1
|
Joris Hubmann M, Orzada S, Kowal R, Anton Grimm J, Speck O, Maune H. Towards Large Diameter Transmit Coils for 7-T Head Imaging: A Detailed Comparison of a Set of Transmit Element Design Concepts. NMR IN BIOMEDICINE 2025; 38:e70030. [PMID: 40186518 PMCID: PMC11971727 DOI: 10.1002/nbm.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Many different transmit (Tx) coil concepts and designs for 7-T magnetic resonance imaging of the head have been proposed. Most of them are placed close to the head and in combination with the receive coils creating a helmet-like structure. This limits the space for additional equipment for external stimuli. A large diameter transmit coil can increase the ease using supplementary measurement devices. Therefore, this study systematically evaluated nine different Tx elements regarding their performance within a large diameter transmit coil with a diameter> $$ > $$ 350 mm. Each Tx element was examined regarding its power and specific absorption rate (SAR) efficiencies, its loading dependence, intrinsic decoupling, and its radio frequency (RF) shimming capability. Additionally, an experimental validation of| B 1 + | $$ \mid {B}_1^{+}\mid $$ -maps was performed. The loop-based Tx elements (circular and rectangular loop) provided the highest power and SAR efficiency with at least 15.5% and 21.2% higher efficiencies for a single channel and 22.1% and 18.0% for the eight-channel array, respectively. In terms of voxel-wise power efficiency, the circular loop was the superior Tx element type within most of the head. Looking at the voxel-wise SAR efficiency, the loop-based elements manifest themselves as the most efficient type within most of the central brain. The mutual coupling was lowest for the passively fed dipole (- $$ - $$ 31.23 dB). The highest RF shimming capability in terms of sum of normalized singular values was calculated for the rectangular (4.21) and the circular loop (4.36), whereby the L-curve results showed that the arrays have only minor| B 1 + | $$ \mid {B}_1^{+}\mid $$ shimming performance differences for the transversal slice. For the hippocampus, the meander element provided the highest overall homogeneity with a minimal coefficient of variation (CoV) of 5.1%. This work provides extensive and unique data for single and eight-channel Tx elements applying common performance benchmarks and enables further discourse on multi-channel evaluations towards large diameter Tx coils at 7-T head imaging. On the bases of the provided results, the preferable Tx element type for this specific application is loop-based.
Collapse
Affiliation(s)
- Max Joris Hubmann
- Siemens Healthineers AGErlangenGermany
- Faculty of Electrical Engineering and Information TechnologyOtto‐von‐Guericke UniversityMagdeburgGermany
| | | | - Robert Kowal
- Faculty of Electrical Engineering and Information TechnologyOtto‐von‐Guericke UniversityMagdeburgGermany
- Research Campus STIMULATEMagdeburgGermany
| | - Johannes Anton Grimm
- German Cancer Research CenterHeidelbergGermany
- Faculty of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
| | - Oliver Speck
- Research Campus STIMULATEMagdeburgGermany
- Faculty of Natural SciencesOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Holger Maune
- Faculty of Electrical Engineering and Information TechnologyOtto‐von‐Guericke UniversityMagdeburgGermany
| |
Collapse
|
2
|
Cui J, Hollingsworth NA, Wright SM. A Review of Current Control and Decoupling Methods for MRI Transmit Arrays. IEEE Rev Biomed Eng 2025; 18:388-400. [PMID: 38194402 DOI: 10.1109/rbme.2024.3351713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The shortened radio frequency wavelength in high field MRI makes it challenging to create a uniform excitation pattern over a large field of view, or to achieve satisfactory transmission efficiency at a local area. Transmit arrays are one tool that can be used to create a desired excitation pattern. To be effective, it is important to be able to control the current amplitude and phase at the array elements. The control of the current may get complicated by the coil coupling in many applications. Various methods have been proposed to achieve current control, either in the presence of coupling, or by effectively decouple the array elements. These methods are applied in different subsystems in the RF transmission chain: coil; coil-amplifier interface; amplifier, etc. In this review paper, we provide an overview of the various approaches and aspects of transmit current control and decoupling.
Collapse
|
3
|
Popova KI, Glang F, Bosch D, Scheffler K, Avdievich NI, Glybovski SB, Solomakha GA. An array of paired folded-end dipoles for whole-brain imaging at 9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107791. [PMID: 39490302 DOI: 10.1016/j.jmr.2024.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE To improve transmit B1+ field homogeneity and longitudinal coverage of a human head RF array, we developed a novel eight-element transceiver (TxRx) array using composite elements based on paired folded-end dipoles. METHODS The developed array consisted of eight pairs of coupled folded-end dipoles. Only one dipole in each pair was driven during transmission, while the other was passively coupled with the active one. The distribution of the transmit B1+ field was numerically optimized by changing the overlap between the dipoles and the value of the reactive lumped element placed in the middle of the passive dipole. RESULTS The proposed array of paired folded-end dipoles substantially improved the B1+ homogeneity and longitudinal coverage over the entire brain including the brain stem compared to a single-row folded-end dipole array. The improved whole brain coverage was demonstrated both numerically and experimentally. CONCLUSION As a proof of concept, we developed and characterized both numerically and experimentally a prototype of a single-row eight-element 9.4 T array for human brain imaging consisting of composite array elements based on paired passively-coupled folded-end dipoles. The array improved the transmit magnetic field distribution due to the laterally elongated field pattern created by one active and one passive dipole per channel. As a result, the provided coverage was substantially better than that of an 8-element dipole array consisting of long folded-end dipoles. For the first time, an image of the entire human brain at 9.4 T, covering the brain stem up to the fourth vertebra, was obtained using a simple single row eight-element array.
