1
|
Critcher S, Parmelee P, Freeborn TJ. Localized Multi-Site Knee Bioimpedance as a Predictor for Knee Osteoarthritis Associated Pain Within Older Adults During Free-Living. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:1-10. [PMID: 37138591 PMCID: PMC10151013 DOI: 10.1109/ojemb.2023.3256181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The drastic increase in the aging population has increased the prevalence of osteoarthritis in the United States. The ability to monitor symptoms of osteoarthritis (such as pain) within a free-living environment could improve understanding of each person's experiences with this disease and provide opportunities to personalize treatments specific to each person and their experience. In this work, localized knee tissue bioimpedance and self-reports of knee pain were collected from older adults ([Formula: see text]) with and without knee osteoarthritis over 7 days of free-living to evaluate if knee tissue bioimpedance is associated with persons' knee pain experience. Within the group of persons' with knee osteoarthritis increases in 128 kHz per-length resistance and decreases in 40 kHz per-length reactance were associated with increased probability of persons having active knee pain ([Formula: see text] and [Formula: see text]).
Collapse
Affiliation(s)
- Shelby Critcher
- Department of Electrical and Computer EngineeringThe University of AlabamaTuscaloosaAL35487USA
| | - Patricia Parmelee
- Department of PsychologyThe University of AlabamaTuscaloosaAL35487USA
| | - Todd J. Freeborn
- Department of Electrical and Computer EngineeringThe University of AlabamaTuscaloosaAL35487USA
| |
Collapse
|
2
|
Showkat I, Khanday FA, Beigh MR. A review of bio-impedance devices. Med Biol Eng Comput 2023; 61:927-950. [PMID: 36637716 DOI: 10.1007/s11517-022-02763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023]
Abstract
Bio-impedance measurement analysis primarily refers to a safe and a non-invasive technique to analyze the electrical changes in living tissues on the application of low-value alternating current. It finds applications both in the biomedical and the agricultural fields. This paper concisely reviews the origin and measurement approaches for concepts and fundamentals of bio-impedance followed by a critical review on bio-impedance portable devices with main emphasis on the embedded system approach which is in demand due to its miniature size and present lifestyle preference of monitoring health in real time. The paper also provides a comprehensive review of various bio-impedance circuits with emphasis on the measurement and calibration techniques.
Collapse
Affiliation(s)
- Insha Showkat
- Department of Electronics and Instrumentation Technology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Farooq A Khanday
- Department of Electronics and Instrumentation Technology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India.
| | - M Rafiq Beigh
- Department of Electronics, Govt. Degree College Sumbal, Sumbal, J&K, India
| |
Collapse
|
3
|
Ye X, Wu L, Mao K, Feng Y, Li J, Ning L, Chen J. Bioimpedance Measurement of Knee Injuries Using Bipolar Electrode Configuration. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:962-971. [PMID: 35994551 DOI: 10.1109/tbcas.2022.3200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, there is no suitable solution for the point-of-care diagnosis of knee injuries. A potential portable and low-cost technique for accessing and monitoring knee injuries is bioimpedance measurement. This study validated the feasibility of the bipolar electrode configuration for knee bioimpedance measurement with two electrodes placed on a fixed pair of knee acupuncture locations called Xiyan. Then, the study collected 76 valid samples to investigate the relationship between bioimpedance and knee injuries, among whom 39 patients have unilateral knee injuries, and 37 individuals have healthy knees. The self-contrast results indicated that knee injuries caused a reduction of bioimpedance of the knee by about 5% on average, which was detectable at around 100 kHz (p ≈ 0.001). Furthermore, the results analyzed by principal component analysis and support vector machines show that the detection sensitivity can reach 87.18% using the leave-one-out cross-validation. We also proposed a low-cost and portable bioimpedance measurement device that meets the needs for measuring knee joint bioimpedance.
