1
|
Shao W, Leung KH, Xu J, Coughlin JM, Pomper MG, Du Y. Generation of Digital Brain Phantom for Machine Learning Application of Dopamine Transporter Radionuclide Imaging. Diagnostics (Basel) 2022; 12:1945. [PMID: 36010295 PMCID: PMC9406894 DOI: 10.3390/diagnostics12081945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
While machine learning (ML) methods may significantly improve image quality for SPECT imaging for the diagnosis and monitoring of Parkinson's disease (PD), they require a large amount of data for training. It is often difficult to collect a large population of patient data to support the ML research, and the ground truth of lesion is also unknown. This paper leverages a generative adversarial network (GAN) to generate digital brain phantoms for training ML-based PD SPECT algorithms. A total of 594 PET 3D brain models from 155 patients (113 male and 42 female) were reviewed and 1597 2D slices containing the full or a portion of the striatum were selected. Corresponding attenuation maps were also generated based on these images. The data were then used to develop a GAN for generating 2D brain phantoms, where each phantom consisted of a radioactivity image and the corresponding attenuation map. Statistical methods including histogram, Fréchet distance, and structural similarity were used to evaluate the generator based on 10,000 generated phantoms. When the generated phantoms and training dataset were both passed to the discriminator, similar normal distributions were obtained, which indicated the discriminator was unable to distinguish the generated phantoms from the training datasets. The generated digital phantoms can be used for 2D SPECT simulation and serve as the ground truth to develop ML-based reconstruction algorithms. The cumulated experience from this work also laid the foundation for building a 3D GAN for the same application.
Collapse
Affiliation(s)
- Wenyi Shao
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kevin H. Leung
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jingyan Xu
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer M. Coughlin
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Du
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|