Collapse
Affiliation(s)
- K I Popova
- School of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - F Glang
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - D Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - K Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - N I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - S B Glybovski
- School of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - G A Solomakha
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
4
|
Serrarens C, Ruiz-Fernandez J, Otter M, Campforts BCM, Stumpel CTRM, Linden DEJ, van Amelsvoort TAMJ, Kashyap S, Vingerhoets C. Intracortical myelin across laminae in adult individuals with 47,XXX: a 7 Tesla MRI study. Cereb Cortex 2024; 34:bhae343. [PMID: 39183364 PMCID: PMC11345119 DOI: 10.1093/cercor/bhae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
47,XXX (Triple X syndrome) is a sex chromosome aneuploidy characterized by the presence of a supernumerary X chromosome in affected females and is associated with a variable cognitive, behavioral, and psychiatric phenotype. The effect of a supernumerary X chromosome in affected females on intracortical microstructure is currently unknown. Therefore, we conducted 7 Tesla structural MRI and compared T1 (ms), as a proxy for intracortical myelin (ICM), across laminae of 21 adult women with 47,XXX and 22 age-matched typically developing females using laminar analyses. Relationships between phenotypic traits and T1 values in 47,XXX were also investigated. Adults with 47,XXX showed higher bilateral T1 across supragranular laminae in the banks of the superior temporal sulcus, and in the right inferior temporal gyrus, suggesting decreases of ICM primarily within the temporal cortex in 47,XXX. Higher social functioning in 47,XXX was related to larger inferior temporal gyrus ICM content. Our findings indicate an effect of a supernumerary X chromosome in adult-aged women on ICM across supragranular laminae within the temporal cortex. These findings provide insight into the role of X chromosome dosage on ICM across laminae. Future research is warranted to further explore the functional significance of altered ICM across laminae in 47,XXX.
Collapse
Affiliation(s)
- Chaira Serrarens
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Julia Ruiz-Fernandez
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- INSERM U1299, Centre Borelli UMR 9010, ENS-Paris-Saclay, Université Paris Saclay, Paris, France
| | - Maarten Otter
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- Medical Department, SIZA, Arnhem, 6800 AM, The Netherlands
| | - Bea C M Campforts
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, 6229 ER, The Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6229 EV, The Netherlands
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- ‘s Heeren Loo Zorggroep, Amersfoort, 3818 LA, The Netherlands
| |
Collapse
|
5
|
Boulant N, Le Ster C, Amadon A, Aubert G, Beckett A, Belorgey J, Bonnelye C, Bosch D, Brunner DO, Dilasser G, Dubois O, Ehses P, Feinberg D, Feizollah S, Gras V, Gross S, Guihard Q, Lannou H, Le Bihan D, Mauconduit F, Molinié F, Nunio F, Pruessmann K, Quettier L, Scheffler K, Stöcker T, Tardif C, Ugurbil K, Vignaud A, Vu A, Wu X. The possible influence of third-order shim coils on gradient-magnet interactions: an inter-field and inter-site study. MAGMA (NEW YORK, N.Y.) 2024; 37:169-183. [PMID: 38197908 PMCID: PMC10995016 DOI: 10.1007/s10334-023-01138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE To assess the possible influence of third-order shim coils on the behavior of the gradient field and in gradient-magnet interactions at 7 T and above. MATERIALS AND METHODS Gradient impulse response function measurements were performed at 5 sites spanning field strengths from 7 to 11.7 T, all of them sharing the same exact whole-body gradient coil design. Mechanical fixation and boundary conditions of the gradient coil were altered in several ways at one site to study the impact of mechanical coupling with the magnet on the field perturbations. Vibrations, power deposition in the He bath, and field dynamics were characterized at 11.7 T with the third-order shim coils connected and disconnected inside the Faraday cage. RESULTS For the same whole-body gradient coil design, all measurements differed greatly based on the third-order shim coil configuration (connected or not). Vibrations and gradient transfer function peaks could be affected by a factor of 2 or more, depending on the resonances. Disconnecting the third-order shim coils at 11.7 T also suppressed almost completely power deposition peaks at some frequencies. DISCUSSION Third-order shim coil configurations can have major impact in gradient-magnet interactions with consequences on potential hardware damage, magnet heating, and image quality going beyond EPI acquisitions.
