1
|
Huang S, Zhong L, Shi Y. Diffusion Model-based FOD Restoration from High Distortion in dMRI. ARXIV 2024:arXiv:2406.13209v1. [PMID: 38947917 PMCID: PMC11213145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Fiber orientation distributions (FODs) is a popular model to represent the diffusion MRI (dMRI) data. However, imaging artifacts such as susceptibility-induced distortion in dMRI can cause signal loss and lead to the corrupted reconstruction of FODs, which prohibits successful fiber tracking and connectivity analysis in affected brain regions such as the brain stem. Generative models, such as the diffusion models, have been successfully applied in various image restoration tasks. However, their application on FOD images poses unique challenges since FODs are 4-dimensional data represented by spherical harmonics (SPHARM) with the 4-th dimension exhibiting order-related dependency. In this paper, we propose a novel diffusion model for FOD restoration that can recover the signal loss caused by distortion artifacts. We use volume-order encoding to enhance the ability of the diffusion model to generate individual FOD volumes at all SPHARM orders. Moreover, we add cross-attention features extracted across all SPHARM orders in generating every individual FOD volume to capture the order-related dependency across FOD volumes. We also condition the diffusion model with low-distortion FODs surrounding high-distortion areas to maintain the geometric coherence of the generated FODs. We trained and tested our model using data from the UK Biobank (n = 1315). On a test set with ground truth (n = 43), we demonstrate the high accuracy of the generated FODs in terms of root mean square errors of FOD volumes and angular errors of FOD peaks. We also apply our method to a test set with large distortion in the brain stem area (n = 1172) and demonstrate the efficacy of our method in restoring the FOD integrity and, hence, greatly improving tractography performance in affected brain regions.
Collapse
Affiliation(s)
- Shuo Huang
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Lujia Zhong
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Yonggang Shi
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Huang S, Zhong L, Shi Y. Automated Mapping of Residual Distortion Severity in Diffusion MRI. COMPUTATIONAL DIFFUSION MRI : MICCAI WORKSHOP 2024; 14328:58-69. [PMID: 38500569 PMCID: PMC10948104 DOI: 10.1007/978-3-031-47292-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Susceptibility-induced distortion is a common artifact in diffusion MRI (dMRI), which deforms the dMRI locally and poses significant challenges in connectivity analysis. While various methods were proposed to correct the distortion, residual distortions often persist at varying degrees across brain regions and subjects. Generating a voxel-level residual distortion severity map can thus be a valuable tool to better inform downstream connectivity analysis. To fill this current gap in dMRI analysis, we propose a supervised deep-learning network to predict a severity map of residual distortion. The training process is supervised using the structural similarity index measure (SSIM) of the fiber orientation distribution (FOD) in two opposite phase encoding (PE) directions. Only b0 images and related outputs from the distortion correction methods are needed as inputs in the testing process. The proposed method is applicable in large-scale datasets such as the UK Biobank, Adolescent Brain Cognitive Development (ABCD), and other emerging studies that only have complete dMRI data in one PE direction but acquires b0 images in both PEs. In our experiments, we trained the proposed model using the Lifespan Human Connectome Project Aging (HCP-Aging) dataset ( n = 662 ) and apply the trained model to data ( n = 1330 ) from UK Biobank. Our results show low training, validation, and test errors, and the severity map correlates excellently with an FOD integrity measure in both HCP-Aging and UK Biobank data. The proposed method is also highly efficient and can generate the severity map in around 1 second for each subject.
Collapse
Affiliation(s)
- Shuo Huang
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Lujia Zhong
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Yonggang Shi
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
McGowan AL, Sayed F, Boyd ZM, Jovanova M, Kang Y, Speer ME, Cosme D, Mucha PJ, Ochsner KN, Bassett DS, Falk EB, Lydon-Staley DM. Dense Sampling Approaches for Psychiatry Research: Combining Scanners and Smartphones. Biol Psychiatry 2023; 93:681-689. [PMID: 36797176 PMCID: PMC10038886 DOI: 10.1016/j.biopsych.2022.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Together, data from brain scanners and smartphones have sufficient coverage of biology, psychology, and environment to articulate between-person differences in the interplay within and across biological, psychological, and environmental systems thought to underlie psychopathology. An important next step is to develop frameworks that combine these two modalities in ways that leverage their coverage across layers of human experience to have maximum impact on our understanding and treatment of psychopathology. We review literature published in the last 3 years highlighting how scanners and smartphones have been combined to date, outline and discuss the strengths and weaknesses of existing approaches, and sketch a network science framework heretofore underrepresented in work combining scanners and smartphones that can push forward our understanding of health and disease.
