1
|
Rehan M, Al-Bahadly I, Thomas DG, Young W, Cheng LK, Avci E. Smart capsules for sensing and sampling the gut: status, challenges and prospects. Gut 2023; 73:186-202. [PMID: 37734912 PMCID: PMC10715516 DOI: 10.1136/gutjnl-2023-329614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Smart capsules are developing at a tremendous pace with a promise to become effective clinical tools for the diagnosis and monitoring of gut health. This field emerged in the early 2000s with a successful translation of an endoscopic capsule from laboratory prototype to a commercially viable clinical device. Recently, this field has accelerated and expanded into various domains beyond imaging, including the measurement of gut physiological parameters such as temperature, pH, pressure and gas sensing, and the development of sampling devices for better insight into gut health. In this review, the status of smart capsules for sensing gut parameters is presented to provide a broad picture of these state-of-the-art devices while focusing on the technical and clinical challenges the devices need to overcome to realise their value in clinical settings. Smart capsules are developed to perform sensing operations throughout the length of the gut to better understand the body's response under various conditions. Furthermore, the prospects of such sensing devices are discussed that might help readers, especially health practitioners, to adapt to this inevitable transformation in healthcare. As a compliment to gut sensing smart capsules, significant amount of effort has been put into the development of robotic capsules to collect tissue biopsy and gut microbiota samples to perform in-depth analysis after capsule retrieval which will be a game changer for gut health diagnosis, and this advancement is also covered in this review. The expansion of smart capsules to robotic capsules for gut microbiota collection has opened new avenues for research with a great promise to revolutionise human health diagnosis, monitoring and intervention.
Collapse
Affiliation(s)
- Muhammad Rehan
- Department of Electronic Engineering, Sir Syed University of Engineering & Technology, Karachi, Pakistan
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch Ltd, Palmerston North, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
2
|
Alsunaydih FN, Yuce MR. Next-generation ingestible devices: sensing, locomotion and navigation. Physiol Meas 2021; 42. [PMID: 33706294 DOI: 10.1088/1361-6579/abedc0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
There is significant interest in exploring the human body's internal activities and measuring important parameters to understand, treat and diagnose the digestive system environment and related diseases. Wireless capsule endoscopy (WCE) is widely used for gastrointestinal (GI) tract exploration due to its effectiveness as it provides no pain and is totally tolerated by the patient. Current ingestible sensing technology provides a valuable diagnostic tool to establish a platform for monitoring the physiological and biological activities inside the human body. It is also used for visualizing the GI tract to observe abnormalities by recording the internal cavity while moving. However, the capsule endoscopy is still passive, and there is no successful locomotion method to control its mobility through the whole GI tract. Drug delivery, localization of abnormalities, cost reduction and time consumption are improvements that can be gained from having active ingestible WCEs. In this article, the current technological developments of ingestible devices including sensing, locomotion and navigation are discussed and compared. The main features required to implement next-generation active WCEs are explored. The methods are evaluated in terms of the most important features such as safety, velocity, complexity of design, control, and power consumption.
Collapse
Affiliation(s)
- Fahad N Alsunaydih
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia.,Department of Electrical Engineering, Qassim University, Onizah, Qassim, Saudi Arabia
| | - Mehmet R Yuce
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Miley D, Machado LB, Condo C, Jergens AE, Yoon KJ, Pandey S. Video Capsule Endoscopy and Ingestible Electronics: Emerging Trends in Sensors, Circuits, Materials, Telemetry, Optics, and Rapid Reading Software. ADVANCED DEVICES & INSTRUMENTATION 2021; 2021. [DOI: 10.34133/2021/9854040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Real-time monitoring of the gastrointestinal tract in a safe and comfortable manner is valuable for the diagnosis and therapy of many diseases. Within this realm, our review captures the trends in ingestible capsule systems with a focus on hardware and software technologies used for capsule endoscopy and remote patient monitoring. We introduce the structure and functions of the gastrointestinal tract, and the FDA guidelines for ingestible wireless telemetric medical devices. We survey the advanced features incorporated in ingestible capsule systems, such as microrobotics, closed-loop feedback, physiological sensing, nerve stimulation, sampling and delivery, panoramic imaging with adaptive frame rates, and rapid reading software. Examples of experimental and commercialized capsule systems are presented with descriptions of their sensors, devices, and circuits for gastrointestinal health monitoring. We also show the recent research in biocompatible materials and batteries, edible electronics, and alternative energy sources for ingestible capsule systems. The results from clinical studies are discussed for the assessment of key performance indicators related to the safety and effectiveness of ingestible capsule procedures. Lastly, the present challenges and outlook are summarized with respect to the risks to health, clinical testing and approval process, and technology adoption by patients and clinicians.
