1
|
Karamimanesh M, Abiri E, Shahsavari M, Hassanli K, van Schaik A, Eshraghian J. Spiking neural networks on FPGA: A survey of methodologies and recent advancements. Neural Netw 2025; 186:107256. [PMID: 39965527 DOI: 10.1016/j.neunet.2025.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
The mimicry of the biological brain's structure in information processing enables spiking neural networks (SNNs) to exhibit significantly reduced power consumption compared to conventional systems. Consequently, these networks have garnered heightened attention and spurred extensive research endeavors in recent years, proposing various structures to achieve low power consumption, high speed, and improved recognition ability. However, researchers are still in the early stages of developing more efficient neural networks that more closely resemble the biological brain. This development and research require suitable hardware for execution with appropriate capabilities, and field-programmable gate array (FPGA) serves as a highly qualified candidate compared to existing hardware such as central processing unit (CPU) and graphics processing unit (GPU). FPGA, with parallel processing capabilities similar to the brain, lower latency and power consumption, and higher throughput, is highly eligible hardware for assisting in the development of spiking neural networks. In this review, an attempt has been made to facilitate researchers' path to further develop this field by collecting and examining recent works and the challenges that hinder the implementation of these networks on FPGA.
Collapse
Affiliation(s)
- Mehrzad Karamimanesh
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Ebrahim Abiri
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Mahyar Shahsavari
- AI Department, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Kourosh Hassanli
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - André van Schaik
- The MARCS Institute, International Centre for Neuromorphic Systems, Western Sydney University, Australia.
| | - Jason Eshraghian
- Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Zheng X, Liu Z, Liu J, Hu C, Du Y, Li J, Pan Z, Ding K. Advancing Sports Cardiology: Integrating Artificial Intelligence with Wearable Devices for Cardiovascular Health Management. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17895-17920. [PMID: 40074735 DOI: 10.1021/acsami.4c22895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Sports cardiology focuses on athletes' cardiovascular health, yet sudden cardiac death remains a significant concern despite preventative measures. Prolonged physical activity leads to notable cardiovascular adaptations, known as the athlete's heart, which can resemble certain pathological conditions, complicating accurate diagnoses and potentially leading to serious consequences such as unnecessary exclusion from sports or missed treatment opportunities. Wearable devices, including smartwatches and smart glasses, have become prevalent for monitoring health metrics, offering potential clinical applications for sports cardiologists. These gadgets are capable of spotting exercise-induced arrhythmias, uncovering hidden heart problems, and offering crucial information for training and recovery, to minimize exercise-related cardiac incidents and enhance heart health care. However, concerns about data accuracy and the actionable value of the obtained information persist. A major challenge lies in the integration of artificial intelligence with wearables, research gaps remain regarding their ability to provide real-time, reliable, and clinically relevant insights. Combining artificial intelligence with wearable devices can improve how data is managed and used in sports cardiology. Artificial intelligence, particularly machine learning, can classify, predict, and draw inferences from the data collected by wearables, revolutionizing patient data usage. Despite artificial intelligence's proven effectiveness in managing chronic conditions, the limited research on its application in sports cardiology, particularly regarding wearables, creates a critical gap that needs to be addressed. This review examines commercially available wearables and their applications in sports cardiology, exploring how artificial intelligence can be integrated into wearable technology to advance the field.
Collapse
Affiliation(s)
- Xiao Zheng
- College of Physical Education and Health, Chongqing Three Gorges University, Chongqing 404020, P. R. China
| | - Zheng Liu
- College of Physical Education and Health, Chongqing Three Gorges University, Chongqing 404020, P. R. China
| | - Jianyu Liu
- College of Physical Education and Health, Chongqing Three Gorges University, Chongqing 404020, P. R. China
| | - Caifeng Hu
- College of Physical Education and Health, Chongqing Three Gorges University, Chongqing 404020, P. R. China
| | - Yanxin Du
- College of Physical Education and Health, Chongqing Three Gorges University, Chongqing 404020, P. R. China
| | - Juncheng Li
- College of Physical Education and Health, Chongqing Three Gorges University, Chongqing 404020, P. R. China
| | - Zhongjin Pan
- College of Physical Education and Health, Chongqing Three Gorges University, Chongqing 404020, P. R. China
| | - Ke Ding
- Wanzhou District Center for Disease Control and Prevention, Chongqing, 404199, P. R. China
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 400030, P. R. China
| |
Collapse
|
3
|
Bahrami R, Fotouhi AM. Investigation of Inter-Patient, Intra-Patient, and Patient-Specific Based Training in Deep Learning for Classification of Heartbeat Arrhythmia. Cardiovasc Eng Technol 2025:10.1007/s13239-025-00777-y. [PMID: 40011388 DOI: 10.1007/s13239-025-00777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Effective diagnosis of electrocardiogram (ECG) is one of the simplest and fastest ways to assess the heart's function. In the recent decade, various attempts have been made to automate the classification of electrocardiogram signals to detect heartbeat arrhythmias based on deep learning. However, due to the lack of a comprehensive standard for how to divide the database into the train and test datasets and the variety of methods used for this purpose, it is not possible to make a fair comparison between many of these studies. One of the main criteria for creating train and test datasets that have a great impact on the final results is their distribution paradigm. There are three paradigms for this purpose, including Inter-Patient, Intra-Patient, and Patient-Specific. In this research, we have conducted a detailed study of the impact of these three paradigms on the final results obtained from a CNN-based deep learning model for the classification of heartbeat arrhythmia into five classes. The experimental results on the standard arrhythmia dataset show that the Patient-Specific reached the best average performance in all of the metrics. Also, this training pattern is more practical and can be employed to create patient customized devices for the classification of ECG arrhythmia.
Collapse
Affiliation(s)
- Reza Bahrami
- Electrical Engineering Department, Tafresh University, Tafresh, 39518-79611, Iran
| | - Ali Mohammad Fotouhi
- Electrical Engineering Department, Tafresh University, Tafresh, 39518-79611, Iran.
| |
Collapse
|
4
|
Lee C, Park Y, Yoon S, Lee J, Cho Y, Park C. Brain-inspired learning rules for spiking neural network-based control: a tutorial. Biomed Eng Lett 2025; 15:37-55. [PMID: 39781065 PMCID: PMC11704115 DOI: 10.1007/s13534-024-00436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 01/12/2025] Open
Abstract
Robotic systems rely on spatio-temporal information to solve control tasks. With advancements in deep neural networks, reinforcement learning has significantly enhanced the performance of control tasks by leveraging deep learning techniques. However, as deep neural networks grow in complexity, they consume more energy and introduce greater latency. This complexity hampers their application in robotic systems that require real-time data processing. To address this issue, spiking neural networks, which emulate the biological brain by transmitting spatio-temporal information through spikes, have been developed alongside neuromorphic hardware that supports their operation. This paper reviews brain-inspired learning rules and examines the application of spiking neural networks in control tasks. We begin by exploring the features and implementations of biologically plausible spike-timing-dependent plasticity. Subsequently, we investigate the integration of a global third factor with spike-timing-dependent plasticity and its utilization and enhancements in both theoretical and applied research. We also discuss a method for locally applying a third factor that sophisticatedly modifies each synaptic weight through weight-based backpropagation. Finally, we review studies utilizing these learning rules to solve control tasks using spiking neural networks.
Collapse
Affiliation(s)
- Choongseop Lee
- Department of Computer Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Yuntae Park
- Department of Computer Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Sungmin Yoon
- Department of Computer Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Jiwoon Lee
- Department of Computer Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Youngho Cho
- Department of Electrical and Communication Engineering, Daelim University College, Anyang, 13916 Republic of Korea
| | - Cheolsoo Park
- Department of Computer Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
5
|
Nomura K, Nishi Y. Synchronized stepwise control of firing and learning thresholds in a spiking randomly connected neural network toward hardware implementation. Front Neurosci 2024; 18:1402646. [PMID: 39605789 PMCID: PMC11599226 DOI: 10.3389/fnins.2024.1402646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Spiking randomly connected neural network (RNN) hardware is promising as ultimately low power devices for temporal data processing at the edge. Although the potential of RNNs for temporal data processing has been demonstrated, randomness of the network architecture often causes performance degradation. To mitigate such degradation, self-organization mechanism using intrinsic plasticity (IP) and synaptic plasticity (SP) should be implemented in the spiking RNN. Therefore, we propose hardware-oriented models of these functions. To implement the function of IP, a variable firing threshold is introduced to each excitatory neuron in the RNN that changes stepwise in accordance with its activity. We also define other thresholds for SP that synchronize with the firing threshold, which determine the direction of stepwise synaptic update that is executed on receiving a pre-synaptic spike. To discuss the effectiveness of our model, we perform simulations of temporal data learning and anomaly detection using publicly available electrocardiograms (ECGs) with a spiking RNN. We observe that the spiking RNN with our IP and SP models realizes the true positive rate of 1 with the false positive rate being suppressed at 0 successfully, which does not occur otherwise. Furthermore, we find that these thresholds as well as the synaptic weights can be reduced to binary if the RNN architecture is appropriately designed. This contributes to minimization of the circuit of the neuronal system having IP and SP.
