1
|
Hu Y, Gao Z, Luo Z, An L. Next-Generation Image Sensors Based on Low-Dimensional Semiconductor Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501123. [PMID: 40237125 DOI: 10.1002/adma.202501123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/19/2025] [Indexed: 04/18/2025]
Abstract
With the rapid advancement of technology of big data and artificial intelligence (AI), the exponential increase in visual information leads to heightened demands for the quality and analysis of imaging results, rendering traditional silicon-based image sensors inadequate. This review serves as a comprehensive overview of next-generation image sensors based on low-dimensional semiconductor materials encompassing 0D, 1D, 2D materials, and their hybrids. It offers an in-depth introduction to the distinctive properties exhibited by these materials and delves into the device structures tailored specifically for image sensor applications. The classification of novel image sensors based on low-dimensional materials, in particular for transition metal dichalcogenides (TMDs), covering the preparation methods and corresponding imaging characteristics, is explored. Furthermore, this review highlights the diverse applications of low-dimensional materials in next-generation image sensors, encompassing advanced imaging sensors, biomimetic vision sensors, and non-von Neumann imaging systems. Lastly, the challenges and opportunities encountered in the development of next-generation image sensors utilizing low-dimensional semiconductor materials, paving the way for further advancements in this rapidly evolving field, are proposed.
Collapse
Affiliation(s)
- Yunxia Hu
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| |
Collapse
|
2
|
Guo Q, Chu J, Yu H, Zhang R. Fabrication of Artificial Compound Eyes with Biplanar Focal Planes on a Curved Surface. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6588-6596. [PMID: 39815990 DOI: 10.1021/acsami.4c20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Inspired by ancient trilobites, novel curved microlens arrays (CMLAs) were designed. Direct, fast, and low-cost CMLAs with two focal planes were fabricated using ultraprecision machining technology and hot embossing technology. We designed four pairs of artificial compound eyes (ACEs) composed of large and small lenses with four different curvatures to achieve focusing and imaging on two focal planes. A test system was constructed to capture the first-order and second-order images for each level of the ACEs. Additionally, we analyzed the deformation patterns in the first-order and second-order images. The wide field of view (FOV) value was 68°, which aligns with the theoretical prediction. The focusing performance was also investigated, and the experimental results indicate that each lens achieves uniform focusing within the FOV range. These results confirm that microlens arrays with two focal planes possess advanced imaging and focusing capabilities, enabling a wide depth-of-field function. This opens new avenues for the development of advanced detectors and optical imaging devices.
Collapse
Affiliation(s)
- Qing Guo
- Dalian University of Technology State Key Laboratory of High-Performance Precision Manufacturing, Key Laboratory for Micro/Nano Technology and System of Liaoning Province, School of Mechanical Engineering, Dalian 116024, China
| | - Jinkui Chu
- Dalian University of Technology State Key Laboratory of High-Performance Precision Manufacturing, Key Laboratory for Micro/Nano Technology and System of Liaoning Province, School of Mechanical Engineering, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Hao Yu
- Dalian University of Technology State Key Laboratory of High-Performance Precision Manufacturing, Key Laboratory for Micro/Nano Technology and System of Liaoning Province, School of Mechanical Engineering, Dalian 116024, China
| | - Ran Zhang
- Dalian University of Technology State Key Laboratory of High-Performance Precision Manufacturing, Key Laboratory for Micro/Nano Technology and System of Liaoning Province, School of Mechanical Engineering, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| |
Collapse
|
3
|
Kim HK, Cha YG, Kwon JM, Bae SI, Kim K, Jang KW, Jo YJ, Kim MH, Jeong KH. Biologically inspired microlens array camera for high-speed and high-sensitivity imaging. SCIENCE ADVANCES 2025; 11:eads3389. [PMID: 39742496 DOI: 10.1126/sciadv.ads3389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Nocturnal and crepuscular fast-eyed insects often exploit multiple optical channels and temporal summation for fast and low-light imaging. Here, we report high-speed and high-sensitive microlens array camera (HS-MAC), inspired by multiple optical channels and temporal summation for insect vision. HS-MAC features cross-talk-free offset microlens arrays on a single rolling shutter CMOS image sensor and performs high-speed and high-sensitivity imaging by using channel fragmentation, temporal summation, and compressive frame reconstruction. The experimental results demonstrate that HS-MAC accurately measures the speed of a color disk rotating at 1950 rpm, recording fast sequences at 9120 fps with low noise equivalent irradiance (0.43 μW/cm2). Besides, HS-MAC visualizes the necking pinch-off of a pool fire flame in dim light conditions below one thousandth of a lux. The compact high-speed low-light camera can offer a distinct route for high-speed and low-light imaging in mobile, surveillance, and biomedical applications.
