1
|
G A, T T, Ramakrishnan S. Fluorescence Nano Particle Detection in a Liquid Sample Using the Smartphone for Biomedical Application. J Fluoresc 2021; 32:135-143. [PMID: 34633596 DOI: 10.1007/s10895-021-02799-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
In this paper, we present a Smartphone-based Fluorescence Nanoparticle Detector (SPF-NPD) that can be used for identifying biological agents in biomedical applications. The experimental setup consists of an LED light source and an Eppendorf tube holder placed inside a dark chamber with an optimally located slit for aligning the camera of a smartphone. The camera acquires the fluorescence intensity variations in the target liquid sample placed in the Eppendorf tube and passes it to a dedicated android application running in the smartphone. Using the principle of fluorescence-based pathogen detection, the android application detects the pathogens and displays the results within a few seconds. Since, all smartphones are equipped with high-resolution cameras, the proposed SPF-NPD provides a simple and elegant solution for instantaneous detection of fluorescence nano particles and has a great potential for healthcare applications for live detection of pathogens. The intensity measurement in SPF-NPD algorithm uses 5-pixel method, that is, the center pixel followed by four immediate neighbor pixels, because of which, minimal sample quantity is sufficient for precise measurements. We establish the robustness of SPF-NPD through exhaustive experiments with various smartphone cameras having different resolutions ranging from 8 to 20 Megapixels. The results of the proposed SPF-NPD method are validated against those obtained from standard devices such as Perkin-Elmer Picoflor and Perkin-Elmer Enspire. The advantages of the proposed method are highlighted.
Collapse
Affiliation(s)
- Anand G
- Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai, India.
| | - Thyagarajan T
- Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai, India
| | - Sabitha Ramakrishnan
- Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai, India
| |
Collapse
|
2
|
Wei L, Yan W, Ho D. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2800. [PMID: 29207568 PMCID: PMC5751615 DOI: 10.3390/s17122800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Abstract
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.
Collapse
Affiliation(s)
- Liping Wei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Wenrong Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
3
|
CMOS time-resolved, contact, and multispectral fluorescence imaging for DNA molecular diagnostics. SENSORS 2014; 14:20602-19. [PMID: 25365460 PMCID: PMC4279502 DOI: 10.3390/s141120602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/11/2014] [Accepted: 10/27/2014] [Indexed: 12/03/2022]
Abstract
Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art.
Collapse
|
4
|
Wei L, Doughan S, Han Y, DaCosta MV, Krull UJ, Ho D. The intersection of CMOS microsystems and upconversion nanoparticles for luminescence bioimaging and bioassays. SENSORS (BASEL, SWITZERLAND) 2014; 14:16829-55. [PMID: 25211198 PMCID: PMC4208203 DOI: 10.3390/s140916829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
Abstract
Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies.
Collapse
Affiliation(s)
- Liping Wei
- Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Samer Doughan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada.
| | - Yi Han
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada.
| | - Matthew V DaCosta
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada.
| | - Ulrich J Krull
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada.
| | - Derek Ho
- Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Ho D, Noor MO, Krull UJ, Gulak G, Genov R. CMOS tunable-wavelength multi-color photogate sensor. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:805-819. [PMID: 24473545 DOI: 10.1109/tbcas.2013.2243727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A CMOS tunable-wavelength multi-color photogate (CPG) sensor is presented. Sensing of a small set of well-separated wavelengths (e.g., > 50 nm apart) is achieved by tuning the spectral response of the device with a bias voltage. The CPG employs the polysilicon gate as an optical filter, which eliminates the need for an external color filter. A prototype has been fabricated in a standard 0.35 μm digital CMOS technology and demonstrates intensity measurements of blue (450 nm), green (520 nm), and red (620 nm) illumination with peak signal-to-noise ratios (SNRs) of 34.7 dB , 29.2 dB, and 34.8 dB, respectively. The prototype is applied to fluorescence detection of green-emitting quantum dots (gQDs) and red-emitting quantum dots (rQDs). It spectrally differentiates among multiple emission bands, effectively implementing on-chip emission filtering. The prototype demonstrates single-color measurements of gQD and rQD concentrations to a detection limit of 24 nM, and multi-color measurements of solutions containing both colors of QDs to a detection limit of 90 nM and 120 nM of gQD and rQD, respectively.
Collapse
|
6
|
Ho D, Noor MO, Krull UJ, Gulak G, Genov R. CMOS spectrally-multiplexed FRET-on-a-chip for DNA analysis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:643-654. [PMID: 24232625 DOI: 10.1109/tbcas.2012.2230172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A spectral-multiplexed fluorescence contact imaging microsystem for DNA analysis is presented. The microsystem integrates a filterless CMOS Color PhotoGate (CPG) sensor that exploits the polysilicon gate as an optical filter, and therefore does not require an external color filter. The CPG is applied to fluorescence-based transduction in a spectrally multiplexed format by differentiating among multiple emission bands, hence replacing the functionality of a bank of emission filters. A microsystem has been quantitatively modeled and prototyped based on the CPG fabricated in a standard 0.35 μm CMOS technology. The multi-color imaging capability of the microsystem in analyzing DNA targets has been validated in the detection of marker gene sequences for spinal muscular atropy disease and Escherichia coli (E. coli). Spectral-multiplexing enables the two DNA targets to be simultaneously detected with a measured detection limits of 240 nM and 210 nM for the two target concentrations at a sample volume of 10 μL for the green and red transduction channels, respectively.
Collapse
|
7
|
Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors. Biosens Bioelectron 2012; 36:242-9. [PMID: 22565094 DOI: 10.1016/j.bios.2012.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/15/2012] [Accepted: 04/17/2012] [Indexed: 01/29/2023]
Abstract
Two-dimensional fluorescence spectroscopy (2D FS) provides a non-invasive means to assess cell condition without the introduction of changes to the cell environment. The method relies on the measurement of the excitation-emission fluorescence intensity matrix of key intrinsic fluorophores, like aromatic amino acids, enzyme cofactors, and vitamins. Commonly used detection systems are complex, with multiple bandpass filters, and are hard to miniaturize. Here, an amorphous silicon photodetector array system integrated with amorphous silicon-carbon alloy filters designed to detect three key fluorophores - tryptophan (Trp), reduced nicotine adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) - is demonstrated. These intrinsic fluorophores were detected in pure solutions and also in suspended yeast cells. The array system was used to monitor changes in intrinsic fluorophore concentration when a yeast cell solution was subject to a thermal shock stress.
Collapse
|
8
|
Chang KH, Chen RL, Hsieh BC, Chen PC, Hsiao HY, Nieh CH, Cheng TJ. A hand-held electronic tongue based on fluorometry for taste assessment of tea. Biosens Bioelectron 2010; 26:1507-13. [DOI: 10.1016/j.bios.2010.07.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/19/2010] [Accepted: 07/26/2010] [Indexed: 11/25/2022]
|