Collapse
Affiliation(s)
- Dylan Miley
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA
| | | | - Calvin Condo
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kyoung-Jin Yoon
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Santosh Pandey
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Passive Wireless Pressure Sensing for Gastric Manometry. MICROMACHINES 2019; 10:mi10120868. [PMID: 31835529 PMCID: PMC6952889 DOI: 10.3390/mi10120868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 11/17/2022]
Abstract
We describe a wireless microsystem for gastrointestinal manometry that couples a microfabricated capacitive transducer to a dual-axis inductor, forming a resonant inductor-capacitor (LC) sensor within an ingestible 3D printed biocompatible capsule measuring ø 12 mm × 24 mm. An inductively coupled external telemetry unit wirelessly monitors the pressure dependent resonant frequency of the LC sensor, eliminating the need for integrated power sources within the ingested capsule. In vitro tests in saline show pressure response of -0.6 kHz/mmHg, interrogation distance up to 6 cm, and resolution up to 0.8 mmHg. In vivo functionality is validated with gastrointestinal pressure monitoring in a canine beagle over a 26-hour period.
Collapse
|
5
|
Matic T, Sneler L, Herceg M. An Energy Efficient Multi-User Asynchronous Wireless Transmitter for Biomedical Signal Acquisition. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:619-630. [PMID: 31107660 DOI: 10.1109/tbcas.2019.2917690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The paper presents a novel transmitter architecture for short-range asynchronous wireless communication, applicable to simultaneous multi-user wireless acquisition of biological signals. The analog signal, provided from an analog biosensor, is transformed to time information using an Integral Pulse Frequency Modulator (IPFM) as a Time-Encoding Machine. The IPFM generates a time-encoded unipolar pulse train, maintaining the linear dependence of the output pulse distance on analog input voltage. The system enables continuous acquisition of the signals from multiple sensors in which each transmitter has unique feedback loop delay used for multi-user coding. IPFM pulses trigger the Impulse Radio Ultra-Wideband pulse generator directly, providing two ultra-wideband (UWB) pulses per each IPFM pulse. Due to the lack of internal clock signal and microprocessor-free multi-user coding, the circuitry satisfies the requirements of multi-user coding energy efficiency and size reduction, which are crucial demands in biomedical applications. The proposed Time-Encoded UWB (TE-UWB) transmitter is implemented in 0.18 [Formula: see text] CMOS technology. Measurement results of the IPFM transfer function for input voltage ranging from 0.15 to 1.5 V are presented, providing the dependence of the IPFM pulse time distance on analog input voltage and power consumption dependence on the input voltage level. For continuous monitoring operation, total power consumption of the transmitter circuitry for the maximum input voltage is 10.8 [Formula: see text], while for the lowest input voltage it increases to 40.48 [Formula: see text]. The circuit occupies 0.14 [Formula: see text].