Collapse
|
4
|
Shah S, Toreyin H, Noyan U, Lee YJ. A proof-of-concept real-time processing to characterize vascular flow. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2912-2915. [PMID: 36086132 DOI: 10.1109/embc48229.2022.9871424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In dialysis patients, monitoring vascular flow of the surgically created arteriovenous fistula (AVF) is critical to indicate the success of the AVF as a dialysis access site. Current gold standard to quantify vascular flow involves external doppler evaluation which requires frequent visits to the clinic. In this paper, we present a proof-of-concept cost-efficient vascular flow monitoring system towards a wearable and robust blood flow monitoring system. The proposed system captures beat-to-beat blood flow from impedance plethysmography (IPG) signal and performs embedded computing to robustly map the changes in the IPG to peripheral blood flow. We present the proof-of-concept results for the embedded real-time blood flow computing from measurements obtained using a custom electrical bioimpedance hardware presented previously elsewhere. We anticipate the results serving as the first step towards potentially eliminating the need for using expensive and bulky systems that require specialized personnel to operate for peripheral blood flow monitoring. Clinical relevance-The study paves the way to engineering a ubiquitous blood flow monitoring system for patients who have a surgically created Arteriovenous fistula (AVF) for dialysis vascular access.
Collapse
|
5
|
Arpaia P, Crauso F, Frosolone M, Mariconda M, Minucci S, Moccaldi N. A personalized FEM model for reproducible measurement of anti-inflammatory drugs in transdermal administration to knee. Sci Rep 2022; 12:673. [PMID: 35027630 PMCID: PMC8758660 DOI: 10.1038/s41598-021-04718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
A personalized model of the human knee for enhancing the inter-individual reproducibility of a measurement method for monitoring Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) after transdermal delivery is proposed. The model is based on the solution of Maxwell Equations in the electric-quasi-stationary limit via Finite Element Analysis. The dimensions of the custom geometry are estimated on the basis of knee circumference at the patella, body mass index, and sex of each individual. An optimization algorithm allows to find out the electrical parameters of each subject by experimental impedance spectroscopy data. Muscular tissues were characterized anisotropically, by extracting Cole-Cole equation parameters from experimental data acquired with twofold excitation, both transversal and parallel to tissue fibers. A sensitivity and optimization analysis aiming at reducing computational burden in model customization achieved a worst-case reconstruction error lower than 5%. The personalized knee model and the optimization algorithm were validated in vivo by an experimental campaign on thirty volunteers, 67% healthy and 33% affected by knee osteoarthritis (Kellgren-Lawrence grade ranging in [1,4]), with an average error of 3%.
Collapse
Affiliation(s)
- Pasquale Arpaia
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Health Management and Innovation in Health (CIRMIS), University of Naples Federico II, Naples, Italy
| | - Federica Crauso
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy.,Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Mirco Frosolone
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy.,Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Mariconda
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Simone Minucci
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy. .,Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo, Italy.
| | - Nicola Moccaldi
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Freeborn TJ, Critcher S. Threshold and Trend Artifacts in Localized Multi-Frequency Bioimpedance Measurements. IFAC-PAPERSONLINE 2021; 54:55-60. [PMID: 37097809 PMCID: PMC10122868 DOI: 10.1016/j.ifacol.2021.10.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Localized tissue bioimpedance is being widely investigated as a technique to identify physiological features in support of health focused applications. In support of this method being translated into wearable systems for continuous monitoring, it is critical to not only collect measurements but also evaluate their quality. This is necessary to reduce errors in equipment or measurement conditions from contributing data artifacts to datasets that will be analyzed. Two methods for artifact identification in resistance measurements of bioimpedance datasets are presented. These methods, based on thresholding and trend detection, are applied to localized knee bioimpedance datasets collected from two knee sites over 7 consecutive days in free-living conditions. Threshold artifacts were identified in 0.04% (longitudinal and transverse) and 0.69% (longitudinal) /3.50% (transverse) of the total data collected.