Collapse
|
6
|
Zhang R, Zhou R, Zhong Z, Qi H, Wang Y. A Multi-Class ECG Signal Classifier Using a Binarized Depthwise Separable CNN with the Merged Convolution-Pooling Method. SENSORS (BASEL, SWITZERLAND) 2024; 24:7207. [PMID: 39598983 PMCID: PMC11598813 DOI: 10.3390/s24227207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Binarized convolutional neural networks (bCNNs) are favored for the design of low-storage, low-power cardiac arrhythmia classifiers owing to their high weight compression rate. However, multi-class classification of ECG signals based on bCNNs is challenging due to the accuracy loss introduced by the binarization operation. In this paper, an effective multi-classifier system is proposed for electrocardiogram (ECG) signals using a binarized depthwise separable convolutional neural network (bDSCNN) with the merged convolution-pooling (MCP) method. The binarized depthwise separable convolution layer is adopted to reduce the increased number of parameters in multi-classification systems. Instead of operating convolution and pooling sequentially as in a traditional convolutional neural network (CNN), the MCP method merges pooling together with convolution layers to reduce the number of computations. To further reduce hardware resources, this work employs blockwise incremental calculation to eliminate redundant storage with computations. In addition, the R peak interval data are integrated with P-QRS-T features to improve the classification accuracy. The proposed bDSCNN model is evaluated on an Intel DE1-SoC field-programmable gate array (FPGA), and the experimental results demonstrate that the proposed system achieves a five-class classification accuracy of 96.61% and a macro-F1 score of 89.08%, along with a dynamic power dissipation of 20 μW for five-category ECG signal classification. The hardware resource usage of BRAM and LUTs plus REGs is reduced by at least 2.94 and 1.74 times, respectively, compared with existing ECG classifiers using bCNN methods.
Collapse
Affiliation(s)
| | - Ranran Zhou
- School of Integrated Circuits, Shandong University, Jinan 250101, China; (R.Z.); (Z.Z.); (H.Q.)
| | | | | | - Yong Wang
- School of Integrated Circuits, Shandong University, Jinan 250101, China; (R.Z.); (Z.Z.); (H.Q.)
| |
Collapse
|
7
|
Wang R, Veera SCM, Asan O, Liao T. A Systematic Review on the Use of Consumer-Based ECG Wearables on Cardiac Health Monitoring. IEEE J Biomed Health Inform 2024; 28:6525-6537. [PMID: 39240746 DOI: 10.1109/jbhi.2024.3456028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
This systematic review aims to summarize the consumer wearable devices used for collecting ECG signals, explore the models or algorithms employed in diagnosing and preventing heart-related diseases through ECG analysis, and discuss the challenges and future work related to adopting health monitoring using consumer wearable devices. Following the PRISMA method, we identified and reviewed 102 relevant papers from PubMed, IEEE, and Web of Science databases, covering the period from May 2013 to May 2023. This review comprehensively summarizes consumer wearable devices with ECG functions, available ECG datasets, and various algorithms for detecting cardiac diseases and monitoring long-term health. It also discusses the integration challenges and future directions in cardiac health monitoring. The results highlight a preference for deep learning algorithms, such as Convolutional Neural Networks (CNNs) and their variations, in analyzing ECG data due to the ability to automate feature extraction and reduce memory requirements. The review also discusses potential limitations of the current literature, including lack of reasoning and comparison of algorithms and limited data generalizability. By analyzing the current literature, this review provides an overview of state-of-the-art technologies, identifies key findings, and suggests potential avenues for future research and implementation.
Collapse
|
8
|
Park SS, Choi YS. Spiking neural networks for physiological and speech signals: a review. Biomed Eng Lett 2024; 14:943-954. [PMID: 39220020 PMCID: PMC11362433 DOI: 10.1007/s13534-024-00404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
The integration of Spiking Neural Networks (SNNs) into the analysis and interpretation of physiological and speech signals has emerged as a groundbreaking approach, offering enhanced performance and deeper insights into the underlying biological processes. This review aims to summarize key advances, methodologies, and applications of SNNs within these domains, highlighting their unique ability to mimic the temporal dynamics and efficiency of the human brain. We dive into the core principles of SNNs, their neurobiological underpinnings, and the computational advantages they bring to signal processing, particularly in handling the temporal and spatial complexities inherent in physiological and speech data. Comparative analyses with conventional neural network models are presented to underscore the superior efficiency, lower power consumption, and higher temporal resolution of SNNs. The review further explores challenges and future prospects, highlighting the potential of SNNs to revolutionize wearable healthcare monitoring systems, neuroprosthetic devices, and natural language processing technologies. By providing a comprehensive overview of current strategies, this review aims to inspire innovative approaches in the field, fostering advances in real-time and energy-efficient processing of complex biological signals.
Collapse
Affiliation(s)
- Sung Soo Park
- Department of Electroincs and Communications Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Young-Seok Choi
- Department of Electroincs and Communications Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
9
|
Kim E, Kim Y. Exploring the potential of spiking neural networks in biomedical applications: advantages, limitations, and future perspectives. Biomed Eng Lett 2024; 14:967-980. [PMID: 39220036 PMCID: PMC11362408 DOI: 10.1007/s13534-024-00403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
In this paper, a comprehensive exploration is undertaken to elucidate the utilization of Spiking Neural Networks (SNNs) within the biomedical domain. The investigation delves into the experimentally validated advantages of SNNs in comparison to alternative models like LSTM, while also critically examining the inherent limitations of SNN classifiers or algorithms. SNNs exhibit distinctive advantages that render them particularly apt for targeted applications within the biomedical field. Over time, SNNs have undergone extensive scrutiny in realms such as neuromorphic processing, Brain-Computer Interfaces (BCIs), and Disease Diagnosis. Notably, SNNs demonstrate a remarkable affinity for the processing and analysis of biomedical signals, including but not limited to electroencephalogram (EEG), electromyography (EMG), and electrocardiogram (ECG) data. This paper initiates its exploration by introducing some of the biomedical applications of EMG, such as the classification of hand gestures and motion decoding. Subsequently, the focus extends to the applications of SNNs in the analysis of EEG and ECG signals. Moreover, the paper delves into the diverse applications of SNNs in specific anatomical regions, such as the eyes and noses. In the final sections, the paper culminates with a comprehensive analysis of the field, offering insights into the advantages, disadvantages, challenges, and opportunities introduced by various SNN models in the realm of healthcare and biomedical domains. This holistic examination provides a nuanced perspective on the potential transformative impact of SNN across a spectrum of applications within the biomedical landscape.
Collapse
Affiliation(s)
- Eunsu Kim
- School of Electronic and Electrical engineering, Hongik University, Seoul, 04066 Korea
| | - Youngmin Kim
- School of Electronic and Electrical engineering, Hongik University, Seoul, 04066 Korea
| |
Collapse
|
10
|
Choi H, Park J, Lee J, Sim D. Review on spiking neural network-based ECG classification methods for low-power environments. Biomed Eng Lett 2024; 14:917-941. [PMID: 39220032 PMCID: PMC11362428 DOI: 10.1007/s13534-024-00391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 09/04/2024] Open
Abstract
This paper reviews arrhythmia classification studies using electrocardiogram (ECG) signals. Research on automatically diagnosing arrhythmia in daily life has been actively underway for early detection and treatment of heart disease. Development of automatic arrhythmia classification using ECG signal began based on handcrafted morphological feature extraction and machine learning-based classification methods. As deep neural networks (DNN) show excellent performance in the signal processing field, studies using various types of DNN are also being conducted in ECG classification. However, these DNN-based studies have extremely high computational complexity, making it challenging to perform real-time classification, and are unsuitable for low-power environments such as wearable devices due to high power consumption. Currently, research based on spiking neural network (SNN), which mimics the low-power operation of the human nervous system, is attracting attention as a method that can dramatically reduce complexity and power consumption. The classification accuracy of the SNN-based ECG classification studies is close to that of the DNN-based studies. When combined with neuromorphic hardware, it shows ultra-low-power performance, suggesting the possibility of use in lightweight devices. In this paper, the SNN-based ECG classification studies for low-power environments are mainly reviewed, and prior to this, conventional and DNN-based ECG classification studies are also reviewed. We hope that this review will be helpful to researchers and engineers interested in the field of ECG classification.