Collapse
Affiliation(s)
- Amanda L McGowan
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Farah Sayed
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zachary M Boyd
- Department of Mathematics, Brigham Young University, Provo, Utah
| | - Mia Jovanova
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yoona Kang
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Megan E Speer
- Department of Psychology, Columbia University, New York, New York
| | - Danielle Cosme
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter J Mucha
- Department of Mathematics, Dartmouth College, Hanover, New Hampshire
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, New York, New York
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Santa Fe Institute, Santa Fe, New Mexico
| | - Emily B Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania; Marketing Department, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania; Operations, Information and Decisions, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Lydon-Staley
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Chen G, Hong Y, Huynh KM, Yap PT. Deep learning prediction of diffusion MRI data with microstructure-sensitive loss functions. Med Image Anal 2023; 85:102742. [PMID: 36682154 PMCID: PMC9974781 DOI: 10.1016/j.media.2023.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Deep learning prediction of diffusion MRI (DMRI) data relies on the utilization of effective loss functions. Existing losses typically measure the signal-wise differences between the predicted and target DMRI data without considering the quality of derived diffusion scalars that are eventually utilized for quantification of tissue microstructure. Here, we propose two novel loss functions, called microstructural loss and spherical variance loss, to explicitly consider the quality of both the predicted DMRI data and derived diffusion scalars. We apply these loss functions to the prediction of multi-shell data and enhancement of angular resolution. Evaluation based on infant and adult DMRI data indicates that both microstructural loss and spherical variance loss improve the quality of derived diffusion scalars.
Collapse
Affiliation(s)
- Geng Chen
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, NC, USA
| | - Yoonmi Hong
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, NC, USA
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Resolution and b value dependent Structural Connectome in ex vivo Mouse Brain. Neuroimage 2022; 255:119199. [PMID: 35417754 PMCID: PMC9195912 DOI: 10.1016/j.neuroimage.2022.119199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Diffusion magnetic resonance imaging has been widely used in both clinical and preclinical studies to characterize tissue microstructure and structural connectivity. The diffusion MRI protocol for the Human Connectome Project (HCP) has been developed and optimized to obtain high-quality, high-resolution diffusion MRI (dMRI) datasets. However, such efforts have not been fully explored in preclinical studies, especially for rodents. In this study, high quality dMRI datasets of mouse brains were acquired at 9.4T system from two vendors. In particular, we acquired a high-spatial resolution dMRI dataset (25 μm isotropic with 126 diffusion encoding directions), which we believe to be the highest spatial resolution yet obtained; and a high-angular resolution dMRI dataset (50 μm isotropic with 384 diffusion encoding directions), which we believe to be the highest angular resolution compared to the dMRI datasets at the microscopic resolution. We systematically investigated the effects of three important parameters that affect the final outcome of the connectome: b value (1000s/mm2 to 8000 s/mm2), angular resolution (10 to 126), and spatial resolution (25 μm to 200 μm). The stability of tractography and connectome increase with the angular resolution, where more than 50 angles is necessary to achieve consistent results. The connectome and quantitative parameters derived from graph theory exhibit a linear relationship to the b value (R2 > 0.99); a single-shell acquisition with b value of 3000 s/mm2 shows comparable results to the multi-shell high angular resolution dataset. The dice coefficient decreases and both false positive rate and false negative rate gradually increase with coarser spatial resolution. Our study provides guidelines and foundations for exploration of tradeoffs among acquisition parameters for the structural connectome in ex vivo mouse brain.
Collapse
|
6
|
Preethish-Kumar V, Shah A, Polavarapu K, Kumar M, Safai A, Vengalil S, Nashi S, Deepha S, Govindaraj P, Afsar M, Rajeswaran J, Nalini A, Saini J, Ingalhalikar M. Disrupted structural connectome and neurocognitive functions in Duchenne muscular dystrophy: classifying and subtyping based on Dp140 dystrophin isoform. J Neurol 2021; 269:2113-2125. [PMID: 34505932 DOI: 10.1007/s00415-021-10789-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Neurocognitive disabilities in Duchenne muscular dystrophy (DMD) children beginning in early childhood and distal DMD gene deletions involving disruption of Dp140 isoform are more likely to manifest significant neurocognitive impairments. MRI data analysis techniques like brain-network metrics can provide information on microstructural integrity and underlying pathophysiology. METHODS A prospective study on 95 participants [DMD = 57, and healthy controls (HC) = 38]. The muscular dystrophy functional rating scale (MDFRS) scores, neuropsychology batteries, and multiplex ligand-dependent probe amplification (MLPA) testing were used for clinical assessment, IQ estimation, and genotypic classification. Diffusion MRI and network-based statistics were used to analyze structural connectomes at various levels and correlate with clinical markers. RESULTS Motor and executive sub-networks were extracted and analyzed. Out of 57 DMD children, 23 belong to Dp140 + and 34 to Dp140- subgroup. Motor disabilities are pronounced in Dp140- subgroup as reflected by lower MDFRS scores. IQ parameters are significantly low in all-DMD cases; however, the Dp140- has specifically lowest scores. Significant differences were observed in global efficiency, transitivity, and characteristic path length between HC and DMD. Subgroup analysis demonstrates that the significance is mainly driven by participants with Dp140- than Dp140 + isoform. Finally, a random forest classifier model illustrated an accuracy of 79% between HC and DMD and 90% between DMD- subgroups. CONCLUSIONS Current findings demonstrate structural network-based characterization of abnormalities in DMD, especially prominent in Dp140-. Our observations suggest that participants with Dp140 + have relatively intact connectivity while Dp140- show widespread connectivity alterations at global, nodal, and edge levels. This study provides valuable insights supporting the genotype-phenotype correlation of brain-behavior involvement in DMD children.