Collapse
Affiliation(s)
- Todd J Freeborn
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35404 USA
| | - Shelby Critcher
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35404 USA
| |
Collapse
|
7
|
Localized Bioimpedance Measurements with the MAX3000x Integrated Circuit: Characterization and Demonstration. SENSORS 2021; 21:s21093013. [PMID: 33923037 PMCID: PMC8123364 DOI: 10.3390/s21093013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 01/24/2023]
Abstract
The commercial availability of integrated circuits with bioimpedance sensing functionality is advancing the opportunity for practical wearable systems that monitor the electrical impedance properties of tissues to identify physiological features in support of health-focused applications. This technical note characterizes the performance of the MAX3000x (resistance/reactance accuracy, power modes, filtering, gains) and is available for on-board processing (electrode detection) for localized bioimpedance measurements. Measurements of discrete impedances that are representative of localized tissue bioimpedance support that this IC has a relative error of <10% for the resistance component of complex impedance measurements, but can also measure relative alterations in the 250 mΩ range. The application of the MAX3000x for monitoring localized bicep tissues during activity is presented to highlight its functionality, as well as its limitations, for multi-frequency measurements. This device is a very-small-form-factor single-chip solution for measuring multi-frequency bioimpedance with significant on-board processing with potential for wearable applications.
Collapse
|
8
|
Mabrouk S, Whittingslow D, Inan OT. Robust Method for Mid-Activity Tracking and Evaluation of Ankle Health Post-Injury. IEEE Trans Biomed Eng 2021; 68:1341-1350. [PMID: 32997618 DOI: 10.1109/tbme.2020.3027477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To present a robust methodology for evaluating ankle health during ambulation using a wearable device. Methods: We developed a novel data capture system that leverages changes within the ankle during ambulation for real-time tracking of bioimpedance. The novel analysis compares the range of reactance at 5 kHz to the range of reactance at 100 kHz; which removes the technique's previous reliance on a known baseline. To aid in interpretation of the measurements, we developed a quantitative simulation model based on a literature review of the effects on joint bioimpedance of variations in edematous fluid volume, muscle fiber tears, and blood flow changes. Results: The results of the simulation predicted a significant difference in the ratio of the range of the reactance from 5 kHz to 100 kHz between the healthy and injured ankles. These results were validated in 15 subjects - with 11 healthy ankles and 7 injured ankles measured. The injured subjects had lateral ankle sprains 2-4 weeks prior to the measurement. The analysis technique differentiated between the healthy and the injured population (p<<0.01), and a correlation (R = 0.8) with a static protocol previously validated for its sensitivity to edema. Conclusion: The technology presented can detect variations in ankle edema and structural integrity of ankles, and thus could provide valuable feedback to clinicians and patients during the rehabilitation of an ankle injury. Significance: This technology could lead to better-informed decision making regarding a patient's readiness to return to activity and / or tailoring rehabilitation activities to an individual's changing needs.
Collapse
|
9
|
Cosoli G, Scalise L, De Leo A, Russo P, Tricarico G, Tomasini EP, Cerri G. Development of a Novel Medical Device for Mucositis and Peri-Implantitis Treatment. Bioengineering (Basel) 2020; 7:E87. [PMID: 32764313 PMCID: PMC7552606 DOI: 10.3390/bioengineering7030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022] Open
Abstract
In spite of all the developments in dental implantology techniques, peri-implant diseases are frequent (prevalence up to 80% and 56% of subjects for mucositis and peri-implantitis, respectively) and there is an urgency for an effective treatment strategy. This paper presents an innovative electromedical device for the electromagnetic treatment of mucositis and peri-implantitis diseases. This device is also equipped with a measurement part for bioimpedance, which reflects the health conditions of a tissue, thus allowing clinicians to objectively detect impaired areas and to monitor the severity of the disease, evaluate the treatment efficacy, and adjust it accordingly. The design of the device was realized considering literature data, clinical evidence, numerical simulation results, and electromagnetic compatibility (EMC) pre-compliance tests, involving both clinicians and engineers, to better understand all the needs and translate them into design requirements. The reported system is being tested in more than 50 dental offices since 2019, providing efficient treatments for mucositis and peri-implantitis, with success rates of approximately 98% and 80%, respectively.
