In this study, using a self-healing polydimethylsiloxane (PDMS, Fe-Hpdca-PDMS) and carbon nanotube composite, a flexible optoacoustic patch is developed, which possesses the self-healing capability at room temperature, and can even recover from damage induced by cutting or laser irradiation. Moreover, this patch can generate high-intensity ultrasound (> 25 MPa) without the focusing structure. The laser damage threshold is greater than 183.44 mJ cm-2, and the optoacoustic energy conversion efficiency reaches a major achievement at 10.66 × 10-3, compared with other carbon-based nanomaterials and PDMS composites. This patch is also been successfully examined in the application of acoustic flow, thrombolysis, and wireless energy harvesting. All findings in this study provides new insight into designing and fabricating of novel ultrasound devices for biomedical applications.
Collapse
Affiliation(s)
- Tao Zhang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Wenbo Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhen Wang
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), 35A Convent Drive, Bethesda, MD, 20892, USA
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jiapu Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Junru Yuan
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jun Ou-Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiaofei Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
4
|
Garcia N, Kim H, Vinod K, Sahoo A, Wax M, Kim T, Fang T, Narayanaswamy V, Wu H, Jiang X. Carbon nanofibers/liquid metal composites for high temperature laser ultrasound. ULTRASONICS 2024; 138:107245. [PMID: 38232449 DOI: 10.1016/j.ultras.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
As the demand for clean energy becomes greater worldwide, there will also be an increasing demand for next generation nuclear power plants that incorporate advanced sensors and monitoring equipment. A major challenge posed by nuclear power plants is that, during normal operation, the reactor compartment is subjected to high operating temperatures and radiation flux. Diagnostic sensors monitoring such structures are also subject to temperatures reaching hundreds of degrees Celsius, which puts them at risk for heat degradation. In this work, the ability of carbon nanofibers to work in conjunction with a liquid metal as a photoacoustic transmitter was demonstrated at high temperatures. Fields metal, a Bi-In-Sn eutectic, and gallium are compared as acoustic mediums. Fields metal was shown experimentally to have superior performance over gallium and other reference cases. Under stimulation from a low fluence 6 ns pulse laser at 6 mJ/cm2 with 532 nm green light, the Fields metal transducer transmitted a 200 kHz longitudinal wave with amplitude >5.5 times that generated by a gallium transducer at 300 °C. Each high temperature test was conducted from a hot to cold progression, beginning as high as 300 °C, and then cooling down to 100 °C. Each test shows increasing signal amplitude of the liquid metal transducers as temperature decreases. Carbon nanofibers show a strong improvement over previously used candle-soot nanoparticles in both their ability to produce strong acoustic signals and absorb higher laser fluences up to 12 mJ/cm2.
Collapse
Affiliation(s)
- Nicholas Garcia
- North Carolina State University, 1804 Entrepreneur Drive, Raleigh, NC 27606, USA
| | - Howuk Kim
- Inha University, Incheon, South Korea
| | - Kaushik Vinod
- North Carolina State University, 1804 Entrepreneur Drive, Raleigh, NC 27606, USA
| | - Abinash Sahoo
- North Carolina State University, 1804 Entrepreneur Drive, Raleigh, NC 27606, USA
| | - Michael Wax
- North Carolina State University, 1804 Entrepreneur Drive, Raleigh, NC 27606, USA
| | | | - Tiegang Fang
- North Carolina State University, 1804 Entrepreneur Drive, Raleigh, NC 27606, USA
| | - Venkat Narayanaswamy
- North Carolina State University, 1804 Entrepreneur Drive, Raleigh, NC 27606, USA
| | - Huaiyu Wu
- North Carolina State University, 1804 Entrepreneur Drive, Raleigh, NC 27606, USA
| | - Xiaoning Jiang
- North Carolina State University, 1804 Entrepreneur Drive, Raleigh, NC 27606, USA.
