1
|
Ahmadi-Dastgerdi N, Hosseini-Nejad H, Alinejad-Rokny H. A hardware-efficient on-implant spike compression processor based on VQ-DAE for brain-implantable microsystems. Med Biol Eng Comput 2025:10.1007/s11517-025-03317-x. [PMID: 39921814 DOI: 10.1007/s11517-025-03317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
High-density implantable neural recording microsystems deal with a huge amount of data. Since the wireless transmission of the raw recorded data leads to excessive bandwidth requirements, spike compression approaches have become vital to such systems. The compression processor is designed to be implemented on the implant and so to avoid any tissue damage, the hardware cost of the processor is of great importance. The vector quantization (VQ) algorithm has proven to be effective in compression applications and spike compression systems as well. In this paper, benefiting from the capabilities of the denoising autoencoders (DAE), we propose a solution to enhance the compression performance of the VQ-based approach in terms of both reconstruction accuracy and hardware efficiency. Moreover, we develop a hardware-efficient multi-channel architecture for the proposed VQ-DAE processor. The processor has been implemented in a 180-nm CMOS technology and the validation and verification processes confirm that it provides satisfactory results. It achieves an average signal-to-noise-distortion (SNDR) of 14.51 at a spike compression ratio (SCR) of 30. Operated at a clock frequency of 192 kHz and a supply voltage of 1.8 V, the circuit consumes a power of 4.88 μ W and a silicon area of 0.14 mm2 per channel.
Collapse
Affiliation(s)
- Nazanin Ahmadi-Dastgerdi
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, P.O. Box 16315-1355, Tehran, 1631714191, Iran
| | - Hossein Hosseini-Nejad
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, P.O. Box 16315-1355, Tehran, 1631714191, Iran.
| | - Hamid Alinejad-Rokny
- Biomedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Valencia D, Mercier PP, Alimohammad A. An Efficient Brain-Switch for Asynchronous Brain-Computer Interfaces. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025; 19:130-141. [PMID: 38700963 DOI: 10.1109/tbcas.2024.3396115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Intracortical brain computer interfaces (iBCIs) utilizing extracellular recordings mainly employ in vivo signal processing application-specific integrated circuits (ASICs) to detect action potentials (spikes). Conventionally, "brain-switches" based on spiking activity have been employed to realize asynchronous (self-paced) iBCIs, estimating when the user involves in the underlying BCI task. Several studies have demonstrated that local field potentials (LFPs) can effectively replace action potentials, drastically reducing the power consumption and processing requirements of in vivo ASICs. This article presents the first LFP-based brain-switch design and implementation using gated recurrent neural networks (RNNs). Compared to the previously reported brain-switches, our design requires no exhaustive learning phase for the estimation of optimal recording channels or frequency band selection, making it more applicable to practical asynchronous iBCIs. The synthesized ASIC of the designed in vivo LFP-based feature extraction unit, in a standard 180-nm CMOS process, occupies only 0.09 mm of silicon area, and the post place-and-route synthesis results indicate that it consumes 91.87 nW of power while operating at 2 kHz. Compared to the previously published ASICs, the proposed LFP-based brain-switch consumes the least power for in vivo digital signal processing and achieves comparable state estimation performance to that of spike-based brain-switches.
Collapse
|
3
|
Ahmadi-Dastgerdi N, Hosseini-Nejad H, Alinejad-Rokny H. A Hardware-Efficient Novelty-Aware Spike Sorting Approach for Brain-Implantable Microsystems. Int J Neural Syst 2024; 34:2450067. [PMID: 39434212 DOI: 10.1142/s0129065724500679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Unsupervised spike sorting, a vital processing step in real-time brain-implantable microsystems, is faced with the prominent challenge of managing nonstationarity in neural signals. In long-term recordings, spike waveforms gradually change and new source neurons are likely to become activated. Adaptive spike sorters combined with on-implant training units effectively process the nonstationary signals at the cost of high hardware resource utilization. On the other hand, static approaches, while being hardware-friendly, are subjected to decreased processing performance in such recordings where the neural signal characteristics gradually change. To strike a balance between the hardware cost and processing performance, this study proposes a hardware-efficient novelty-aware spike sorting approach that is capable of dealing with both variated spike waveforms and spike waveforms generated from new source neurons. Its improved hardware efficiency compared to adaptive ones and capability of dealing with nonstationary signals make it attractive for implantable applications. The proposed novelty-aware spike sorting especially would be a good fit for brain-computer interfaces where long-term, real-time interaction with the brain is required, and the available on-implant hardware resources are limited. Our unsupervised spike sorting benefits from a novelty detection process to deal with neural signal variations. It tracks the spike features so that in case of detecting an unexpected change (novelty detection) both on and off-implant parameters are updated to preserve the performance in new state. To make the proposed approach agile enough to be suitable for brain implants, the on-implant computations are reduced while the computational burden is realized off-implant. The performance of our proposed approach is evaluated using both synthetic and real datasets. The results demonstrate that, in the mean, it is capable of detecting 94.31% of novel spikes (wave-drifted or emerged spikes) with a classification accuracy (CA) of 96.31%. Moreover, an FPGA prototype of the on-implant circuit is implemented and tested. It is shown that in comparison to the OSORT algorithm, a pivotal spike sorting method, our spike sorting provides a higher CA at significantly lower hardware resources. The proposed circuit is also implemented in a 180-nm standard CMOS process, achieving a power consumption of 1.78[Formula: see text][Formula: see text] per channel and a chip area of 0.07[Formula: see text]mm2 per channel.