Collapse
Affiliation(s)
- Hyun-Kyung Kim
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Gil Cha
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Myeong Kwon
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang-In Bae
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kisoo Kim
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyung-Won Jang
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong-Jin Jo
- Unmanned Ground Systems Team, LIGNex1, 333 Pangyo-ro, Bundang-gu, Gyeonggi-do, Seongnam-si 13488, Republic of Korea
| | - Min H Kim
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Lopez VM, Polidori C, Ferreira RG. Hymenoptera and biomimetic surfaces: insights and innovations. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1333-1352. [PMID: 39530025 PMCID: PMC11552452 DOI: 10.3762/bjnano.15.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The extraordinary adaptations that Hymenoptera (sawflies, wasps, ants, and bees) exhibit on their body surfaces has long intrigued biologists. These adaptations, which enabled the immense success of these insects in a wide range of environments and habitats, include an amazing array of specialized structures facilitating attachment, penetration of substrates, production of sound, perception of volatiles, and delivery of venoms, among others. These morphological features offer valuable insights for biomimetic and bioinspired technological advancements. Here, we explore the biomimetic potential of hymenopteran body surfaces. We highlight recent advancements and outline potential strategic pathways, evaluating their current functions and applications while suggesting promising avenues for further investigations. By studying these fascinating and biologically diverse insects, researchers could develop innovative materials and devices that replicate the efficiency and functionality of insect body structures, driving progress in medical technology, robotics, environmental monitoring, and beyond.
Collapse
Affiliation(s)
| | - Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 26, 20133, Milan, Italy
| | | |
Collapse
|
5
|
Zhang S, Zhao L, Yu M, Guo J, Liu C, Zhu C, Zhao M, Huang Y, Zheng Y. Measurement Methods for Droplet Adhesion Characteristics and Micrometer-Scale Quantification of Contact Angle on Superhydrophobic Surfaces: Challenges and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9873-9891. [PMID: 38695884 DOI: 10.1021/acs.langmuir.3c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Inspired by nature, superhydrophobic surfaces have been widely studied. Usually the wettability of a superhydrophobic surface is quantified by the macroscopic contact angle. However, this method has various limitations, especially for precision micro devices with superhydrophobic surfaces, such as biomimetic artificial compound eyes and biomimetic water strider robots. These precision micro devices with superhydrophobic surfaces proposed a higher demand for the quantification of contact angles, requiring contact angle quantification technology to have micrometer-scale measurement capabilities. In this review, it is proposed to achieve micrometer-scale quantification of superhydrophobic surface contact angles through droplet adhesion characteristics (adhesion force and contact radius). Existing contact angle quantification techniques and droplet characteristics' measurement methods were described in detail. The advancement of micrometer-scale quantification technology for the contact angle of superhydrophobic surfaces will enhance our understanding of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Shiyu Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Lingzhe Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meike Yu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinwei Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chunyuan Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yinguo Huang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
6
|
Cheng X, Shen Z, Zhang Y. Bioinspired 3D flexible devices and functional systems. Natl Sci Rev 2024; 11:nwad314. [PMID: 38312384 PMCID: PMC10833470 DOI: 10.1093/nsr/nwad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024] Open
Abstract
Flexible devices and functional systems with elaborated three-dimensional (3D) architectures can endow better mechanical/electrical performances, more design freedom, and unique functionalities, when compared to their two-dimensional (2D) counterparts. Such 3D flexible devices/systems are rapidly evolving in three primary directions, including the miniaturization, the increasingly merged physical/artificial intelligence and the enhanced adaptability and capabilities of heterogeneous integration. Intractable challenges exist in this emerging research area, such as relatively poor controllability in the locomotion of soft robotic systems, mismatch of bioelectronic interfaces, and signal coupling in multi-parameter sensing. By virtue of long-time-optimized materials, structures and processes, natural organisms provide rich sources of inspiration to address these challenges, enabling the design and manufacture of many bioinspired 3D flexible devices/systems. In this Review, we focus on bioinspired 3D flexible devices and functional systems, and summarize their representative design concepts, manufacturing methods, principles of structure-function relationship and broad-ranging applications. Discussions on existing challenges, potential solutions and future opportunities are also provided to usher in further research efforts toward realizing bioinspired 3D flexible devices/systems with precisely programmed shapes, enhanced mechanical/electrical performances, and high-level physical/artificial intelligence.