| |
Collapse
|
5
|
Pinto TB, Pinto SMA, Piedade AP, Serpa C. Ultrathin materials for wide bandwidth laser ultrasound generation: titanium dioxide nanoparticle films with adsorbed dye. NANOSCALE ADVANCES 2023; 5:4191-4202. [PMID: 37560435 PMCID: PMC10408605 DOI: 10.1039/d3na00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
Materials that convert the energy of a laser pulse into heat can generate a photoacoustic wave through thermoelastic expansion with characteristics suitable for improved sensing, imaging, or biological membrane permeation. The present work involves the production and characterization of materials composed of an ultrathin layer of titanium dioxide (<5 μm), where a strong absorber molecule capable of very efficiently converting light into heat (5,10,15,20-tetrakis(4-sulfonylphenyl)porphyrin manganese(iii) acetate) is adsorbed. The influence of the thickness of the TiO2 layer and the duration of the laser pulse on the generation of photoacoustic waves was studied. Strong absorption in a thin layer enables bandwidths of ∼130 MHz at -6 dB with nanosecond pulse laser excitation. Bandwidths of ∼150 MHz at -6 dB were measured with picosecond pulse laser excitation. Absolute pressures reaching 0.9 MPa under very low energy fluences of 10 mJ cm-2 enabled steep stress gradients of 0.19 MPa ns-1. A wide bandwidth is achieved and upper high-frequency limits of ∼170 MHz (at -6 dB) are reached by combining short laser pulses and ultrathin absorbing layers.
Collapse
Affiliation(s)
- Tiago B Pinto
- CQC-IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra Portugal
| | - Sara M A Pinto
- CQC-IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra Portugal
| | - Ana P Piedade
- CEMMPRE, Department of Mechanical Engineering, University of Coimbra 3030-788 Coimbra Portugal
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra Portugal
| |
Collapse
|
6
|
Yuan J, Li J, Li W, Zhang T, Qin Y, Ge X, Ou-Yang J, Yang X, Zhu B. WITHDRAWN: Design and prediction of laser-induced damage threshold of CNT-PDMS optoacoustic transducer. ULTRASONICS 2023:107107. [PMID: 37739919 DOI: 10.1016/j.ultras.2023.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 09/24/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Junru Yuan
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiapu Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenbo Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Zhang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijie Qin
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xu Ge
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Ou-Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaofei Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
7
|
Nagli M, Koch J, Hazan Y, Levi A, Ternyak O, Overmeyer L, Rosenthal A. High-resolution silicon photonics focused ultrasound transducer with a sub-millimeter aperture. OPTICS LETTERS 2023; 48:2668-2671. [PMID: 37186736 DOI: 10.1364/ol.486567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present an all-optical focused ultrasound transducer with a sub-millimeter aperture and demonstrate its capability for high-resolution imaging of tissue ex vivo. The transducer is composed of a wideband silicon photonics ultrasound detector and a miniature acoustic lens coated with a thin optically absorbing metallic layer used to produce laser-generated ultrasound. The demonstrated device achieves axial resolution and lateral resolutions of 12 μm and 60 μm, respectively, well below typical values achieved by conventional piezoelectric intravascular ultrasound. The size and resolution of the developed transducer may enable its use for intravascular imaging of thin fibrous cap atheroma.
Collapse
|
8
|
Li Y, Jiang Y, Lan L, Ge X, Cheng R, Zhan Y, Chen G, Shi L, Wang R, Zheng N, Yang C, Cheng JX. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. LIGHT, SCIENCE & APPLICATIONS 2022; 11:321. [PMID: 36323662 PMCID: PMC9630534 DOI: 10.1038/s41377-022-01004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
High precision neuromodulation is a powerful tool to decipher neurocircuits and treat neurological diseases. Current non-invasive neuromodulation methods offer limited precision at the millimeter level. Here, we report optically-generated focused ultrasound (OFUS) for non-invasive brain stimulation with ultrahigh precision. OFUS is generated by a soft optoacoustic pad (SOAP) fabricated through embedding candle soot nanoparticles in a curved polydimethylsiloxane film. SOAP generates a transcranial ultrasound focus at 15 MHz with an ultrahigh lateral resolution of 83 µm, which is two orders of magnitude smaller than that of conventional transcranial-focused ultrasound (tFUS). Here, we show effective OFUS neurostimulation in vitro with a single ultrasound cycle. We demonstrate submillimeter transcranial stimulation of the mouse motor cortex in vivo. An acoustic energy of 0.6 mJ/cm2, four orders of magnitude less than that of tFUS, is sufficient for successful OFUS neurostimulation. OFUS offers new capabilities for neuroscience studies and disease treatments by delivering a focus with ultrahigh precision non-invasively.