Collapse
Affiliation(s)
- Gloria Cosoli
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (L.S.); (E.P.T.)
| | - Lorenzo Scalise
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (L.S.); (E.P.T.)
| | - Alfredo De Leo
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.D.L.); (P.R.); (G.C.)
| | - Paola Russo
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.D.L.); (P.R.); (G.C.)
| | - Gerardo Tricarico
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Enrico Primo Tomasini
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (L.S.); (E.P.T.)
| | - Graziano Cerri
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.D.L.); (P.R.); (G.C.)
| |
Collapse
|
10
|
López-de-Celis C, Hidalgo-García C, Pérez-Bellmunt A, Fanlo-Mazas P, González-Rueda V, Tricás-Moreno JM, Ortiz S, Rodríguez-Sanz J. Thermal and non-thermal effects off capacitive-resistive electric transfer application on the Achilles tendon and musculotendinous junction of the gastrocnemius muscle: a cadaveric study. BMC Musculoskelet Disord 2020; 21:46. [PMID: 31959172 PMCID: PMC6971989 DOI: 10.1186/s12891-020-3072-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/16/2020] [Indexed: 11/19/2022] Open
Abstract
Background Calf muscle strain and Achilles tendon injuries are common in many sports. For the treatment of muscular and tendinous injuries, one of the newer approaches in sports medicine is capacitive-resistive electric transfer therapy. Our objective was to analyze this in vitro, using invasive temperature measurements in cadaveric specimens. Methods A cross-sectional study designed with five fresh frozen cadavers (10 legs) were included in this study. Four interventions (capacitive and resistive modes; low- and high-power) was performed for 5 min each by a diathermy “T-Plus” device. Achilles tendon, musculotendinous junction and superficial temperatures were recorded at 1-min intervals and 5 min after treatment. Results With the low-power capacitive protocol, at 5 min, there was a 25.21% increase in superficial temperature, a 17.50% increase in Achilles tendon temperature and an 11.27% increase in musculotendinous junction temperature, with a current flow of 0.039 A ± 0.02. With the low-power resistive protocol, there was a 1.14% increase in superficial temperature, a 28.13% increase in Achilles tendon temperature and an 11.67% increase in musculotendinous junction temperature at 5 min, with a current flow of 0.063 A ± 0.02. With the high-power capacitive protocol there was an 88.52% increase in superficial temperature, a 53.35% increase in Achilles tendon temperature and a 39.30% increase in musculotendinous junction temperature at 5 min, with a current flow of 0.095 A ± 0.03. With the high-power resistive protocol, there was a 21.34% increase in superficial temperature, a 109.70% increase in Achilles tendon temperature and an 81.49% increase in musculotendinous junction temperature at 5 min, with a current flow of 0.120 A ± 0.03. Conclusion The low-power protocols resulted in only a very slight thermal effect at the Achilles tendon and musculotendinous junction, but current flow was observed. The high-power protocols resulted in a greater temperature increase at the Achilles tendon and musculotendinous junction and a greater current flow than the low-power protocols. The high-power resistive protocol gave the greatest increase in Achilles tendon and musculotendinous junction temperature. Capacitive treatments (low- and high-power) achieved a greater increase in superficial temperature.
Collapse
Affiliation(s)
- Carlos López-de-Celis
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.,Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - César Hidalgo-García
- Faculty of Health Sciences, Universidad de Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Zaragoza, Spain.,Physiotherapy Research Unit, Universidad de Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Zaragoza, Spain
| | - Albert Pérez-Bellmunt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pablo Fanlo-Mazas
- Faculty of Health Sciences, Universidad de Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Zaragoza, Spain.,Physiotherapy Research Unit, Universidad de Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Zaragoza, Spain
| | - Vanessa González-Rueda
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.,Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - José Miguel Tricás-Moreno
- Faculty of Health Sciences, Universidad de Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Zaragoza, Spain.,Physiotherapy Research Unit, Universidad de Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Zaragoza, Spain
| | - Sara Ortiz
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jacobo Rodríguez-Sanz
- Faculty of Health Sciences, Universidad de Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Zaragoza, Spain. .,Physiotherapy Research Unit, Universidad de Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Zaragoza, Spain.