Collapse
Affiliation(s)
- Hansol Choi
- Department of Computer Engineering, Kwangwoon University, Seoul, Korea
| | - Jangsoo Park
- Department of Computer Engineering, Kwangwoon University, Seoul, Korea
| | - Jongseok Lee
- Department of Computer Engineering, Kwangwoon University, Seoul, Korea
| | - Donggyu Sim
- Department of Computer Engineering, Kwangwoon University, Seoul, Korea
| |
Collapse
|
11
|
Rana A, Kim KK. Electrocardiography Classification with Leaky Integrate-and-Fire Neurons in an Artificial Neural Network-Inspired Spiking Neural Network Framework. SENSORS (BASEL, SWITZERLAND) 2024; 24:3426. [PMID: 38894215 PMCID: PMC11175061 DOI: 10.3390/s24113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Monitoring heart conditions through electrocardiography (ECG) has been the cornerstone of identifying cardiac irregularities. Cardiologists often rely on a detailed analysis of ECG recordings to pinpoint deviations that are indicative of heart anomalies. This traditional method, while effective, demands significant expertise and is susceptible to inaccuracies due to its manual nature. In the realm of computational analysis, Artificial Neural Networks (ANNs) have gained prominence across various domains, which can be attributed to their superior analytical capabilities. Conversely, Spiking Neural Networks (SNNs), which mimic the neural activity of the brain more closely through impulse-based processing, have not seen widespread adoption. The challenge lies primarily in the complexity of their training methodologies. Despite this, SNNs offer a promising avenue for energy-efficient computational models capable of displaying a high-level performance. This paper introduces an innovative approach employing SNNs augmented with an attention mechanism to enhance feature recognition in ECG signals. By leveraging the inherent efficiency of SNNs, coupled with the precision of attention modules, this model aims to refine the analysis of cardiac signals. The novel aspect of our methodology involves adapting the learned parameters from ANNs to SNNs using leaky integrate-and-fire (LIF) neurons. This transfer learning strategy not only capitalizes on the strengths of both neural network models but also addresses the training challenges associated with SNNs. The proposed method is evaluated through extensive experiments on two publicly available benchmark ECG datasets. The results show that our model achieves an overall accuracy of 93.8% on the MIT-BIH Arrhythmia dataset and 85.8% on the 2017 PhysioNet Challenge dataset. This advancement underscores the potential of SNNs in the field of medical diagnostics, offering a path towards more accurate, efficient, and less resource-intensive analyses of heart diseases.
Collapse
Affiliation(s)
| | - Kyung Ki Kim
- Department of Electronic Engineering, Daegu University, Daegudaero 201, Gyeongsan 38543, Republic of Korea;
| |
Collapse
|
12
|
Shumba AT, Montanaro T, Sergi I, Bramanti A, Ciccarelli M, Rispoli A, Carrizzo A, De Vittorio M, Patrono L. Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects. SENSORS (BASEL, SWITZERLAND) 2023; 23:6896. [PMID: 37571678 PMCID: PMC10422393 DOI: 10.3390/s23156896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Smart wearable devices enable personalized at-home healthcare by unobtrusively collecting patient health data and facilitating the development of intelligent platforms to support patient care and management. The accurate analysis of data obtained from wearable devices is crucial for interpreting and contextualizing health data and facilitating the reliable diagnosis and management of critical and chronic diseases. The combination of edge computing and artificial intelligence has provided real-time, time-critical, and privacy-preserving data analysis solutions. However, based on the envisioned service, evaluating the additive value of edge intelligence to the overall architecture is essential before implementation. This article aims to comprehensively analyze the current state of the art on smart health infrastructures implementing wearable and AI technologies at the far edge to support patients with chronic heart failure (CHF). In particular, we highlight the contribution of edge intelligence in supporting the integration of wearable devices into IoT-aware technology infrastructures that provide services for patient diagnosis and management. We also offer an in-depth analysis of open challenges and provide potential solutions to facilitate the integration of wearable devices with edge AI solutions to provide innovative technological infrastructures and interactive services for patients and doctors.
Collapse
Affiliation(s)
- Angela-Tafadzwa Shumba
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
- Istituto Italiano di Tecnologia, Centre for Biomolecular Nanotechnologies, 73010 Arnesano, Italy
| | - Teodoro Montanaro
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
| | - Ilaria Sergi
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
| | - Alessia Bramanti
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” (DIPMED), University of Salerno, 84081 Baronissi, Italy; (A.B.); (M.C.); (A.R.); (A.C.)
| | - Michele Ciccarelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” (DIPMED), University of Salerno, 84081 Baronissi, Italy; (A.B.); (M.C.); (A.R.); (A.C.)
| | - Antonella Rispoli
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” (DIPMED), University of Salerno, 84081 Baronissi, Italy; (A.B.); (M.C.); (A.R.); (A.C.)
| | - Albino Carrizzo
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” (DIPMED), University of Salerno, 84081 Baronissi, Italy; (A.B.); (M.C.); (A.R.); (A.C.)
| | - Massimo De Vittorio
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
- Istituto Italiano di Tecnologia, Centre for Biomolecular Nanotechnologies, 73010 Arnesano, Italy
| | - Luigi Patrono
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
| |
Collapse
|
13
|
Pham H, Egorov K, Kazakov A, Budennyy S. Machine learning-based detection of cardiovascular disease using ECG signals: performance vs. complexity. Front Cardiovasc Med 2023; 10:1229743. [PMID: 37583582 PMCID: PMC10424727 DOI: 10.3389/fcvm.2023.1229743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Cardiovascular disease remains a significant problem in modern society. Among non-invasive techniques, the electrocardiogram (ECG) is one of the most reliable methods for detecting cardiac abnormalities. However, ECG interpretation requires expert knowledge and it is time-consuming. Developing a novel method to detect the disease early improves the quality and efficiency of medical care. Methods The paper presents various modern approaches for classifying cardiac diseases from ECG recordings. The first approach suggests the Poincaré representation of ECG signal and deep-learning-based image classifiers. Additionally, the raw signals were processed with the one-dimensional convolutional model while the XGBoost model was facilitated to predict based on the time-series features. Results The Poincaré-based methods showed decent performance in predicting AF (atrial fibrillation) but not other types of arrhythmia. XGBoost model gave an acceptable performance in long-term data but had a long inference time due to highly-consuming calculations within the pre-processing phase. Finally, the 1D convolutional model, specifically the 1D ResNet, showed the best results in both studied CinC 2017 and CinC 2020 datasets, reaching the F1 score of 85% and 71%, respectively, and they were superior to the first-ranking solution of each challenge. The 1D models also presented high specificity. Additionally, our paper investigated efficiency metrics including power consumption and equivalent CO2 emissions, with one-dimensional models like 1D CNN and 1D ResNet being the most energy efficient. Model interpretation analysis showed that the DenseNet detected AF using heart rate variability while the 1D ResNet assessed the AF patterns in raw ECG signals. Discussion Despite the under-performed results, the Poincaré diagrams are still worth studying further because of the accessibility and inexpensive procedure. In the 1D convolutional models, the residual connections are useful to keep the model simple but not decrease the performance. Our approach in power measurement and model interpretation helped understand the numerical complexity and mechanism behind the model decision.