Collapse
Affiliation(s)
- Yueming Li
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ying Jiang
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Lu Lan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Ran Cheng
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Guo Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Linli Shi
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Runyu Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Nan Zheng
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Chen Yang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Shi M, Bodian S, West SJ, Sathasivam S, Gordon RJ, Collier P, Vercauteren T, Desjardins AE, Noimark S, Xia W. Enhanced Photoacoustic Visualisation of Clinical Needles by Combining Interstitial and Extracorporeal Illumination of Elastomeric Nanocomposite Coatings. SENSORS (BASEL, SWITZERLAND) 2022; 22:6417. [PMID: 36080876 PMCID: PMC9460224 DOI: 10.3390/s22176417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound (US) image guidance is widely used for minimally invasive procedures, but the invasive medical devices (such as metallic needles), especially their tips, can be poorly visualised in US images, leading to significant complications. Photoacoustic (PA) imaging is promising for visualising invasive devices and peripheral tissue targets. Light-emitting diodes (LEDs) acting as PA excitation sources facilitate the clinical translation of PA imaging, but the image quality is degraded due to the low pulse energy leading to insufficient contrast with needles at deep locations. In this paper, photoacoustic visualisation of clinical needles was enhanced by elastomeric nanocomposite coatings with superficial and interstitial illumination. Candle soot nanoparticle-polydimethylsiloxane (CSNP-PDMS) composites with high optical absorption and large thermal expansion coefficients were applied onto the needle exterior and the end-face of an optical fibre placed in the needle lumen. The excitation light was delivered at the surface by LED arrays and through the embedded optical fibre by a pulsed diode laser to improve the visibility of the needle tip. The performance was validated using an ex-vivo tissue model. An LED-based PA/US imaging system was used for imaging the needle out-of-plane and in-plane insertions over approach angles of 20 deg to 55 deg. The CSNP-PDMS composite conferred substantial visual enhancements on both the needle shaft and the tip, with an average of 1.7- and 1.6-fold improvements in signal-to-noise ratios (SNRs), respectively. With the extended light field involving extracorporeal and interstitial illumination and the highly absorbing coatings, enhanced visualisation of the needle shaft and needle tip was achieved with PA imaging, which could be helpful in current US-guided minimally invasive surgeries.
Collapse
Affiliation(s)
- Mengjie Shi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Semyon Bodian
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Simeon J. West
- Department of Anaesthesia, University College Hospital, London NW1 2BU, UK
| | - Sanjayan Sathasivam
- Department of Chemistry, University College London, London WC1H 0AJ, UK or
- School of Engineering, London South Bank University, London SE1 0AA, UK
| | | | - Paul Collier
- Johnson Matthey Technology Centre, Reading RG4 9NH, UK
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Sacha Noimark
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Wenfeng Xia
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
10
|
Li J, Ma Y, Zhang T, Shung KK, Zhu B. Recent Advancements in Ultrasound Transducer: From Material Strategies to Biomedical Applications. BME FRONTIERS 2022; 2022:9764501. [PMID: 37850168 PMCID: PMC10521713 DOI: 10.34133/2022/9764501] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/06/2022] [Indexed: 10/19/2023] Open
Abstract
Ultrasound is extensively studied for biomedical engineering applications. As the core part of the ultrasonic system, the ultrasound transducer plays a significant role. For the purpose of meeting the requirement of precision medicine, the main challenge for the development of ultrasound transducer is to further enhance its performance. In this article, an overview of recent developments in ultrasound transducer technologies that use a variety of material strategies and device designs based on both the piezoelectric and photoacoustic mechanisms is provided. Practical applications are also presented, including ultrasound imaging, ultrasound therapy, particle/cell manipulation, drug delivery, and nerve stimulation. Finally, perspectives and opportunities are also highlighted.