Collapse
Affiliation(s)
| | - Apurva Shah
- Symbiosis Centre for Medical Image Analysis, Symbiosis International University, Mulshi, Pune, Maharashtra, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Apoorva Safai
- Symbiosis Centre for Medical Image Analysis, Symbiosis International University, Mulshi, Pune, Maharashtra, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sekar Deepha
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Periyasamy Govindaraj
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Mohammad Afsar
- Department of Neuropsychology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jamuna Rajeswaran
- Department of Neuropsychology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Madhura Ingalhalikar
- Symbiosis Centre for Medical Image Analysis, Symbiosis International University, Mulshi, Pune, Maharashtra, India.
| |
Collapse
|
7
|
Cole M, Murray K, St‐Onge E, Risk B, Zhong J, Schifitto G, Descoteaux M, Zhang Z. Surface-Based Connectivity Integration: An atlas-free approach to jointly study functional and structural connectivity. Hum Brain Mapp 2021; 42:3481-3499. [PMID: 33956380 PMCID: PMC8249904 DOI: 10.1002/hbm.25447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 01/29/2023] Open
Abstract
There has been increasing interest in jointly studying structural connectivity (SC) and functional connectivity (FC) derived from diffusion and functional MRI. Previous connectome integration studies almost exclusively required predefined atlases. However, there are many potential atlases to choose from and this choice heavily affects all subsequent analyses. To avoid such an arbitrary choice, we propose a novel atlas-free approach, named Surface-Based Connectivity Integration (SBCI), to more accurately study the relationships between SC and FC throughout the intra-cortical gray matter. SBCI represents both SC and FC in a continuous manner on the white surface, avoiding the need for prespecified atlases. The continuous SC is represented as a probability density function and is smoothed for better facilitation of its integration with FC. To infer the relationship between SC and FC, three novel sets of SC-FC coupling (SFC) measures are derived. Using data from the Human Connectome Project, we introduce the high-quality SFC measures produced by SBCI and demonstrate the use of these measures to study sex differences in a cohort of young adults. Compared with atlas-based methods, this atlas-free framework produces more reproducible SFC features and shows greater predictive power in distinguishing biological sex. This opens promising new directions for all connectomics studies.
Collapse
Affiliation(s)
- Martin Cole
- Department of Biostatistics and Computational BiologyUniversity of RochesterRochesterNew YorkUSA
| | - Kyle Murray
- Department of Physics and AstronomyUniversity of RochesterRochesterNew YorkUSA
| | - Etienne St‐Onge
- Sherbrooke Connectivity Imaging Laboratory (SCIL)Université de SherbrookeQuébecCanada
| | - Benjamin Risk
- Department of Biostatistics and BioinformaticsEmory UniversityAtlantaGeorgiaUSA
| | - Jianhui Zhong
- Department of Physics and AstronomyUniversity of RochesterRochesterNew YorkUSA
- Department of Imaging SciencesUniversity of RochesterRochesterNew YorkUSA
| | - Giovanni Schifitto
- Department of Imaging SciencesUniversity of RochesterRochesterNew YorkUSA
- Department of NeurologyUniversity of RochesterRochesterNew YorkUSA
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL)Université de SherbrookeQuébecCanada
| | - Zhengwu Zhang
- Department of Statistics and Operations ResearchUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| |
Collapse
|
8
|
Abstract
Psychiatric disorders are disturbances of cognitive and behavioral processes mediated by the brain. Emerging evidence suggests that accurate biomarkers for psychiatric disorders might benefit from incorporating information regarding multiple brain regions and their interactions with one another, rather than considering local perturbations in brain structure and function alone. Recent advances in the field of applied mathematics generally - and network science specifically - provide a language to capture the complexity of interacting brain regions, and the application of this language to fundamental questions in neuroscience forms the emerging field of network neuroscience. This chapter provides an overview of the use and utility of network neuroscience for building biomarkers in psychiatry. The chapter begins with an overview of the theoretical frameworks and tools that encompass network neuroscience before describing applications of network neuroscience to the study of schizophrenia and major depressive disorder. With reference to work on genetic, molecular, and environmental correlates of network neuroscience features, the promises and challenges of network neuroscience for providing tools that aid in the diagnosis and the evaluation of treatment response in psychiatric disorders are discussed.