Collapse
Affiliation(s)
| | | | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Valencia D, Leone G, Keller N, Mercier PP, Alimohammad A. Power-efficient in vivobrain-machine interfaces via brain-state estimation. J Neural Eng 2023; 20. [PMID: 36645913 DOI: 10.1088/1741-2552/acb385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Objective.Advances in brain-machine interfaces (BMIs) can potentially improve the quality of life of millions of users with spinal cord injury or other neurological disorders by allowing them to interact with the physical environment at their will.Approach.To reduce the power consumption of the brain-implanted interface, this article presents the first hardware realization of anin vivointention-aware interface via brain-state estimation.Main Results.It is shown that incorporating brain-state estimation reduces thein vivopower consumption and reduces total energy dissipation by over 1.8× compared to those of the current systems, enabling longer better life for implanted circuits. The synthesized application-specific integrated circuit (ASIC) of the designed intention-aware multi-unit spike detection system in a standard 180 nm CMOS process occupies 0.03 mm2of silicon area and consumes 0.63 µW of power per channel, which is the least power consumption among the currentin vivoASIC realizations.Significance.The proposed interface is the first practical approach towards realizing asynchronous BMIs while reducing the power consumption of the BMI interface and enhancing neural decoding performance compared to those of the conventional synchronous BMIs.
Collapse
Affiliation(s)
- Daniel Valencia
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, United States of America.,Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, United States of America
| | - Gianluca Leone
- Department of Electrical and Computer Engineering, University of Cagliari, Cagliari, Italy
| | - Nicholas Keller
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, United States of America
| | - Patrick P Mercier
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, United States of America
| | - Amir Alimohammad
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, United States of America
| |
Collapse
|
5
|
Valencia D, Alimohammad A. Partially binarized neural networks for efficient spike sorting. Biomed Eng Lett 2022; 13:73-83. [PMID: 36711161 PMCID: PMC9873865 DOI: 10.1007/s13534-022-00255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
While brain-implantable neural spike sorting can be realized using efficient algorithms, the presence of noise may make it difficult to maintain high-peformance sorting using conventional techniques. In this article, we explore the use of partially binarized neural networks (PBNNs), to the best of our knowledge for the first time, for sorting of neural spike feature vectors. It is shown that compared to the waveform template-based methods, PBNNs offer robust spike sorting over various datasets and noise levels. The ASIC implementation of the PBNN-based spike sorting system in a standard 180-nm CMOS process is presented. The post place and route simulations results show that the synthesized PBNN consumes only 0.59 μ W of power from a 1.8 V supply while operating at 24 kHz and occupies 0.15 mm 2 of silicon area. It is shown that the designed PBNN-based spike sorting system not only offers comparable accuracy to the state-of-the-art spike sorting systems over various noise levels and datasets, it also occupies a smaller silicon area and consumes less power and energy. This makes PBNNs a viable alternative towards the implementation of brain-implantable spike sorting systems.
Collapse
Affiliation(s)
- Daniel Valencia
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, USA
- Department of Electrical and Computer Engineering, University of California, La Jolla, USA
| | - Amir Alimohammad
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, USA
| |
Collapse
|
6
|
Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. Front Neuroinform 2022; 16:851024. [PMID: 35769832 PMCID: PMC9236662 DOI: 10.3389/fninf.2022.851024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.
Collapse
Affiliation(s)
- Réka Barbara Bod
- Laboratory of Experimental Neurophysiology, Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - János Rokai
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Domokos Meszéna
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gergely Márton
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
7
|
Towards in vivo neural decoding. Biomed Eng Lett 2022; 12:185-195. [PMID: 35529345 PMCID: PMC9046500 DOI: 10.1007/s13534-022-00217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022] Open
Abstract
Conventional spike sorting and motor intention decoding algorithms are mostly implemented on an external computing device, such as a personal computer. The innovation of high-resolution and high-density electrodes to record the brain's activity at the single neuron level may eliminate the need for spike sorting altogether while potentially enabling in vivo neural decoding. This article explores the feasibility and efficient realization of in vivo decoding, with and without spike sorting. The efficiency of neural network-based models for reliable motor decoding is presented and the performance of candidate neural decoding schemes on sorted single-unit activity and unsorted multi-unit activity are evaluated. A programmable processor with a custom instruction set architecture, for the first time to the best of our knowledge, is designed and implemented for executing neural network operations in a standard 180-nm CMOS process. The processor's layout is estimated to occupy 49 mm 2 of silicon area and to dissipate 12 mW of power from a 1.8 V supply, which is within the tissue-safe operation of the brain.