Collapse
Affiliation(s)
- Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Jing X, Li S, Zhu R, Ning X, Lin J. Miniature bioinspired artificial compound eyes: microfabrication technologies, photodetection and applications. Front Bioeng Biotechnol 2024; 12:1342120. [PMID: 38433824 PMCID: PMC10905626 DOI: 10.3389/fbioe.2024.1342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 03/05/2024] Open
Abstract
As an outstanding visual system for insects and crustaceans to cope with the challenges of survival, compound eye has many unique advantages, such as wide field of view, rapid response, infinite depth of field, low aberration and fast motion capture. However, the complex composition of their optical systems also presents significant challenges for manufacturing. With the continuous development of advanced materials, complex 3D manufacturing technologies and flexible electronic detectors, various ingenious and sophisticated compound eye imaging systems have been developed. This paper provides a comprehensive review on the microfabrication technologies, photoelectric detection and functional applications of miniature artificial compound eyes. Firstly, a brief introduction to the types and structural composition of compound eyes in the natural world is provided. Secondly, the 3D forming manufacturing techniques for miniature compound eyes are discussed. Subsequently, some photodetection technologies for miniature curved compound eye imaging are introduced. Lastly, with reference to the existing prototypes of functional applications for miniature compound eyes, the future development of compound eyes is prospected.
Collapse
Affiliation(s)
- Xian Jing
- College of Electronic Science and Engineering, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Shitao Li
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Rongxin Zhu
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Xiaochen Ning
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Jieqiong Lin
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| |
Collapse
|
8
|
Feng X, Lv X, Dong J, Liu Y, Shu F, Wu Y. Double-Glued Multi-Focal Bionic Compound Eye Camera. MICROMACHINES 2023; 14:1548. [PMID: 37630084 PMCID: PMC10456709 DOI: 10.3390/mi14081548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
Compound eye cameras are a vital component of bionics. Compound eye lenses are currently used in light field cameras, monitoring imaging, medical endoscopes, and other fields. However, the resolution of the compound eye lens is still low at the moment, which has an impact on the application scene. Photolithography and negative pressure molding were used to create a double-glued multi-focal bionic compound eye camera in this study. The compound eye camera has 83 microlenses, with ommatidium diameters ranging from 400 μm to 660 μm, and a 92.3 degree field-of-view angle. The double-gluing structure significantly improves the optical performance of the compound eye lens, and the spatial resolution of the ommatidium is 57.00 lp mm-1. Additionally, the measurement of speed is investigated. This double-glue compound eye camera has numerous potential applications in the military, machine vision, and other fields.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (X.F.); (X.L.); (J.D.); (Y.W.)
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Lv
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (X.F.); (X.L.); (J.D.); (Y.W.)
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Junyu Dong
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (X.F.); (X.L.); (J.D.); (Y.W.)
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Yongshun Liu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (X.F.); (X.L.); (J.D.); (Y.W.)
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Fengfeng Shu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (X.F.); (X.L.); (J.D.); (Y.W.)
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Yihui Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (X.F.); (X.L.); (J.D.); (Y.W.)