Collapse
Affiliation(s)
- Jiapu Li
- Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China, 430074
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuqing Ma
- Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China, 430074
| | - Tao Zhang
- Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China, 430074
| | - K. Kirk Shung
- NIH Resource Center for Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Benpeng Zhu
- Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China, 430074
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
11
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part I: Materials, devices and selected applications. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112719. [PMID: 34937991 PMCID: PMC8691753 DOI: 10.1016/j.sna.2021.112719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part I of this two part review, firstly, active and passive nanomaterials and nanostructures for acoustics are presented. Following that, representative applications of nanoacoustics including material property characterization, nanomaterial/nanostructure manipulation, and sensing, are discussed in detail. Finally, a summary is presented with point of views on the current challenges and potential solutions in this burgeoning field.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Chen Y, Li Q, Zhu H, Wang Y, Zhang X, Yu H. Air-backed photoacoustic transmitter for significantly improving negative acoustic pressure output. OPTICS LETTERS 2021; 46:1149-1152. [PMID: 33649679 DOI: 10.1364/ol.415850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Aiming to pursue an ultrasound signal with a significantly improved negative acoustic pressure level, which is one of the critical characteristics for exciting the ultrasound cavitation effect, a real applicable air-backed photoacoustic transmitter is presented. Different from the conventional solution of relying on a complicated focusing structure design, it works based on an acoustic signal phase reversal and amplitude superposition strategy. By using an innovative sandwich-like suspending photoacoustic layer with optimized structure design, the initial backward-propagating positive sound pressure can be converted into the forward-propagating negative one efficiently. For proof-of-concept demonstration, photoacoustic transmitter prototypes adopting a polydimethylsiloxane (PDMS)/candle soot nanoparticle/PDMS-PDMS composite as a photoacoustic conversion layer were fabricated and characterized. From experiment results, an acoustic signal with a remarkable ratio of negative pressure level to a positive one of 1.3 was successfully realized, which is the largest value ever reported, to the best of our knowledge. Moreover, when compared to the commonly used glass and PDMS-backing conditions in the photoacoustic area, nearly 200% and 400% enhancements in negative pressure output were achieved, respectively.
Collapse
|
13
|
Silva AD, Henriques CA, Malva DV, Calvete MJF, Pereira MM, Serpa C, Arnaut LG. Photoacoustic generation of intense and broadband ultrasound pulses with functionalized carbon nanotubes. NANOSCALE 2020; 12:20831-20839. [PMID: 33043332 DOI: 10.1039/d0nr04986g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanotubes (CNT) functionalized with siloxane groups were dissolved in polystyrene/tetrahydrofuran to produce thin films that generate broadband and intense ultrasound pulses when excited by pulsed lasers. These films absorb >99% of light in the visible and near-infrared and show no signs of fatigue after thousands of laser pulses. Picosecond laser pulses with fluences of 50 mJ cm-2 generate photoacoustic waves with exceptionally wide bandwidths (170 MHz at -6 dB) and peak pressures >1 MPa several millimeters away from the source. The ability to generate such broadband ultrasound pulses is assigned to the ultrafast dissipation of heat by CNT-siloxanes, and to the formation of very thin photoacoustic sources thanks to the high speed of sound of polystyrene. The wide bandwidths achieved allow for axial resolutions of 8 μm at depths less than 1 mm, similar to the resolution of histology but based on real-time non-invasive methods.
Collapse
Affiliation(s)
- Alexandre D Silva
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - César A Henriques
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Daniel V Malva
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Mario J F Calvete
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Mariette M Pereira
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Carlos Serpa
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Luis G Arnaut
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
14
|
Kim H, Chang WY, Kim T, Jiang X. Stress-Sensing Method via Laser-Generated Ultrasound Wave Using Candle Soot Nanoparticle Composite. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1867-1876. [PMID: 32324547 DOI: 10.1109/tuffc.2020.2989035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article aims to develop a semi-noncontact stress-sensing system using a laser-generated ultrasound (LGU) wave assisted by candle soot nanoparticle (CSNP) composite. While the acoustoelastic effect is commonly targeted to measure the stress level, efforts to combine it with the LGU wave signal have been lacking due to weak signal intensity. In this study, the CSNP-based transducer is designed to potentiate the photoacoustic energy conversion. To demonstrate the wave propagation with the designed parameters, a numerical simulation was first conducted. The experimental results showed that a laser intensity of 6.5 mJ/cm2 was enough to generate the subsurface longitudinal (SSL) wave from the CSNP composite transducer. The normal beam projection is the most effective wave-generation method, exhibiting the highest signal magnitude compared with inclined projection cases. Finally, the laser-assisted stress-sensing system was assessed by increasing the internal pressure of an air tank. The sensitivity of the developed sensor system was estimated to be 0.296 ns/MPa, showing a correlation of 0.983 with the theoretical prediction. The proposed sensing system can be used to monitor the structural integrity of nuclear power plants.