| |
Collapse
|
11
|
Mabrouk S, Hersek S, Jeong HK, Whittingslow D, Ganti VG, Wolkoff P, Inan OT. Robust Longitudinal Ankle Edema Assessment Using Wearable Bioimpedance Spectroscopy. IEEE Trans Biomed Eng 2019; 67:1019-1029. [PMID: 31295102 DOI: 10.1109/tbme.2019.2927807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We present a robust methodology for tracking ankle edema longitudinally based on bioimpedance spectroscopy (BIS). METHODS We designed a miniaturized BIS measurement system and employed a novel calibration method that enables accurate, high-resolution measurements with substantially lower power consumption than conventional approaches. Using this state-of-the-art wearable BIS measurement system, we developed a differential measurement technique for robust assessment of ankle edema. This technique addresses many of the major challenges in longitudinal BIS-based edema assessment, including day-to-day variability in electrode placement, positional/postural variability, and intersubject variability. RESULTS We first evaluated the hardware in bench-top testing, and determined the error of the bioimpedance measurements to be 0.4 Ω for the real components and 0.54 Ω for the imaginary components with a resolution of 0.2 Ω. We then validated the hardware and differential measurement technique in: 1) an ex vivo, fresh-frozen, cadaveric limb model, and 2) a cohort of 11 human subjects for proof of concept (eight healthy controls and five subjects with recently acquired acute unilateral ankle injury). CONCLUSION The hardware design, with novel calibration methodology, and differential measurement technique can potentially enable long-term quantification of ankle edema throughout the course of rehabilitation following acute ankle injuries. SIGNIFICANCE This could lead to better-informed decision making regarding readiness to return to activities and/or tailoring of rehabilitation activities to an individual's changing needs.
Collapse
|
12
|
Bicen AO, West LL, Cesar L, Inan OT. Toward Non-Invasive and Automatic Intravenous Infiltration Detection: Evaluation of Bioimpedance and Skin Strain in a Pig Model. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2018; 6:4100207. [PMID: 29692956 PMCID: PMC5912429 DOI: 10.1109/jtehm.2018.2815539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/05/2018] [Accepted: 02/27/2018] [Indexed: 11/06/2022]
Abstract
Intravenous (IV) therapy is prevalent in hospital settings, where fluids are typically delivered with an IV into a peripheral vein of the patient. IV infiltration is the inadvertent delivery of fluids into the extravascular space rather than into the vein (and requires urgent treatment to avoid scarring and severe tissue damage), for which medical staff currently needs to check patients periodically. In this paper, the performance of two non-invasive sensing modalities, electrical bioimpedance (EBI), and skin strain sensing, for the automatic detection of IV infiltration was investigated in an animal model. Infiltrations were physically simulated on the hind limb of anesthetized pigs, where the sensors for EBI and skin strain sensing were co-located. The obtained data were used to examine the ability to distinguish between infusion into the vein and an infiltration event using bioresistance and bioreactance (derived from EBI), as well as skin strain. Skin strain and bioresistance sensing could achieve detection rates greater than 0.9 for infiltration fluid volumes of 2 and 10 mL, respectively, for a given false positive, i.e., false alarm rate of 0.05. Furthermore, the fusion of multiple sensing modalities could achieve a detection rate of 0.97 with a false alarm rate of 0.096 for 5mL fluid volume of infiltration. EBI and skin strain sensing can enable non-invasive and real-time IV infiltration detection systems. Fusion of multiple sensing modalities can help to detect expanded range of leaking fluid volumes. The provided performance results and comparisons in this paper are an important step towards clinical translation of sensing technologies for detecting IV infiltration.