Collapse
|
9
|
Forouzannezhad P, Abbaspour A, Fang C, Cabrerizo M, Loewenstein D, Duara R, Adjouadi M. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer’s disease. J Neurosci Methods 2019; 317:121-140. [DOI: 10.1016/j.jneumeth.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
|
10
|
Giardino A, Gupta S, Olson E, Sepulveda K, Lenchik L, Ivanidze J, Rakow-Penner R, Patel MJ, Subramaniam RM, Ganeshan D. Role of Imaging in the Era of Precision Medicine. Acad Radiol 2017; 24:639-649. [PMID: 28131497 DOI: 10.1016/j.acra.2016.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
Precision medicine is an emerging approach for treating medical disorders, which takes into account individual variability in genetic and environmental factors. Preventive or therapeutic interventions can then be directed to those who will benefit most from targeted interventions, thereby maximizing benefits and minimizing costs and complications. Precision medicine is gaining increasing recognition by clinicians, healthcare systems, pharmaceutical companies, patients, and the government. Imaging plays a critical role in precision medicine including screening, early diagnosis, guiding treatment, evaluating response to therapy, and assessing likelihood of disease recurrence. The Association of University Radiologists Radiology Research Alliance Precision Imaging Task Force convened to explore the current and future role of imaging in the era of precision medicine and summarized its finding in this article. We review the increasingly important role of imaging in various oncological and non-oncological disorders. We also highlight the challenges for radiology in the era of precision medicine.
Collapse
Affiliation(s)
- Angela Giardino
- Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Supriya Gupta
- Department of Radiology and Imaging, Medical College of Georgia, 1120 15th St, Augusta, GA 30912.
| | - Emmi Olson
- Radiology Resident, University of California San Diego, San Diego, California
| | | | - Leon Lenchik
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jana Ivanidze
- Department of Diagnostic Radiology, Weill Cornell Medicine, New York, New York
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego, San Diego, California
| | - Midhir J Patel
- Department of Radiology, University of South Florida, Tampa, Florida
| | - Rathan M Subramaniam
- Cyclotron and Molecular Imaging Program, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | | |
Collapse
|
11
|
Silva RF, Plis SM, Sui J, Pattichis MS, Adalı T, Calhoun VD. Blind Source Separation for Unimodal and Multimodal Brain Networks: A Unifying Framework for Subspace Modeling. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2016; 10:1134-1149. [PMID: 28461840 PMCID: PMC5409135 DOI: 10.1109/jstsp.2016.2594945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the past decade, numerous advances in the study of the human brain were fostered by successful applications of blind source separation (BSS) methods to a wide range of imaging modalities. The main focus has been on extracting "networks" represented as the underlying latent sources. While the broad success in learning latent representations from multiple datasets has promoted the wide presence of BSS in modern neuroscience, it also introduced a wide variety of objective functions, underlying graphical structures, and parameter constraints for each method. Such diversity, combined with a host of datatype-specific know-how, can cause a sense of disorder and confusion, hampering a practitioner's judgment and impeding further development. We organize the diverse landscape of BSS models by exposing its key features and combining them to establish a novel unifying view of the area. In the process, we unveil important connections among models according to their properties and subspace structures. Consequently, a high-level descriptive structure is exposed, ultimately helping practitioners select the right model for their applications. Equipped with that knowledge, we review the current state of BSS applications to neuroimaging. The gained insight into model connections elicits a broader sense of generalization, highlighting several directions for model development. In light of that, we discuss emerging multi-dataset multidimensional (MDM) models and summarize their benefits for the study of the healthy brain and disease-related changes.
Collapse
Affiliation(s)
- Rogers F. Silva
- Dept. of ECE at The University of New Mexico, NM USA
- The Mind Research Network, LBERI, Albuquerque, New Mexico USA
| | - Sergey M. Plis
- The Mind Research Network, LBERI, Albuquerque, New Mexico USA
| | - Jing Sui
- Brainnetome Center & NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing China
- The Mind Research Network, LBERI, Albuquerque, New Mexico USA
| | | | - Tülay Adalı
- Dept. of CSEE, University of Maryland Baltimore County, Baltimore, Maryland USA
| | - Vince D. Calhoun
- Dept. of ECE at The University of New Mexico, NM USAThe Mind Research Network, LBERI, Albuquerque, New Mexico USA
| |
Collapse
|