Collapse
Affiliation(s)
- Huy Pham
- Department of Computer Science, HSE University, Moscow, Russia
| | | | | | - Semen Budennyy
- Applied Research Center, Sber AI Lab, Moscow, Russia
- New Materials Discovery Group, Artificial Intelligence Research Institute (AIRI), Moscow, Russia
| |
Collapse
|
14
|
Billeci L, Sanmartin C, Tonacci A, Taglieri I, Bachi L, Ferroni G, Braceschi GP, Odello L, Venturi F. Wearable Sensors to Evaluate Autonomic Response to Olfactory Stimulation: The Influence of Short, Intensive Sensory Training. BIOSENSORS 2023; 13:bios13040478. [PMID: 37185553 PMCID: PMC10136665 DOI: 10.3390/bios13040478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
In the last few decades, while the sensory evaluation of edible products has been leveraged to make strategic decisions about many domains, the traditional descriptive analysis performed by a skilled sensory panel has been seen to be too complex and time-consuming for the industry needs, making it largely unsustainable in most cases. In this context, the study of the effectiveness of different methods for sensory training on panel performances represents a new trend in research activity. With this purpose, wearable sensors are applied to study physiological signals (ECG and skin conductance) concerned with the emotions in a cohort of volunteers undergoing a short, two-day (16 h) sensory training period related to wine tasting. The results were compared with a previous study based on a conventional three-month (65 h) period of sensory training. According to what was previously reported for long panel training, it was seen that even short, intensive sensory training modulated the ANS activity toward a less sympathetically mediated response as soon as odorous compounds become familiar. A large-scale application of shorter formative courses in this domain appears possible without reducing the effectiveness of the training, thus leading to money saving for academia and scientific societies, and challenging dropout rates that might affect longer courses.
Collapse
Affiliation(s)
- Lucia Billeci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Lorenzo Bachi
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Giuseppe Ferroni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | | | - Luigi Odello
- Centro Studi Assaggiatori Società Cooperativa, Galleria V. Veneto, 9, 25128 Brescia, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Centre for Complex Systems Studies, University of Pisa, Largo Bruno Pontecorvo, 2, 56126 Pisa, Italy
| |
Collapse
|
15
|
Tian F, Yang J, Zhao S, Sawan M. NeuroCARE: A generic neuromorphic edge computing framework for healthcare applications. Front Neurosci 2023; 17:1093865. [PMID: 36755733 PMCID: PMC9900119 DOI: 10.3389/fnins.2023.1093865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Highly accurate classification methods for multi-task biomedical signal processing are reported, including neural networks. However, reported works are computationally expensive and power-hungry. Such bottlenecks make it hard to deploy existing approaches on edge platforms such as mobile and wearable devices. Gaining motivation from the good performance and high energy-efficiency of spiking neural networks (SNNs), a generic neuromorphic framework for edge healthcare and biomedical applications are proposed and evaluated on various tasks, including electroencephalography (EEG) based epileptic seizure prediction, electrocardiography (ECG) based arrhythmia detection, and electromyography (EMG) based hand gesture recognition. This approach, NeuroCARE, uses a unique sparse spike encoder to generate spike sequences from raw biomedical signals and makes classifications using the spike-based computing engine that combines the advantages of both CNN and SNN. An adaptive weight mapping method specifically co-designed with the spike encoder can efficiently convert CNN to SNN without performance deterioration. The evaluation results show that the overall performance, including the classification accuracy, sensitivity and F1 score, achieve 92.7, 96.7, and 85.7% for seizure prediction, arrhythmia detection and hand gesture recognition, respectively. In comparison with CNN topologies, the computation complexity is reduced by over 80.7% while the energy consumption and area occupation are reduced by over 80% and over 64.8%, respectively, indicating that the proposed neuromorphic computing approach is energy and area efficient and of high precision, which paves the way for deployment at edge platforms.
Collapse
Affiliation(s)
- Fengshi Tian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, Zhejiang, China,The Hong Kong University of Science and Technology (HKUST), New Territories, Hong Kong SAR, China
| | - Jie Yang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, Zhejiang, China,*Correspondence: Jie Yang,
| | - Shiqi Zhao
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, Zhejiang, China,Mohamad Sawan,
| |
Collapse
|
16
|
Huang JD, Wang J, Ramsey E, Leavey G, Chico TJA, Condell J. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8002. [PMID: 36298352 PMCID: PMC9610988 DOI: 10.3390/s22208002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/06/2023]
Abstract
Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial morbidity and mortality caused by CVD worldwide. In this review, we identify and describe recent developments in the application of digital health for CVD, focusing on AI approaches for CVD detection, diagnosis, and prediction through AI models driven by data collected from wearables. We summarise the literature on the use of wearables and AI in cardiovascular disease diagnosis, followed by a detailed description of the dominant AI approaches applied for modelling and prediction using data acquired from sensors such as wearables. We discuss the AI algorithms and models and clinical applications and find that AI and machine-learning-based approaches are superior to traditional or conventional statistical methods for predicting cardiovascular events. However, further studies evaluating the applicability of such algorithms in the real world are needed. In addition, improvements in wearable device data accuracy and better management of their application are required. Lastly, we discuss the challenges that the introduction of such technologies into routine healthcare may face.
Collapse
Affiliation(s)
- Jian-Dong Huang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Jinling Wang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Elaine Ramsey
- Department of Global Business & Enterprise, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Gerard Leavey
- School of Psychology, Ulster University at Coleraine, Londonderry BT52 1SA, UK
| | - Timothy J. A. Chico
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Joan Condell
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| |
Collapse
|
17
|
Junaid SB, Imam AA, Balogun AO, De Silva LC, Surakat YA, Kumar G, Abdulkarim M, Shuaibu AN, Garba A, Sahalu Y, Mohammed A, Mohammed TY, Abdulkadir BA, Abba AA, Kakumi NAI, Mahamad S. Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare (Basel) 2022; 10:1940. [PMID: 36292387 PMCID: PMC9601636 DOI: 10.3390/healthcare10101940] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
In recent times, the growth of the Internet of Things (IoT), artificial intelligence (AI), and Blockchain technologies have quickly gained pace as a new study niche in numerous collegiate and industrial sectors, notably in the healthcare sector. Recent advancements in healthcare delivery have given many patients access to advanced personalized healthcare, which has improved their well-being. The subsequent phase in healthcare is to seamlessly consolidate these emerging technologies such as IoT-assisted wearable sensor devices, AI, and Blockchain collectively. Surprisingly, owing to the rapid use of smart wearable sensors, IoT and AI-enabled technology are shifting healthcare from a conventional hub-based system to a more personalized healthcare management system (HMS). However, implementing smart sensors, advanced IoT, AI, and Blockchain technologies synchronously in HMS remains a significant challenge. Prominent and reoccurring issues such as scarcity of cost-effective and accurate smart medical sensors, unstandardized IoT system architectures, heterogeneity of connected wearable devices, the multidimensionality of data generated, and high demand for interoperability are vivid problems affecting the advancement of HMS. Hence, this survey paper presents a detailed evaluation of the application of these emerging technologies (Smart Sensor, IoT, AI, Blockchain) in HMS to better understand the progress thus far. Specifically, current studies and findings on the deployment of these emerging technologies in healthcare are investigated, as well as key enabling factors, noteworthy use cases, and successful deployments. This survey also examined essential issues that are frequently encountered by IoT-assisted wearable sensor systems, AI, and Blockchain, as well as the critical concerns that must be addressed to enhance the application of these emerging technologies in the HMS.
