1
|
Levi A, Aviv N, Stark E. Learning to learn: Single session acquisition of new rules by freely moving mice. PNAS NEXUS 2024; 3:pgae203. [PMID: 38818240 PMCID: PMC11138122 DOI: 10.1093/pnasnexus/pgae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Learning from examples and adapting to new circumstances are fundamental attributes of human cognition. However, it is unclear what conditions allow for fast and successful learning, especially in nonhuman subjects. To determine how rapidly freely moving mice can learn a new discrimination criterion (DC), we design a two-alternative forced-choice visual discrimination paradigm in which the DCs governing the task can change between sessions. We find that experienced animals can learn a new DC after being exposed to only five training and three testing trials. The propensity for single session learning improves over time and is accurately predicted based on animal experience and criterion difficulty. After establishing the procedural learning of a paradigm, mice continuously improve their performance in new circumstances. Thus, mice learn to learn.
Collapse
Affiliation(s)
- Amir Levi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Aviv
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Department of Neurobiology, Haifa University, Haifa 3103301, Israel
| |
Collapse
|
2
|
Kinsky NR, Vöröslakos M, Ruiz JRL, Watkins de Jong L, Slager N, McKenzie S, Yoon E, Diba K. Simultaneous Electrophysiology and Optogenetic Perturbation of the Same Neurons in Chronically Implanted Animals using μLED Silicon Probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527184. [PMID: 36798252 PMCID: PMC9934577 DOI: 10.1101/2023.02.05.527184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Optogenetics are a powerful tool for testing how a neural circuit influences neural activity, cognition, and behavior. Accordingly, the number of studies employing optogenetic perturbation has grown exponentially over the last decade. However, recent studies have highlighted that the impact of optogenetic stimulation/silencing can vary depending on the construct used, the local microcircuit connectivity, extent/power of illumination, and neuron types perturbed. Despite these caveats, the majority of studies employ optogenetics without simultaneously recording neural activity in the circuit that is being perturbed. This dearth of simultaneously recorded neural data is due in part to technical difficulties in combining optogenetics and extracellular electrophysiology. The recent introduction of μLED silicon probes, which feature independently controllable miniature LEDs embedded at several levels of each of multiple shanks of silicon probes, provides a tractable method for temporally and spatially precise interrogation of neural circuits. Here, we provide a protocol addressing how to perform chronic recordings using μLED probes. This protocol provides a schematic for performing causal and reproducible interrogations of neural circuits and addresses all phases of the recording process: introduction of optogenetic construct, implantation of the μLED probe, performing simultaneous optogenetics and electrophysiology in vivo , and post-processing of recorded data. SUMMARY This method allows a researcher to simultaneously perturb neural activity and record electrophysiological signal from the same neurons with high spatial specificity using silicon probes with integrated μLEDs. We outline a procedure detailing all stages of the process for performing reliable μLED experiments in chronically implanted rodents.
Collapse
Affiliation(s)
- Nathaniel R Kinsky
- Department of Anesthesiology and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mihály Vöröslakos
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Jose Roberto Lopez Ruiz
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurel Watkins de Jong
- Department of Anesthesiology and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nathan Slager
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sam McKenzie
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
- Department of Neuroscience, University of New Mexico, Albuquerque, NM 87131
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Kamran Diba
- Department of Anesthesiology and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|