Collapse
|
15
|
Stretchable and Robust Candle-Soot Nanoparticle-Polydimethylsiloxane Composite Films for Laser-Ultrasound Transmitters. MICROMACHINES 2020; 11:mi11070631. [PMID: 32605328 PMCID: PMC7407116 DOI: 10.3390/mi11070631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 01/25/2023]
Abstract
Considerable attention has been devoted to the development of nanomaterial-based photoacoustic transmitters for ultrasound therapy and diagnosis applications. Here, we fabricate and characterize candle-soot nanoparticles (CSNPs) and polydimethylsiloxane (PDMS) composite-based photoacoustic transmitters, based on a solution process, not just to achieve high-frequency and high-amplitude pressure outputs, but also to develop physically stretchable ultrasound transmitters. Owing to its non-porous and non-agglomerative characteristics, the composite exhibits unique photo-thermal and mechanical properties. The output pressure amplitudes from CSNPs-PDMS composites were 20-26 dB stronger than those of Cr film, used as a reference. The proposed transmitters also offered a center frequency of 2.44-13.34 MHz and 6-dB bandwidths of 5.80-13.62 MHz. Importantly, we characterize the mechanical robustness of CSNPs-PDMS quantitatively, by measuring laser-damage thresholds, to evaluate the upper limit of laser energy that can be ultimately used as an input, i.e., proportional to the maximum-available pressure output. The transmitters could endure an input laser fluence of 54.3-108.6 mJ·cm-2. This is 1.65-3.30 times higher than the Cr film, and is significantly higher than the values of other CSNPs-PDMS transmitters reported elsewhere (22-81 mJ·cm-2). Moreover, we characterized the strain-dependent photoacoustic output of a stretchable nanocomposite film, obtained by delaminating it from the glass substrate. The transmitter could be elongated elastically up to a longitudinal strain of 0.59. Under this condition, it maintained a center frequency of 6.72-9.44 MHz, and 6-dB bandwidth ranges from 12.05 to 14.02 MHz. We believe that the stretchable CSNPs-PDMS composites would be useful in developing patch-type ultrasound devices conformally adhered on skin for diagnostic and therapeutic applications.
Collapse
|
16
|
Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens Bioelectron 2020; 152:112015. [PMID: 32056735 DOI: 10.1016/j.bios.2020.112015] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Paper-based lateral-flow assays (LFAs) have achieved considerable commercial success and continue to have a significant impact on medical diagnostics and environmental monitoring. Conventional LFAs are typically performed by examining the color changes in the test bands by naked eye. However, for critical biochemical markers that are present in extremely small amounts in the clinical specimens, this readout method is not quantitative, and does not provide sufficient sensitivity or suitable detection limit for a reliable assay. Diverse technologies for high-sensitivity LFA detection have been developed and commercialization efforts are underway. In this review, we aim to provide a critical and objective overview of the recent progress in high-sensitivity LFA detection technologies, which involve the exploitation of the physical and chemical responses of transducing particles. The features and biomedical applications of the technologies, along with future prospects and challenges, are also discussed.
Collapse
|
17
|
Aytac-Kipergil E, Alles EJ, Pauw HC, Karia J, Noimark S, Desjardins AE. Versatile and scalable fabrication method for laser-generated focused ultrasound transducers. OPTICS LETTERS 2019; 44:6005-6008. [PMID: 32628218 PMCID: PMC7059213 DOI: 10.1364/ol.44.006005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/18/2023]
Abstract
A versatile and scalable fabrication method for laser-generated focused ultrasound transducers is proposed. The method is based on stamping a coated negative mold onto polydimethylsiloxane, and it can be adapted to include different optical absorbers that are directly transferred or synthesized in situ. Transducers with a range of sizes down to 3 mm in diameter are presented, incorporating two carbonaceous (multiwalled carbon nanoparticles and candle soot nanoparticles) and one plasmonic (gold nanoparticles) optically absorbing component. The fabricated transducers operate at central frequencies in the vicinity of 10 MHz with bandwidths in the range of 15-20 MHz. A transducer with a diameter of 5 mm was found to generate a positive peak pressure greater than 35 MPa in the focal zone with a tight focal spot of 150 μm in lateral width. Ultrasound cavitation on the tip of an optical fiber was demonstrated in water for a transducer with a diameter as small as 3 mm.
Collapse
Affiliation(s)
- E. Aytac-Kipergil
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
- Corresponding author:
| | - E. J. Alles
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| | - H. C. Pauw
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - J. Karia
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - S. Noimark
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| | - A. E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| |
Collapse
|