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| |
Collapse
|
9
|
Stanciu SG, König K, Song YM, Wolf L, Charitidis CA, Bianchini P, Goetz M. Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. BIOPHYSICS REVIEWS 2023; 4:021307. [PMID: 38510341 PMCID: PMC10903409 DOI: 10.1063/5.0133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 03/22/2024]
Abstract
According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, Romania
| | | | | | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Italian Institute of Technology, Genoa, Italy
| | - Martin Goetz
- Medizinische Klinik IV-Gastroenterologie/Onkologie, Kliniken Böblingen, Klinikverbund Südwest, Böblingen, Germany
| |
Collapse
|
10
|
Feng X, Liu Y, Dong J, Yu Y, Xing Y, Shu F, Peng L, Wu Y. A Meniscus Multifocusing Compound Eye Camera Based on Negative Pressure Forming Technology. MICROMACHINES 2023; 14:420. [PMID: 36838120 PMCID: PMC9962903 DOI: 10.3390/mi14020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
To meet the challenge of preparing a high-resolution compound eye, this paper proposes a multi-focal-length meniscus compound eye based on MEMS negative pressure molding technology. The aperture is increased, a large field of view angle of 101.14° is obtained, and the ommatidia radius of each stage is gradually increased from 250 μm to 440 μm. A meniscus structure is used to improve the imaging quality of the marginal compound eye so that its resolution can reach 36.00 lp/mm. The prepared microlenses have a uniform shape and a smooth surface, and both panoramic image stitching and moving object tracking are achieved. This technology has great potential for application in many fields, including automatic driving, machine vision, and medical endoscopy.
Collapse
Affiliation(s)
- Xin Feng
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yongshun Liu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| | - Junyu Dong
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| | - Yongjian Yu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Xing
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengfeng Shu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| | - Lanxin Peng
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yihui Wu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| |
Collapse
|
11
|
Local Selective Vision Transformer for Depth Estimation Using a Compound Eye Camera. Pattern Recognit Lett 2023. [DOI: 10.1016/j.patrec.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Gao X, Hu X, Zheng J, Hu Q, Zhao S, Chen L, Yang Y. On-demand liquid microlens arrays by non-contact relocation of inhomogeneous fluids in acoustic fields. LAB ON A CHIP 2022; 22:3942-3951. [PMID: 36102930 DOI: 10.1039/d2lc00603k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microlens arrays (MLAs) are key micro-optical components that possess a high degree of parallelism and ease of integration. However, rapid and low-cost fabrication of MLAs with flexible focusing remains a challenge. Herein, liquid MLAs with dynamic tunability are presented using non-contact acoustic relocation of inhomogeneous fluids. By designing ring-shaped acoustic pressure node (PN) arrays, the denser fluid of miscible liquids is relocated to PNs, and liquid MLAs with ideal morphology are obtained. The experimental results demonstrate that the liquid MLAs possess a powerful reconfigurability with long-term stability and sharp imaging that can conveniently switch between the on and off state and can dynamically magnify by simply adjusting the acoustic amplitude. Moreover, the high biocompatibility inherited from liquids accompanied by the acoustic treatment allows cells to be within working distance of the MLAs without immersion, as would be required for a solid lens. This innovative liquid MLA is inexpensive to manufacture and possesses continuous focus, fast response, and satisfactory bioaffinity, and thus offers promising potential for microfluidic adaptive imaging and biomedical sensing, especially for live cell imaging.
Collapse
Affiliation(s)
- Xiaoqi Gao
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Jingjing Zheng
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Qinghao Hu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Shukun Zhao
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
13
|
Su S, Liang J, Li X, Xin W, Ye X, Xiao J, Xu J, Chen L, Yin P. Hierarchical Artificial Compound Eyes with Wide Field-of-View and Antireflection Properties Prepared by Nanotip-Focused Electrohydrodynamic Jet Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60625-60635. [PMID: 34886666 DOI: 10.1021/acsami.1c17436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial compound eyes (ACEs) endowed with durable superhydrophobicity, wide field-of-view (FOV), and antireflection properties are extremely appealing in advanced micro-optical systems. However, the simple and high-efficiency fabrication of ACEs with these functions is still a major challenge. Herein, inspired by moth eyes, ACEs with hierarchical macro/micro/nano structures were fabricated using the combination of nanotip-focused electrohydrodynamic jet (NFEJ) printing and air-assisted deformation processes. The NFEJ printing enables the direct and maskless fabrication of hierarchical micro/nanolens arrays (M/NLAs) without intermediate steps. The introduction of M/NLAs on the eye surface significantly improves the water hydrophobic performance with a water contact angle of 161.1° and contact angle hysteresis (CAH) of 4.2° and generally decreases the reflectance by 51% in the wavelength range of 350-1600 nm in comparison to the macroeye without any structures. The contact angle remains almost unchanged, and the CAH slightly increases from 4.2° to 8.7° after water jet impact for 20 min, indicating a durable superhydrophobicity. Moreover, the results confirm that the durable superhydrophobic ACEs with antireflection properties exhibit excellent imaging quality and a large FOV of up to 160° without distortion.