Collapse
Affiliation(s)
| | - Abdullahi Abubakar Imam
- School of Digital Science, Universiti Brunei Darussalam, Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Abdullateef Oluwagbemiga Balogun
- Department of Computer Science, University of Ilorin, Ilorin 1515, Nigeria
- Department of Computer and Information Science, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia
| | | | | | - Ganesh Kumar
- Department of Computer and Information Science, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia
| | - Muhammad Abdulkarim
- Department of Computer Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Aliyu Nuhu Shuaibu
- Department of Electrical Engineering, University of Jos, Bauchi Road, Jos 930105, Nigeria
| | - Aliyu Garba
- Department of Computer Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Yusra Sahalu
- SEHA Abu Dhabi Health Services Co., Abu Dhabi 109090, United Arab Emirates
| | - Abdullahi Mohammed
- Department of Computer Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | | | | | | | - Nana Aliyu Iliyasu Kakumi
- Patient Care Department, General Ward, Saudi German Hospital Cairo, Taha Hussein Rd, Huckstep, El Nozha, Cairo Governorate 4473303, Egypt
| | - Saipunidzam Mahamad
- Department of Computer and Information Science, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia
| |
Collapse
|
18
|
Mao R, Li S, Zhang Z, Xia Z, Xiao J, Zhu Z, Liu J, Shan W, Chang L, Zhou J. An Ultra-Energy-Efficient and High Accuracy ECG Classification Processor With SNN Inference Assisted by On-Chip ANN Learning. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:832-841. [PMID: 35737625 DOI: 10.1109/tbcas.2022.3185720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ECG classification processor is a key component in wearable intelligent ECG monitoring devices which monitor the ECG signals in real time and detect the abnormality automatically. The state-of-the-art ECG classification processors for wearable intelligent ECG monitoring devices are faced with two challenges, including ultra-low energy consumption demand and high classification accuracy demand against patient-to-patient variability. To address the above two challenges, in this work, an ultra-energy-efficient ECG classification processor with high classification accuracy is proposed. Several design techniques have been proposed, including a reconfigurable SNN/ANN inference architecture for reducing energy consumption while maintaining classification accuracy, a reconfigurable on-chip learning architecture for improving the classification accuracy against patent-to-patient variability, and a dual-purpose binary encoding scheme of ECG heartbeats for further reducing the energy consumption. Fabricated with a 28nm CMOS technology, the proposed design consumes extremely low classification energy (0.3μJ) while achieving high classification accuracy (97.36%) against patient-to-patient variability, outperforming several state-of-the-art designs.
Collapse
|
19
|
Hu S, Cai W, Gao T, Wang M. An automatic residual-constrained and clustering-boosting architecture for differentiated heartbeat classification. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Chu H, Yan Y, Gan L, Jia H, Qian L, Huan Y, Zheng L, Zou Z. A Neuromorphic Processing System With Spike-Driven SNN Processor for Wearable ECG Classification. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:511-523. [PMID: 35802543 DOI: 10.1109/tbcas.2022.3189364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents a neuromorphic processing system with a spike-driven spiking neural network (SNN) processor design for always-on wearable electrocardiogram (ECG) classification. In the proposed system, the ECG signal is captured by level crossing (LC) sampling, achieving native temporal coding with single-bit data representation, which is directly fed into an SNN in an event-driven manner. A hardware-aware spatio-temporal backpropagation (STBP) is suggested as the training scheme to adapt to the LC-based data representation and to generate lightweight SNN models. Such a training scheme diminishes the firing rate of the network with little plenty of classification accuracy loss, thus reducing the switching activity of the circuits for low-power operation. A specialized SNN processor is designed with the spike-driven processing flow and hierarchical memory access scheme. Validated with field programmable gate arrays (FPGA) and evaluated in 40 nm CMOS technology for application-specific integrated circuit (ASIC) design, the SNN processor can achieve 98.22% classification accuracy on the MIT-BIH database for 5-category classification, with an energy efficiency of 0.75 μJ/classification.
Collapse
|
21
|
Accurate ECG Classification Based on Spiking Neural Network and Attentional Mechanism for Real-Time Implementation on Personal Portable Devices. ELECTRONICS 2022. [DOI: 10.3390/electronics11121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrocardiogram (ECG) heartbeat classification plays a vital role in early diagnosis and effective treatment, which provide opportunities for earlier prevention and intervention. In an effort to continuously monitor and detect abnormalities in patients’ ECG signals on portable devices, this paper present a lightweight ECG heartbeat classification method based on a spiking neural network (SNN), a relatively shallow SNN model integrated with a channel-wise attentional module. We further explore the best-optimized architecture, which benefits from leveraging the full advantages of the SNN potential with the attention mechanism to process the classification task at low power and capture prominent features concerning the time, morphology, and multi-channel representations of the ECG signal. Results show that our model achieves overall classification accuracy of 98.26%, sensitivity of 94.75%, and F1 score of 89.09% on the MIT-BIH database, with energy consumption of 346.33 μJ per beat and runtime of 1.37 ms. Moreover, we have conducted multiple experiments to compare against current state-of-the-art methods using their assessment strategies to evaluate our model implementation on FPGA. So far, our work achieves comparable overall performance with all the literature in terms of classification accuracy, energy consumption, and real-time capability.
Collapse
|
22
|
A Spike Neural Network Model for Lateral Suppression of Spike-Timing-Dependent Plasticity with Adaptive Threshold. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aiming at the practical constraints of high resource occupancy and complex calculations in the existing Spike Neural Network (SNN) image classification model, in order to seek a more lightweight and efficient machine vision solution, this paper proposes an adaptive threshold Spike Neural Network (SNN) model of lateral inhibition of Spike-Timing-Dependent Plasticity (STDP). The conversion from grayscale image to pulse sequence is completed by convolution normalization and first pulse time coding. The network self-classification is realized by combining the classical Spike-Timing-Dependent Plasticity algorithm (STDP) and lateral suppression algorithm. The occurrence of overfitting is effectively suppressed by introducing an adaptive threshold. The experimental results on the MNIST data set show that compared with the traditional SNN classification model, the complexity of the weight update algorithm is reduced from O(n2) to O(1), and the accuracy rate can still remain stable at about 96%. The provided model is conducive to the migration of software algorithms to the bottom layer of the hardware platform, and can provide a reference for the realization of edge computing solutions for small intelligent hardware terminals with high efficiency and low power consumption.
Collapse
|
23
|
Puszkarski B, Hryniów K, Sarwas G. Comparison of neural basis expansion analysis for interpretable time series (N-BEATS) and recurrent neural networks for heart dysfunction classification. Physiol Meas 2022; 43. [PMID: 35537407 DOI: 10.1088/1361-6579/ac6e55] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The primary purpose of this work is to analyze the ability of N-BEATS architecture for the problem of prediction and classification of electrocar- diogram (ECG) signals. To achieve this, performance comparison with various types of other SotA (state-of-the-art) recurrent neural network architectures commonly used for such problems is conducted. APPROACH Four architectures (N-BEATS, LSTM, LSTM with peepholes, GRU) were tested for performance and dimension reduction problems for different number of leads (2, 3, 4, 6, 12), both in variants consisting of blended branches, allowing retaining ac- curacy while reducing the computational capacity needed. The analysis was performed on datasets and using metrics from Challenges in Cardiology (CinC) 2021 competition. MAIN RESULTS Best results were achieved for LSTM with peepholes, then LSTM, GRU and the worst for N-BEATS (challenge metrics respectively: 0.42, 0.40, 0.39, 0.35; for times: 0.0395 s, 0.0036 s, 0.0027 s, 0.0002 s). Commonly used LSTM outperforms N- BEATS in terms of multi-label classification, data set resilience, and obtained challenge metrics. Still, N-BEATS can obtain acceptable results for 2 lead classification (metric of 0.35 for N-BEATS and 0.38 for other networks) and outperforms other solutions in terms of complexity and speed. SIGNIFICANCE This paper features a novel approach of using the N-BEATS, which was previously used only for forecasting, to classify ECG signals with success. While N- BEATS multi-label classification capacity is lower than LSTM, its speed obtaining results with a reduced number of leads (faster by one to two degrees of magnitude) allows for arrhythmias detection and classification while using off-the-shelf wearable devices (Holter monitors, sport bands, etc.).
Collapse
Affiliation(s)
- Bartosz Puszkarski
- Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, Warsaw, 00-662, POLAND
| | - Krzysztof Hryniów
- Institute of Control and Industrial Technology, Warsaw University of Technology, Koszykowa 75, Warsaw, 00-662, POLAND
| | - Grzegorz Sarwas
- Institute of Control and Industrial Technology, Warsaw University of Technology, Koszykowa 75, Warsaw, 00-662, POLAND
| |
Collapse
|
24
|
Yan Y, Chu H, Jin Y, Huan Y, Zou Z, Zheng L. Backpropagation With Sparsity Regularization for Spiking Neural Network Learning. Front Neurosci 2022; 16:760298. [PMID: 35495028 PMCID: PMC9047717 DOI: 10.3389/fnins.2022.760298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
The spiking neural network (SNN) is a possible pathway for low-power and energy-efficient processing and computing exploiting spiking-driven and sparsity features of biological systems. This article proposes a sparsity-driven SNN learning algorithm, namely backpropagation with sparsity regularization (BPSR), aiming to achieve improved spiking and synaptic sparsity. Backpropagation incorporating spiking regularization is utilized to minimize the spiking firing rate with guaranteed accuracy. Backpropagation realizes the temporal information capture and extends to the spiking recurrent layer to support brain-like structure learning. The rewiring mechanism with synaptic regularization is suggested to further mitigate the redundancy of the network structure. Rewiring based on weight and gradient regulates the pruning and growth of synapses. Experimental results demonstrate that the network learned by BPSR has synaptic sparsity and is highly similar to the biological system. It not only balances the accuracy and firing rate, but also facilitates SNN learning by suppressing the information redundancy. We evaluate the proposed BPSR on the visual dataset MNIST, N-MNIST, and CIFAR10, and further test it on the sensor dataset MIT-BIH and gas sensor. Results bespeak that our algorithm achieves comparable or superior accuracy compared to related works, with sparse spikes and synapses.