Collapse
Affiliation(s)
- Nicolas Boulant
- CEA, CNRS, BAOBAB, NeuroSpin, University Paris-Saclay, 91191, Gif Sur Yvette Cedex, France.
| | - Caroline Le Ster
- CEA, CNRS, BAOBAB, NeuroSpin, University Paris-Saclay, 91191, Gif Sur Yvette Cedex, France
| | - Alexis Amadon
- CEA, CNRS, BAOBAB, NeuroSpin, University Paris-Saclay, 91191, Gif Sur Yvette Cedex, France
| | - Guy Aubert
- CEA, Irfu, DACM, University Paris-Saclay, Gif Sur Yvette, France
| | - Alexander Beckett
- Brain Imaging Center and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Advanced MRI Technologies, Sebastopol, CA, USA
| | - Jean Belorgey
- CEA, Irfu, DIS, University Paris-Saclay, Gif Sur Yvette, France
| | - Cédric Bonnelye
- CEA, CNRS, BAOBAB, NeuroSpin, University Paris-Saclay, 91191, Gif Sur Yvette Cedex, France
| | - Dario Bosch
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | | | - Olivier Dubois
- CEA, Irfu, DIS, University Paris-Saclay, Gif Sur Yvette, France
| | | | - David Feinberg
- Brain Imaging Center and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Advanced MRI Technologies, Sebastopol, CA, USA
| | - Sajjad Feizollah
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Vincent Gras
- CEA, CNRS, BAOBAB, NeuroSpin, University Paris-Saclay, 91191, Gif Sur Yvette Cedex, France
| | | | - Quentin Guihard
- CEA, Irfu, DIS, University Paris-Saclay, Gif Sur Yvette, France
| | - Hervé Lannou
- CEA, Irfu, DACM, University Paris-Saclay, Gif Sur Yvette, France
| | - Denis Le Bihan
- CEA, CNRS, BAOBAB, NeuroSpin, University Paris-Saclay, 91191, Gif Sur Yvette Cedex, France
| | - Franck Mauconduit
- CEA, CNRS, BAOBAB, NeuroSpin, University Paris-Saclay, 91191, Gif Sur Yvette Cedex, France
| | | | - François Nunio
- CEA, Irfu, DIS, University Paris-Saclay, Gif Sur Yvette, France
| | | | - Lionel Quettier
- CEA, Irfu, DACM, University Paris-Saclay, Gif Sur Yvette, France
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Tony Stöcker
- Center for Neurogenerative Diseases, Bonn, Germany
| | - Christine Tardif
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexandre Vignaud
- CEA, CNRS, BAOBAB, NeuroSpin, University Paris-Saclay, 91191, Gif Sur Yvette Cedex, France
| | - An Vu
- University of California, San Francisco, CA, USA
- San Francisco VA Health Care System, San Francisco, CA, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Gao Y, Liu T, Hong T, Fang Y, Jiang W, Zhang X. Subwavelength dielectric waveguide for efficient travelling-wave magnetic resonance imaging. Nat Commun 2024; 15:2298. [PMID: 38485742 PMCID: PMC10940709 DOI: 10.1038/s41467-024-46638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Magnetic resonance imaging (MRI) has diverse applications in physics, biology, and medicine. Uniform excitation of nuclei spins through circular-polarized transverse magnetic component of electromagnetic field is vital for obtaining unbiased tissue contrasts. However, achieving this in the electrically large human body poses a significant challenge, especially at ultra-high fields (UHF) with increased working frequencies (≥297 MHz). Canonical volume resonators struggle to meet this challenge, while radiative excitation methods like travelling-wave (TW) show promise but often suffer from inadequate excitation efficiency. Here, we introduce a new technique using a subwavelength dielectric waveguide insert that enhances both efficiency and homogeneity at 7 T. Through TE11-to-TM11 mode conversion, power focusing, wave impedance matching, and phase velocity matching, we achieved a 114% improvement in TW efficiency and mitigated the center-brightening effect. This fundamental advancement in TW MRI through effective wave manipulation could promote the electromagnetic design of UHF MRI systems.
Collapse
Affiliation(s)
- Yang Gao
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China.
- School of Electronic Engineering, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an, China.
- College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| | - Tong Liu
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
| | - Tao Hong
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
- School of Electronic Engineering, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an, China
| | - Youtong Fang
- College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Wen Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
- School of Electronic Engineering, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an, China
| | - Xiaotong Zhang
- College of Electrical Engineering, Zhejiang University, Hangzhou, China.
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China.
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Solomakha GA, Bosch D, Glang F, Scheffler K, Avdievich NI. Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra-high field MRI at 9.4T. Magn Reson Med 2024; 91:1268-1280. [PMID: 38009927 DOI: 10.1002/mrm.29941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE The aim of this work is to evaluate a new eight-channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state-of-the art dipole arrays. METHODS First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi-tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. RESULTS The developed eight-element coaxial dipole TxRx array coil showed up to 1.1times higher SAR-efficiency than a similar in geometry folded-end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. CONCLUSION As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR-efficiency and provided for a more compact and robust alternative to the folded-end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra-high field.
Collapse
Affiliation(s)
- G A Solomakha
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - D Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - F Glang
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - K Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - N I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|