Collapse
Affiliation(s)
- Shijie Su
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Junsheng Liang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Xiaojian Li
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Wenwen Xin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xushi Ye
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Jianping Xiao
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Jun Xu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Li Chen
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Penghe Yin
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nat Commun 2021; 12:6458. [PMID: 34753909 PMCID: PMC8578215 DOI: 10.1038/s41467-021-26606-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
After half a billion years of evolution, arthropods have developed sophisticated compound eyes with extraordinary visual capabilities that have inspired the development of artificial compound eyes. However, the limited 2D nature of most traditional fabrication techniques makes it challenging to directly replicate these natural systems. Here, we present a biomimetic apposition compound eye fabricated using a microfluidic-assisted 3D-printing technique. Each microlens is connected to the bottom planar surface of the eye via intracorporal, zero-crosstalk refractive-index-matched waveguides to mimic the rhabdoms of a natural eye. Full-colour wide-angle panoramic views and position tracking of a point source are realized by placing the fabricated eye directly on top of a commercial imaging sensor. As a biomimetic analogue to naturally occurring compound eyes, the eye's full-colour 3D to 2D mapping capability has the potential to enable a wide variety of applications from improving endoscopic imaging to enhancing machine vision for facilitating human-robot interactions.
Collapse
|
15
|
Artificial Compound Eye Systems and Their Application: A Review. MICROMACHINES 2021; 12:mi12070847. [PMID: 34357257 PMCID: PMC8307767 DOI: 10.3390/mi12070847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
The natural compound eye system has many outstanding properties, such as a more compact size, wider-angle view, better capacity to detect moving objects, and higher sensitivity to light intensity, compared to that of a single-aperture vision system. Thanks to the development of micro- and nano-fabrication techniques, many artificial compound eye imaging systems have been studied and fabricated to inherit fascinating optical features of the natural compound eye. This paper provides a review of artificial compound eye imaging systems. This review begins by introducing the principle of the natural compound eye, and then, the analysis of two types of artificial compound eye systems. We equally present the applications of the artificial compound eye imaging systems. Finally, we suggest our outlooks about the artificial compound eye imaging system.
Collapse
|
16
|
Affiliation(s)
- Yuan Zhuang
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao Dong
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengyang Tao
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuchao Wang
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenbo Yang
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lijing Zhang
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Zhou P, Yu H, Zhong Y, Zou W, Wang Z, Liu L. Fabrication of Waterproof Artificial Compound Eyes with Variable Field of View Based on the Bioinspiration from Natural Hierarchical Micro-Nanostructures. NANO-MICRO LETTERS 2020; 12:166. [PMID: 34138165 PMCID: PMC7770831 DOI: 10.1007/s40820-020-00499-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
Planar and curved microlens arrays (MLAs) are the key components of miniaturized microoptical systems. In order to meet the requirements for advanced and multipurpose applications in microoptical field, a simple manufacturing method is urgently required for fabricating MLAs with unique properties, such as waterproofness and variable field-of-view (FOV) imaging. Such properties are beneficial for the production of advanced artificial compound eyes for the significant applications in complex microcavity environments with high humidity, for instance, miniature medical endoscopy. However, the simple and effective fabrication of advanced artificial compound eyes still presents significant challenges. In this paper, bioinspired by the natural superhydrophobic surface of lotus leaf, we propose a novel method for the fabrication of waterproof artificial compound eyes. Electrohydrodynamic jet printing was used to fabricate hierarchical MLAs and nanolens arrays (NLAs) on polydimethylsiloxane film. The flexible film of MLAs hybridized with NLAs exhibited excellent superhydrophobic property with a water contact angle of 158°. The MLAs film was deformed using a microfluidics chip to create artificial compound eyes with variable FOV, which ranged from 0° to 160°.