Collapse
Affiliation(s)
| | | | | | | | - Zhuo Zou
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lirong Zheng
- School of Information Science and Technology, Fudan University, Shanghai, China
| |
Collapse
|
25
|
De Melo Ribeiro H, Arnold A, Howard JP, Shun-Shin MJ, Zhang Y, Francis DP, Lim PB, Whinnett Z, Zolgharni M. ECG-based real-time arrhythmia monitoring using quantized deep neural networks: A feasibility study. Comput Biol Med 2022; 143:105249. [PMID: 35091363 DOI: 10.1016/j.compbiomed.2022.105249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
Abstract
Continuous ambulatory cardiac monitoring plays a critical role in early detection of abnormality in at-risk patients, thereby increasing the chance of early intervention. In this study, we present an automated ECG classification approach for distinguishing between healthy heartbeats and pathological rhythms. The proposed lightweight solution uses quantized one-dimensional deep convolutional neural networks and is ideal for real-time continuous monitoring of cardiac rhythm, capable of providing one output prediction per second. Raw ECG data is used as the input to the classifier, eliminating the need for complex data preprocessing on low-powered wearable devices. In contrast to many compute-intensive approaches, the data analysis can be carried out locally on edge devices, providing privacy and portability. The proposed lightweight solution is accurate (sensitivity of 98.5% and specificity of 99.8%), and implemented on a smartphone, it is energy-efficient and fast, requiring 5.85 mJ and 7.65 ms per prediction, respectively.
Collapse
Affiliation(s)
| | - Ahran Arnold
- National Heart and Lung Institute, Imperial College London, UK
| | - James P Howard
- National Heart and Lung Institute, Imperial College London, UK
| | | | - Ying Zhang
- School of Computing and Engineering, University of West London, UK
| | | | - Phang B Lim
- National Heart and Lung Institute, Imperial College London, UK
| | | | - Massoud Zolgharni
- School of Computing and Engineering, University of West London, UK; National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
26
|
Unsupervised anomaly detection in multivariate time series with online evolving spiking neural networks. Mach Learn 2022. [DOI: 10.1007/s10994-022-06129-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractWith the increasing demand for digital products, processes and services the research area of automatic detection of signal outliers in streaming data has gained a lot of attention. The range of possible applications for this kind of algorithms is versatile and ranges from the monitoring of digital machinery and predictive maintenance up to applications in analyzing big data healthcare sensor data. In this paper we present a method for detecting anomalies in streaming multivariate times series by using an adapted evolving Spiking Neural Network. As the main components of this work we contribute (1) an alternative rank-order-based learning algorithm which uses the precise times of the incoming spikes for adjusting the synaptic weights, (2) an adapted, realtime-capable and efficient encoding technique for multivariate data based on multi-dimensional Gaussian Receptive Fields and (3) a continuous outlier scoring function for an improved interpretability of the classifications. Spiking neural networks are extremely efficient when it comes to process time dependent information. We demonstrate the effectiveness of our model on a synthetic dataset based on the Numenta Anomaly Benchmark with various anomaly types. We compare our algorithm to other streaming anomaly detecting algorithms and can prove that our algorithm performs better in detecting anomalies while demanding less computational resources for processing high dimensional data.
Collapse
|
27
|
Muliukov AR, Rodriguez L, Miramond B, Khacef L, Schmidt J, Berthet Q, Upegui A. A Unified Software/Hardware Scalable Architecture for Brain-Inspired Computing Based on Self-Organizing Neural Models. Front Neurosci 2022; 16:825879. [PMID: 35310103 PMCID: PMC8926299 DOI: 10.3389/fnins.2022.825879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
The field of artificial intelligence has significantly advanced over the past decades, inspired by discoveries from the fields of biology and neuroscience. The idea of this work is inspired by the process of self-organization of cortical areas in the human brain from both afferent and lateral/internal connections. In this work, we develop a brain-inspired neural model associating Self-Organizing Maps (SOM) and Hebbian learning in the Reentrant SOM (ReSOM) model. The framework is applied to multimodal classification problems. Compared to existing methods based on unsupervised learning with post-labeling, the model enhances the state-of-the-art results. This work also demonstrates the distributed and scalable nature of the model through both simulation results and hardware execution on a dedicated FPGA-based platform named SCALP (Self-configurable 3D Cellular Adaptive Platform). SCALP boards can be interconnected in a modular way to support the structure of the neural model. Such a unified software and hardware approach enables the processing to be scaled and allows information from several modalities to be merged dynamically. The deployment on hardware boards provides performance results of parallel execution on several devices, with the communication between each board through dedicated serial links. The proposed unified architecture, composed of the ReSOM model and the SCALP hardware platform, demonstrates a significant increase in accuracy thanks to multimodal association, and a good trade-off between latency and power consumption compared to a centralized GPU implementation.
Collapse
Affiliation(s)
- Artem R. Muliukov
- Université Côte d'Azur, Laboratoire d'Electronique, Antennes et Télécommunications, CNRS, Biot, France
| | - Laurent Rodriguez
- Université Côte d'Azur, Laboratoire d'Electronique, Antennes et Télécommunications, CNRS, Biot, France
| | - Benoit Miramond
- Université Côte d'Azur, Laboratoire d'Electronique, Antennes et Télécommunications, CNRS, Biot, France
| | - Lyes Khacef
- Bio-Inspired Circuits and Systems Lab, Zernike Institute for Advanced Materials, Groningen Cognitive Systems and Materials Center, University of Groningen, Groningen, Netherlands
| | - Joachim Schmidt
- Institute of Information Technologies, Hepia, University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Quentin Berthet
- Institute of Information Technologies, Hepia, University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Andres Upegui
- Institute of Information Technologies, Hepia, University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| |
Collapse
|
28
|
Senthil Vadivu M, Kavitha G. A novel fetal ecg signal extraction from maternal ecg signal using conditional generative adversarial networks (CGAN). JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fetal Electrocardiogram (ECG) signal extraction from non-invasive abdominal ECG signal is one of the important clinical practices followed to observe the fetal health state. Information about heart growth and health conditions of a fetus can be observed from fetal ECG signals. However, acquiring fetal ECG from abdominal ECG signals is still considered as a challenging task in biomedical analysis. This is mainly due to corrupted high amplitude maternal ECG signals, low signal to noise ratio of fetal ECG signal, difficulties in reduction of QRS (Q wave, R wave, S wave) complexities, fetal ECG signal superimposed characteristics, other motion, and electromyography artifacts. To reduce these conventional challenges, in fetal ECG analysis of a novel Conditional Generative adversarial network (CGAN) is introduced in this research work to extract the fetal ECG signal. The proposed classification model was classified efficiently in fetal ECG signals from non-invasive abdominal ECG signals. The experimental analysis demonstrates that the proposed network model provides better results in terms of sensitivity, specificity, and accuracy compared to the conventional fetal ECG extraction models like singular value decomposition, periodic component analysis, and Adaptive neuro-fuzzy inference system.