Collapse
Affiliation(s)
- A. Ozan Bicen
- Inan Research Laboratory, School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Leanne L. West
- Pediatric Technology CenterGeorgia Institute of TechnologyAtlantaGA30332USA
| | | | - Omer T. Inan
- Inan Research Laboratory, School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
13
|
Models and Techniques for Temperature Robust Systems on a Reconfigurable Platform. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS 2017. [DOI: 10.3390/jlpea7030021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Inan OT, Whittingslow DC, Teague CN, Hersek S, Pouyan MB, Millard-Stafford M, Kogler GF, Sawka MN. Wearable knee health system employing novel physiological biomarkers. J Appl Physiol (1985) 2017; 124:537-547. [PMID: 28751371 DOI: 10.1152/japplphysiol.00366.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Knee injuries and chronic disorders, such as arthritis, affect millions of Americans, leading to missed workdays and reduced quality of life. Currently, after an initial diagnosis, there are few quantitative technologies available to provide sensitive subclinical feedback to patients regarding improvements or setbacks to their knee health status; instead, most assessments are qualitative, relying on patient-reported symptoms, performance during functional tests, and physical examinations. Recent advances have been made with wearable technologies for assessing the health status of the knee (and potentially other joints) with the goal of facilitating personalized rehabilitation of injuries and care for chronic conditions. This review describes our progress in developing wearable sensing technologies that enable quantitative physiological measurements and interpretation of knee health status. Our sensing system enables longitudinal quantitative measurements of knee sounds, swelling, and activity context during clinical and field situations. Importantly, we leverage machine-learning algorithms to fuse the low-level signal and feature data of the measured time series waveforms into higher level metrics of joint health. This paper summarizes the engineering validation, baseline physiological experiments, and human subject studies-both cross-sectional and longitudinal-that demonstrate the efficacy of using such systems for robust knee joint health assessment. We envision our sensor system complementing and advancing present-day practices to reduce joint reinjury risk, to optimize rehabilitation recovery time for a quicker return to activity, and to reduce health care costs.
Collapse
Affiliation(s)
- Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology , Atlanta, Georgia.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Daniel C Whittingslow
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,School of Medicine, Emory University , Atlanta, Georgia
| | - Caitlin N Teague
- School of Electrical and Computer Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Sinan Hersek
- School of Electrical and Computer Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Maziyar Baran Pouyan
- School of Electrical and Computer Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | | | - Geza F Kogler
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | - Michael N Sawka
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
15
|
Hersek S, Toreyin H, Teague CN, Millard-Stafford ML, Jeong HK, Bavare MM, Wolkoff P, Sawka MN, Inan OT. Wearable Vector Electrical Bioimpedance System to Assess Knee Joint Health. IEEE Trans Biomed Eng 2016; 64:2353-2360. [PMID: 28026745 DOI: 10.1109/tbme.2016.2641958] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We designed and validated a portable electrical bioimpedance (EBI) system to quantify knee joint health. METHODS Five separate experiments were performed to demonstrate the: 1) ability of the EBI system to assess knee injury and recovery; 2) interday variability of knee EBI measurements; 3) sensitivity of the system to small changes in interstitial fluid volume; 4) reducing the error of EBI measurements using acceleration signals; and 5) use of the system with dry electrodes integrated to a wearable knee wrap. RESULTS 1) The absolute difference in resistance ( R) and reactance (X) from the left to the right knee was able to distinguish injured and healthy knees (p < 0.05); the absolute difference in R decreased significantly (p < 0.05) in injured subjects following rehabilitation. 2) The average interday variability (standard deviation) of the absolute difference in knee R was 2.5 Ω and for X was 1.2 Ω. 3) Local heating/cooling resulted in a significant decrease/increase in knee R (p < 0.01). 4) The proposed subject position detection algorithm achieved 97.4% leave-one subject out cross-validated accuracy and 98.2% precision in detecting when the subject is in the correct position to take measurements. 5) Linear regression between the knee R and X measured using the wet electrodes and the designed wearable knee wrap were highly correlated ( R2 = 0.8 and 0.9, respectively). CONCLUSION This study demonstrates the use of wearable EBI measurements in monitoring knee joint health. SIGNIFICANCE The proposed wearable system has the potential for assessing knee joint health outside the clinic/lab and help guide rehabilitation.
Collapse
|