Collapse
Affiliation(s)
- Peilin Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, People's Republic of China.
| | - Ya Zhong
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wuhao Zou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhidong Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
- Department of Advanced Robotics, Chiba Institute of Technology, Chiba, 275-0016, Japan
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, People's Republic of China.
| |
Collapse
|
18
|
Cheng Y, Cao J, Zhang Y, Hao Q. Review of state-of-the-art artificial compound eye imaging systems. BIOINSPIRATION & BIOMIMETICS 2019; 14:031002. [PMID: 30654337 DOI: 10.1088/1748-3190/aaffb5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The natural compound eye has received much attention in recent years due to its remarkable properties, such as its large field of view (FOV), compact structure, and high sensitivity to moving objects. Many studies have been devoted to mimicking the imaging system of the natural compound eye. The paper gives a review of state-of-the-art artificial compound eye imaging systems. Firstly, we introduce the imaging principle of three types of natural compound eye. Then, we divide current artificial compound eye imaging systems into four categories according to the difference of structural composition. Readers can easily grasp methods to build an artificial compound eye imaging system from the perspective of structural composition. Moreover, we compare the imaging performance of state-of-the-art artificial compound eye imaging systems, which provides a reference for readers to design system parameters of an artificial compound eye imaging system. Next, we present the applications of the artificial compound eye imaging system including imaging with a large FOV, imaging with high resolution, object distance detection, medical imaging, egomotion estimation, and navigation. Finally, an outlook of the artificial compound eye imaging system is highlighted.
Collapse
Affiliation(s)
- Yang Cheng
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Xu Q, Dai B, Jiao Z, Hong R, Yang Z, Zhang D, Zhuang S. Fabrication of large micro-structured high-numerical-aperture optofluidic compound eyes with tunable angle of view. OPTICS EXPRESS 2018; 26:33356-33365. [PMID: 30645488 DOI: 10.1364/oe.26.033356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
A large optofluidic compound eye is developed by using a straightforward, rapid, and low-cost technique. The compound eye's angle of view can be adjusted by injecting deionized water/calcium chloride solution of different volume into the optofluidic chip. Optofluidic compound eyes containing about 78,000 microlenses of 50 μm diameter are fabricated for analysis. The angle of view can be tuned up to 104°. With the compound eye's deformation, the microlenses' focal length increases, due to the variation in profile. Owing to the non-uniform strain over the compound eye, the central lenses experience more variation. Furthermore, optical imaging of the compound eye is demonstrated and sharp images can be obtained from the omnidirectional microlenses.
Collapse
|
20
|
Jang HS, Kim GG, Kang SH, Kim Y, Yoo JI, Yoo S, Kim KK, Jung C, Ko HC. A Bezel-Less Tetrahedral Image Sensor Formed by Solvent-Assisted Plasticization and Transformation of an Acrylonitrile Butadiene Styrene Framework. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801256. [PMID: 29882220 DOI: 10.1002/adma.201801256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/21/2018] [Indexed: 06/08/2023]
Abstract
A method for transforming planar electronic devices into 3D structures under mechanically mild and stable conditions is demonstrated. This strategy involves diffusion control of acetone as a plasticizer into a spatially designed acrylonitrile butadiene styrene (ABS) framework to both laminate membrane-type electronic devices and transform them into a desired 3D shape. Optical, mechanical, and electrical analysis reveals that the plasticized region serves as a damper and even reflows to release the stress of fragile elements, for example, an Au interconnect electrode in this study, below the ultimate stress point. This method also gives considerable freedom in aligning electronic devices not only in the neutral mechanical plane of the ABS framework, which is the general approach in flexible electronics, but also to the top surface, without inducing electrical failure. Finally, to develop a prototype omnidirectional optical system with minimal aberrations, this method is used to produce a bezel-less tetrahedral image sensor.
Collapse
Affiliation(s)
- Hun Soo Jang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Gi-Gwan Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Seong Hyeon Kang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Yeongmin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Jung Il Yoo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Seonggwang Yoo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Kun-Kook Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Changsoo Jung
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Heung Cho Ko
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|