Collapse
Affiliation(s)
- M. Senthil Vadivu
- Department of Electronics and Communication Engineering, Sona College of Technology, Salem, Tamilnadu, India
| | - G. Kavitha
- Department of Electronics and Communication Engineering, Government College of Engineering, Salem, Tamilnadu, India
| |
Collapse
|
29
|
Naseri Jahfari A, Tax D, Reinders M, van der Bilt I. Machine Learning for Cardiovascular Outcomes From Wearable Data: Systematic Review From a Technology Readiness Level Point of View. JMIR Med Inform 2022; 10:e29434. [PMID: 35044316 PMCID: PMC8811688 DOI: 10.2196/29434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Wearable technology has the potential to improve cardiovascular health monitoring by using machine learning. Such technology enables remote health monitoring and allows for the diagnosis and prevention of cardiovascular diseases. In addition to the detection of cardiovascular disease, it can exclude this diagnosis in symptomatic patients, thereby preventing unnecessary hospital visits. In addition, early warning systems can aid cardiologists in timely treatment and prevention. OBJECTIVE This study aims to systematically assess the literature on detecting and predicting outcomes of patients with cardiovascular diseases by using machine learning with data obtained from wearables to gain insights into the current state, challenges, and limitations of this technology. METHODS We searched PubMed, Scopus, and IEEE Xplore on September 26, 2020, with no restrictions on the publication date and by using keywords such as "wearables," "machine learning," and "cardiovascular disease." Methodologies were categorized and analyzed according to machine learning-based technology readiness levels (TRLs), which score studies on their potential to be deployed in an operational setting from 1 to 9 (most ready). RESULTS After the removal of duplicates, application of exclusion criteria, and full-text screening, 55 eligible studies were included in the analysis, covering a variety of cardiovascular diseases. We assessed the quality of the included studies and found that none of the studies were integrated into a health care system (TRL<6), prospective phase 2 and phase 3 trials were absent (TRL<7 and 8), and group cross-validation was rarely used. These issues limited these studies' ability to demonstrate the effectiveness of their methodologies. Furthermore, there seemed to be no agreement on the sample size needed to train these studies' models, the size of the observation window used to make predictions, how long participants should be observed, and the type of machine learning model that is suitable for predicting cardiovascular outcomes. CONCLUSIONS Although current studies show the potential of wearables to monitor cardiovascular events, their deployment as a diagnostic or prognostic cardiovascular clinical tool is hampered by the lack of a realistic data set and proper systematic and prospective evaluation.
Collapse
Affiliation(s)
- Arman Naseri Jahfari
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, Netherlands
- Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| | - David Tax
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, Netherlands
| | - Marcel Reinders
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, Netherlands
| | - Ivo van der Bilt
- Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| |
Collapse
|
30
|
Nahavandi D, Alizadehsani R, Khosravi A, Acharya UR. Application of artificial intelligence in wearable devices: Opportunities and challenges. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 213:106541. [PMID: 34837860 DOI: 10.1016/j.cmpb.2021.106541] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Wearable technologies have added completely new and fast emerging tools to the popular field of personal gadgets. Aside from being fashionable and equipped with advanced hardware technologies such as communication modules and networking, wearable devices have the potential to fuel artificial intelligence (AI) methods with a wide range of valuable data. METHODS Various AI techniques such as supervised, unsupervised, semi-supervised and reinforcement learning (RL) have already been used to carry out various tasks. This paper reviews the recent applications of wearables that have leveraged AI to achieve their objectives. RESULTS Particular example applications of supervised and unsupervised learning for medical diagnosis are reviewed. Moreover, examples combining the internet of things, wearables, and RL are reviewed. Application examples of wearables will be also presented for specific domains such as medical, industrial, and sport. Medical applications include fitness, movement disorder, mental health, etc. Industrial applications include employee performance improvement with the aid of wearables. Sport applications are all about providing better user experience during workout sessions or professional gameplays. CONCLUSION The most important challenges regarding design and development of wearable devices and the computation burden of using AI methods are presented. Finally, future challenges and opportunities for wearable devices are presented.
Collapse
Affiliation(s)
- Darius Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan
| |
Collapse
|
31
|
Katsaouni N, Aul F, Krischker L, Schmalhofer S, Hedrich L, Schulz MH. Energy efficient convolutional neural networks for arrhythmia detection. ARRAY 2022. [DOI: 10.1016/j.array.2022.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Lee S, Chu Y, Ryu J, Park YJ, Yang S, Koh SB. Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis. Yonsei Med J 2022; 63:S93-S107. [PMID: 35040610 PMCID: PMC8790582 DOI: 10.3349/ymj.2022.63.s93] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Several artificial intelligence (AI) models for the detection and prediction of cardiovascular-related diseases, including arrhythmias, diabetes, and sleep apnea, have been reported. This systematic review and meta-analysis aimed to identify AI models developed for or applicable to wearable and mobile devices for diverse cardiovascular-related diseases. MATERIALS AND METHODS The searched databases included Medline, Embase, and Cochrane Library. For AI models for atrial fibrillation (AF) detection, a meta-analysis of diagnostic accuracy was performed to summarize sensitivity and specificity. RESULTS A total of 102 studies were included in the qualitative review. There were AI models for the detection of arrythmia (n=62), followed by sleep apnea (n=11), peripheral vascular diseases (n=6), diabetes mellitus (n=5), hyper/hypotension (n=5), valvular heart disease (n=4), heart failure (n=3), myocardial infarction and cardiac arrest (n=2), and others (n=4). For quantitative analysis of 26 studies reporting AI models for AF detection, meta-analyzed sensitivity was 94.80% and specificity was 96.96%. Deep neural networks showed superior performance [meta-analyzed area under receiver operating characteristics curve (AUROC) of 0.981] compared to conventional machine learning algorithms (meta-analyzed AUROC of 0.961). However, AI models tested with proprietary dataset (meta-analyzed AUROC of 0.972) or data acquired from wearable devices (meta-analyzed AUROC of 0.977) showed inferior performance than those with public dataset (meta-analyzed AUROC of 0.986) or data from in-hospital devices (meta-analyzed AUROC of 0.983). CONCLUSION This review found that AI models for diverse cardiovascular-related diseases are being developed, and that they are gradually developing into a form that is suitable for wearable and mobile devices.
Collapse
Affiliation(s)
- Solam Lee
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yuseong Chu
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea
| | - Jiseung Ryu
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea
| | - Young Jun Park
- Division of Cardiology, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sejung Yang
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea.
| | - Sang Baek Koh
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
33
|
Hu S, Cai W, Gao T, Zhou J, Wang M. Robust wave-feature adaptive heartbeat classification based on self-attention mechanism using a transformer model. Physiol Meas 2021; 42. [PMID: 34847543 DOI: 10.1088/1361-6579/ac3e88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022]
Abstract
Objective. Electrocardiography is a common method for screening cardiovascular diseases. Accurate heartbeat classification assists in diagnosis and has attracted great attention. In this paper, we proposed an automatic heartbeat classification method based on a transformer neural network using a self-attention mechanism.Approach.An adaptive heartbeat segmentation method was designed to selectively focus on the time-dependent representation of heartbeats. A one-dimensional convolution layer was used to embed wave characteristics into symbolic representations, and then, a transformer block using multi-head attention was applied to deal with the dependence of wave-embedding. The model was trained and evaluated using the MIT-BIH arrhythmia database (MIT-DB). To improve the model performance, the model pre-trained on MIT-BIH supraventricular arrhythmia database (MIT-SVDB) was used and fine-tuned on MIT-DB.Main results.The proposed method was verified using the MIT-DB for two groups. In the first group, our method attained F1 scores of 0.86 and 0.96 for the supraventricular ectopic beat class and ventricular ectopic beat class, respectively. In the second group, our method achieved an average F1 value of 99.83% and better results than other state-of-the-art methods.Significance.We proposed a novel heartbeat classification method based on a transformer model. This method provides a new solution for real-time electrocardiogram heartbeat classification, which can be applied to wearable devices.