Collapse
|
8
|
Ahmadi-Dastgerdi N, Hosseini-Nejad H, Amiri H, Shoeibi A, Gorriz JM. A Vector Quantization-Based Spike Compression Approach Dedicated to Multichannel Neural Recording Microsystems. Int J Neural Syst 2021; 32:2250001. [PMID: 34931938 DOI: 10.1142/s0129065722500010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Implantable high-density multichannel neural recording microsystems provide simultaneous recording of brain activities. Wireless transmission of the entire recorded data causes high bandwidth usage, which is not tolerable for implantable applications. As a result, a hardware-friendly compression module is required to reduce the amount of data before it is transmitted. This paper presents a novel compression approach that utilizes a spike extractor and a vector quantization (VQ)-based spike compressor. In this approach, extracted spikes are vector quantized using an unsupervised learning process providing a high spike compression ratio (CR) of 10-80. A combination of extracting and compressing neural spikes results in a significant data reduction as well as preserving the spike waveshapes. The compression performance of the proposed approach was evaluated under variant conditions. We also developed new architectures such that the hardware blocks of our approach can be implemented more efficiently. The compression module was implemented in a 180-nm standard CMOS process achieving a SNDR of 14.49[Formula: see text]dB and a classification accuracy (CA) of 99.62% at a CR of 20, while consuming 4[Formula: see text][Formula: see text]W power and 0.16[Formula: see text]mm2 chip area per channel.
Collapse
Affiliation(s)
| | | | - Hadi Amiri
- School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Research Lab K. N. Toosi, University of Technology, Tehran, Iran
| | - Juan Manuel Gorriz
- Department of Signal Processing Networking and Communications, University of Granada, Granada, Spain.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Valencia D, Alimohammad A. Neural Spike Sorting Using Binarized Neural Networks. IEEE Trans Neural Syst Rehabil Eng 2021; 29:206-214. [PMID: 33296305 DOI: 10.1109/tnsre.2020.3043403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This article presents the design and efficient hardware implementation of binarized neural networks (BNNs) for brain-implantable neural spike sorting. In contrast to the conventional artificial neural networks (ANNs), in which the weights and activation functions of neurons are represented using real values, the BNNs utilize binarized weights and activation functions to dramatically reduce the memory requirement and computational complexity of the ANNs. The designed BNN is trained using several realistic neural datasets to verify its accuracy for neural spike sorting. The application-specific integrated circuit (ASIC) implementation of the designed BNN in a standard 0.18- [Formula: see text] CMOS process occupies 0.33 mm 2 of silicon area. Power consumption estimation of the ASIC layout shows that the BNN dissipates [Formula: see text] of power from a 1.8 V supply while operating at 24 kHz. The designed BNN-based spike sorting system is also implemented on a field-programmable gate array and is shown to reduce the required on-chip memory by 89% compared to those of the alternative state-of-the-art spike sorting systems. To the best of our knowledge, this is the first work employing BNNs for real-time in vivo neural spike sorting.
Collapse
|
10
|
Hong Q, Yan R, Wang C, Sun J. Memristive Circuit Implementation of Biological Nonassociative Learning Mechanism and Its Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1036-1050. [PMID: 32833643 DOI: 10.1109/tbcas.2020.3018777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological nonassociative learning is one of the simplest forms of unsupervised learning in animals and can be categorized into habituation and sensitization according to mechanism. This paper proposes a memristive circuit that is based on nonassociative learning and can adapt to repeated inputs, reduce power consumption (habituation), and be sensitive to harmful inputs (sensitization). The circuit includes 1) synapse module, 2) neuron module, 3) feedback module. The first module mainly consists of memristors representing synapse weights that vary with corresponding inputs. Memristance is automatically reduced when a harmful stimulus is input, and climbs at the input interval according to the feedback input when repeated stimuli are input. The second module produces spiking voltage when the total input is above the given threshold. The third module can provide feedback voltage according to the frequency and quantity of input stimuli. Simulation results show that the proposed circuit can generate output signals with biological nonassociative learning characteristics, with varying amplitudes depending on the characteristics of input signals. When the frequency and quantity of the input stimuli are high, the degree of habituation and sensitization intensifies. The proposed circuit has good robustness; can reduce the influence of noise, circuit parasitics and circuit aging during nonassociative learning; and simulate the afterimages caused by visual fatigue for application in automatic exposure compensation.
Collapse
|