Collapse
|
6
|
Gao J, Zhang Z, Yan G. Development of a Capsule Robot for Exploring the Colon. MICROMACHINES 2019; 10:E456. [PMID: 31284610 PMCID: PMC6680549 DOI: 10.3390/mi10070456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
A tether-less inchworm-like capsule robot (ILCR) is promising to enable a non-invasive exploration of the colon, while existing ILCRs show barely satisfactory movement performance because the colon environment is nonstructural. In this current study, we develop an enhanced ILCR based on a design rule of maximizing the achievable periodic stroke and minimizing the body length, with the aim of improving movement performance. By designing an axial compact expanding mechanism (EM), employing a novel linear mechanism (LM), and integrating a hollow-cylinder-like power source based on wireless power transmission (WPT), the enhanced ILCR achieves a periodic stroke of 38 mm within a small body length of 33 mm. Our experiments show that the EM and LM can work reliably in an ex-vivo colon with a lot of intestinal mucus, and the power source can safely supply a stable working voltage of 3.3 V even in the worst case. Being wirelessly controlled and powered, the enhanced ILCR shows satisfactory movement performance, with velocities of 15.8 cm/min, 12.1 cm/min, and 7.4 cm/min in a transparent tube, a tiled colon, and a suspended colon, respectively, promising to accomplish an exploration for the 1.5-m long colon within 30 min.
Collapse
Affiliation(s)
- Jinyang Gao
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China.
- Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China.
| | - Zenglei Zhang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Guozheng Yan
- Department of Instrument Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
7
|
Nakamura R, Izumi S, Kawaguchi H, Ohta H, Yoshimoto M. A swallowable sensing device platform with wireless power feeding and chemical reaction actuator. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:3040-3043. [PMID: 29060539 DOI: 10.1109/embc.2017.8037498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents a swallowable sensor device that can be ingested orally, later passing to the stomach, where the device can indwell for long periods. Using wireless communication, it can be egested at any time after it is triggered. This device can indwell using a silicone balloon in the gastrointestinal tract. A chemical reaction inflates the balloon inside the stomach. Then it is deflated to egest the sensor device using an actuator with electrolysis of water. Energy for the actuator with electrolysis can be fed wirelessly. Near field communication and a flexible antenna are used for power feeding and wireless data communication. Because of the flexible balloon and the flexible antenna, the device size can be minimized without performance degradation.
Collapse
|
8
|
Arefin MS, Redoute JM, Yuce MR. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System. IEEE J Biomed Health Inform 2017; 22:87-97. [PMID: 28391213 DOI: 10.1109/jbhi.2017.2690965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper presents a wireless capsule microsystem to detect and monitor the pH, pressure, and temperature of the gastrointestinal tract in real time. This research contributes to the integration of sensors (microfabricated capacitive pH, capacitive pressure, and resistive temperature sensors), frequency modulation and pulse width modulation based interface IC circuits, microcontroller, and transceiver with meandered conformal antenna for the development of a capsule system. The challenges associated with the system miniaturization, higher sensitivity and resolution of sensors, and lower power consumption of interface circuits are addressed. The layout, PCB design, and packaging of a miniaturized wireless capsule, having diameter of 13 mm and length of 28 mm, have successfully been implemented. A data receiver and recorder system is also designed to receive physiological data from the wireless capsule and to send it to a computer for real-time display and recording. Experiments are performed in vitro using a stomach model and minced pork as tissue simulating material. The real-time measurements also validate the suitability of sensors, interface circuits, and meandered antenna for wireless capsule applications.
Collapse
|
9
|
Nakamura R, Izumi S, Kawaguchi H, Ohta H, Yoshimoto M. Swallowable sensing device for long-term gastrointestinal tract monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:3039-3042. [PMID: 28268952 DOI: 10.1109/embc.2016.7591370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents a swallowable sensor device that can be ingested orally, later arriving to the stomach, where the device can indwell for a long term and can be egested at any time after it is triggered using wireless communication. This device can inflate a silicone balloon in the gastrointestinal tract using a chemical reaction. The balloon can be deflated later using electrolysis of water at the time of egestion. A motorless chemical-reaction-based egestion method is proposed to minimize the sensor device size. This device can achieve long-term monitoring in the gastrointestinal tract.
Collapse
|