Collapse
Affiliation(s)
- Shuaicong Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Wenjie Cai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Tijie Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Jiajun Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Mingjie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Science, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
34
|
Jiang J, Tian F, Liang J, Shen Z, Liu Y, Zheng J, Wu H, Zhang Z, Fang C, Zhao Y, Shi J, Xue X, Zeng X. MSPAN: A Memristive Spike-Based Computing Engine With Adaptive Neuron for Edge Arrhythmia Detection. Front Neurosci 2021; 15:761127. [PMID: 34975373 PMCID: PMC8715923 DOI: 10.3389/fnins.2021.761127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
In this work, a memristive spike-based computing in memory (CIM) system with adaptive neuron (MSPAN) is proposed to realize energy-efficient remote arrhythmia detection with high accuracy in edge devices by software and hardware co-design. A multi-layer deep integrative spiking neural network (DiSNN) is first designed with an accuracy of 93.6% in 4-class ECG classification tasks. Then a memristor-based CIM architecture and the corresponding mapping method are proposed to deploy the DiSNN. By evaluation, the overall system achieves an accuracy of over 92.25% on the MIT-BIH dataset while the area is 3.438 mm2 and the power consumption is 0.178 μJ per heartbeat at a clock frequency of 500 MHz. These results reveal that the proposed MSPAN system is promising for arrhythmia detection in edge devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoyong Xue
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, China
| | | |
Collapse
|
35
|
Li H, An Z, Zuo S, Zhu W, Zhang Z, Zhang S, Zhang C, Song W, Mao Q, Mu Y, Li E, García JDP. Artificial Intelligence-Enabled ECG Algorithm Based on Improved Residual Network for Wearable ECG. SENSORS 2021; 21:s21186043. [PMID: 34577248 PMCID: PMC8472929 DOI: 10.3390/s21186043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
Heart disease is the leading cause of death for men and women globally. The residual network (ResNet) evolution of electrocardiogram (ECG) technology has contributed to our understanding of cardiac physiology. We propose an artificial intelligence-enabled ECG algorithm based on an improved ResNet for a wearable ECG. The system hardware consists of a wearable ECG with conductive fabric electrodes, a wireless ECG acquisition module, a mobile terminal App, and a cloud diagnostic platform. The algorithm adopted in this study is based on an improved ResNet for the rapid classification of different types of arrhythmia. First, we visualize ECG data and convert one-dimensional ECG signals into two-dimensional images using Gramian angular fields. Then, we improve the ResNet-50 network model, add multistage shortcut branches to the network, and optimize the residual block. The ReLu activation function is replaced by a scaled exponential linear units (SELUs) activation function to improve the expression ability of the model. Finally, the images are input into the improved ResNet network for classification. The average recognition rate of this classification algorithm against seven types of arrhythmia signals (atrial fibrillation, atrial premature beat, ventricular premature beat, normal beat, ventricular tachycardia, atrial tachycardia, and sinus bradycardia) is 98.3%.
Collapse
Affiliation(s)
- Hongqiang Li
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China; (Z.A.); (S.Z.); (C.Z.); (W.S.); (Q.M.); (Y.M.)
- Correspondence:
| | - Zhixuan An
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China; (Z.A.); (S.Z.); (C.Z.); (W.S.); (Q.M.); (Y.M.)
| | - Shasha Zuo
- Textile Fiber Inspection Center, Tianjin Product Quality Inspection Technology Research Institute, Tianjin 300192, China; (S.Z.); (W.Z.)
| | - Wei Zhu
- Textile Fiber Inspection Center, Tianjin Product Quality Inspection Technology Research Institute, Tianjin 300192, China; (S.Z.); (W.Z.)
| | - Zhen Zhang
- School of Computer Science and Technology, Tiangong University, Tianjin 300387, China;
| | - Shanshan Zhang
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China; (Z.A.); (S.Z.); (C.Z.); (W.S.); (Q.M.); (Y.M.)
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300071, China
| | - Cheng Zhang
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China; (Z.A.); (S.Z.); (C.Z.); (W.S.); (Q.M.); (Y.M.)
| | - Wenchao Song
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China; (Z.A.); (S.Z.); (C.Z.); (W.S.); (Q.M.); (Y.M.)
| | - Quanhua Mao
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China; (Z.A.); (S.Z.); (C.Z.); (W.S.); (Q.M.); (Y.M.)
| | - Yuxin Mu
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China; (Z.A.); (S.Z.); (C.Z.); (W.S.); (Q.M.); (Y.M.)
| | - Enbang Li
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Juan Daniel Prades García
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona (UB), E-08028 Barcelona, Spain;
| |
Collapse
|
36
|
Xiao J, Liu J, Yang H, Liu Q, Wang N, Zhu Z, Chen Y, Long Y, Chang L, Zhou L, Zhou J. ULECGNet: An Ultra-Lightweight End-to-End ECG Classification Neural Network. IEEE J Biomed Health Inform 2021; 26:206-217. [PMID: 34143746 DOI: 10.1109/jbhi.2021.3090421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
ECG classification is a key technology in intelligent ECG monitoring. In the past, traditional machine learning methods such as SVM and KNN have been used for ECG classification, but with limited classification accuracy. Recently, the end-to-end neural network has been used for the ECG classification and shows high classification accuracy. However, the end-to-end neural network has large computational complexity including a large number of parameters and operations. Although dedicated hardware such as FPGA and ASIC can be developed to accelerate the neural network, they result in large power consumption, large design cost, or limited flexibility. In this work, we have proposed an ultra-lightweight end-to-end ECG classification neural network which has extremely low computational complexity (~8.2k parameters & ~227k MUL/ADD operations) and can be squeezed into a low-cost MCU (i.e. microcontroller) while achieving 99.1% overall classification accuracy. This outperforms the state-of-the-art ECG classification neural network. Implemented on a low-cost MCU (i.e. MSP432), the proposed design consumes only 0.4 mJ and 3.1 mJ per heartbeat classification for normal and abnormal heartbeats respectively for real-time ECG classification.
Collapse
|
37
|
Guo Y, Liu X, Peng S, Jiang X, Xu K, Chen C, Wang Z, Dai C, Chen W. A review of wearable and unobtrusive sensing technologies for chronic disease management. Comput Biol Med 2021; 129:104163. [PMID: 33348217 PMCID: PMC7733550 DOI: 10.1016/j.compbiomed.2020.104163] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022]
Abstract
With the rapidly increasing number of patients with chronic disease, numerous recent studies have put great efforts into achieving long-term health monitoring and patient management. Specifically, chronic diseases including cardiovascular disease, chronic respiratory disease and brain disease can threaten patients' health conditions over a long period of time, thus effecting their daily lives. Vital health parameters, such as heart rate, respiratory rate, SpO2 and blood pressure, are closely associated with patients’ conditions. Wearable devices and unobtrusive sensing technologies can detect such parameters in a convenient way and provide timely predictions on health condition deterioration by tracking these biomedical signals and health parameters. In this paper, we review current advancements in wearable devices and unobtrusive sensing technologies that can provides possible tools and technological supports for chronic disease management. Current challenges and future directions of related techniques are addressed accordingly.
Collapse
Affiliation(s)
- Yao Guo
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Xiangyu Liu
- School of Art Design and Media, East China University of Science and Technology, Shanghai, 200237, China
| | - Shun Peng
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Xinyu Jiang
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ke Xu
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Chen Chen
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zeyu Wang
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Chenyun Dai
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| | - Wei Chen
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
38
|
|
39
|
Bauer FC, Muir DR, Indiveri G. Real-Time Ultra-Low Power ECG Anomaly Detection Using an Event-Driven Neuromorphic Processor. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1575-1582. [PMID: 31715572 DOI: 10.1109/tbcas.2019.2953001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate detection of pathological conditions in human subjects can be achieved through off-line analysis of recorded biological signals such as electrocardiograms (ECGs). However, human diagnosis is time-consuming and expensive, as it requires the time of medical professionals. This is especially inefficient when indicative patterns in the biological signals are infrequent. Moreover, patients with suspected pathologies are often monitored for extended periods, requiring the storage and examination of large amounts of non-pathological data, and entailing a difficult visual search task for diagnosing professionals. In this work we propose a compact and sub-mW low power neural processing system that can be used to perform on-line and real-time preliminary diagnosis of pathological conditions, to raise warnings for the existence of possible pathological conditions, or to trigger an off-line data recording system for further analysis by a medical professional. We apply the system to real-time classification of ECG data for distinguishing between healthy heartbeats and pathological rhythms. Multi-channel analog ECG traces are encoded as asynchronous streams of binary events and processed using a spiking recurrent neural network operated in a reservoir computing paradigm. An event-driven neuron output layer is then trained to recognize one of several pathologies. Finally, the filtered activity of this output layer is used to generate a binary trigger signal indicating the presence or absence of a pathological pattern. We validate the approach proposed using a Dynamic Neuromorphic Asynchronous Processor (DYNAP) chip, implemented using a standard 180 nm CMOS VLSI process, and present experimental results measured from the chip.
Collapse
|