1
|
Hsiao YT, Tsai YC, Foo W, Hou HY, Su YC, Li YL, Chien JC. An RFID-Inspired One-Step Packaged Multimode Bio-Analyzer with Vacuum Microfluidics for Point-of-Care Diagnostics. DIGEST OF TECHNICAL PAPERS. IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE 2025; 2025:352-354. [PMID: 40144578 PMCID: PMC11939002 DOI: 10.1109/isscc49661.2025.10904714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Affiliation(s)
| | | | - Wei Foo
- University of California, Berkeley, CA
| | | | - Yun-Chun Su
- National Taiwan University, Taipei City, Taiwan
| | | | | |
Collapse
|
2
|
Liu Q, Mendoza DA, Yasar A, Caygara D, Kassem A, Densmore D, Yazicigil RT. Integrated Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy in Droplet Microfluidics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1233-1252. [PMID: 39509304 PMCID: PMC11875993 DOI: 10.1109/tbcas.2024.3491594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
High-throughput biosensor screening and optimization are critical for health and environmental monitoring applications to ensure rapid and accurate detection of biological and chemical targets. Traditional biosensor design and optimization methods involve labor-intensive processes, such as manual pipetting of large sample volumes, making them low throughput and inefficient for large-scale library screenings under various environmental and chemical conditions. We address these challenges by introducing a modular droplet microfluidic system embedded with custom CMOS integrated circuits (ICs) for impedance spectroscopy and bioluminescence detection. Fabricated in a 65 nm process, our CMOS ICs enable efficient droplet detection and analysis. We demonstrate successful sensing of luciferase enzyme-substrate reactions in nL-volume droplets. The impedance spectroscopy chip detects 4 nL droplets at 67 mm/s with a 45 pA resolution, while the luminescence detector senses optical signals from 38 nL droplets with a 6.7 nA/count resolution. We show real-time concurrent use of both detection methods within our hybrid platform for cross-validation. This system greatly advances conventional biosensor testing by increasing flexibility, scalability, and cost-efficiency.
Collapse
|
3
|
Moeinfard T, Ghafar-Zadeh E, Magierowski S. CMOS Point-of-Care Diagnostics Technologies: Recent Advances and Future Prospects. MICROMACHINES 2024; 15:1320. [PMID: 39597132 PMCID: PMC11596111 DOI: 10.3390/mi15111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
This review provides a comprehensive overview of point-of-care (PoC) devices across several key diagnostic applications, including blood analysis, infectious disease detection, neural interfaces, and commercialized integrated circuits (ICs). In the blood analysis section, the focus is on biomarkers such as glucose, dopamine, and aptamers, and their respective detection techniques. The infectious disease section explores PoC technologies for detecting pathogens, RNA, and DNA, highlighting innovations in molecular diagnostics. The neural interface section reviews advancements in neural recording and stimulation for therapeutic applications. Finally, a survey of commercialized ICs from companies such as Abbott and Medtronic is presented, showcasing existing PoC devices already in widespread clinical use. This review emphasizes the role of complementary metal-oxide-semiconductor (CMOS) technology in enabling compact, efficient diagnostic systems and offers insights into the current and future landscape of PoC devices.
Collapse
Affiliation(s)
- Tania Moeinfard
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (T.M.); (S.M.)
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, York University, Toronto, ON M3J 1P3, Canada
- Electronic Machine Intelligence Lab, York University, Toronto, ON M3J 1P3, Canada
| | - Ebrahim Ghafar-Zadeh
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (T.M.); (S.M.)
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, York University, Toronto, ON M3J 1P3, Canada
| | - Sebastian Magierowski
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (T.M.); (S.M.)
- Electronic Machine Intelligence Lab, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Tang H, Venkatesh S, Lin Z, Lu X, Saeeidi H, Javanmard M, Sengupta K. High Sensitivity and High Throughput Magnetic Flow CMOS Cytometers With 2D Oscillator Array and Inter-Sensor Spectrogram Cross-Correlation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:923-937. [PMID: 38393850 DOI: 10.1109/tbcas.2024.3367668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
In the paper, we present an integrated flow cytometer with a 2D array of magnetic sensors based on dual-frequency oscillators in a 65-nm CMOS process, with the chip packaged with microfluidic controls. The sensor architecture and the presented array signal processing allows uninhibited flow of the sample for high throughput without the need for hydrodynamic focusing to a single sensor. To overcome the challenge of sensitivity and specificity that comes as a trade off with high throughout, we perform two levels of signal processing. First, utilizing the fact that a magnetically tagged cell is expected to excite sequentially an array of sensors in a time-delayed fashion, we perform inter-site cross-correlation of the sensor spectrograms that allows us to suppress the probability of false detection drastically, allowing theoretical sensitivity reaching towards sub-ppM levels that is needed for rare cell or circulating tumor cell detection. In addition, we implement two distinct methods to suppress correlated low frequency drifts of singular sensors-one with an on-chip sensor reference and one that utilizes the frequency dependence of the susceptibility of super-paramagnetic magnetic beads that we deploy as tags. We demonstrate these techniques on a 7 ×7 sensor array in 65 nm CMOS technology packaged with microfluidics with magnetically tagged dielectric particles and cultu lymphoma cancer cells.
Collapse
|
5
|
Lee D, Jung D, Jiang F, Junek GV, Park J, Liu H, Kong Y, Wang A, Kim Y, Choi KS, Wang J, Wang H. A Multi-Functional CMOS Biosensor Array With On-Chip DEP-Assisted Sensing for Rapid Low-Concentration Analyte Detection and Close-Loop Particle Manipulation With No External Electrodes. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1214-1226. [PMID: 38096094 DOI: 10.1109/tbcas.2023.3343068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This article presents a fully-integrated dielectrophoresis (DEP)-assisted multi-functional CMOS biosensor array chip with 4096 working electrodes (WEs), 12288 photodiodes (PDs), reference electrodes (REs), and counter electrodes (CEs), while each WE and photodiode can be reconfigured to support on-chip DEP actuation, electrochemical potentiostat, optical shadow imaging, and complex impedance sensing. The proposed CMOS biosensor is an example of an actuation-assisted label-free biosensor for the rapid sensing of low-concentration analytes. The DEP actuator of the proposed CMOS biosensor does not require any external electrode. Instead, on-chip WE pairs can be re-used for DEP actuation to simplify the sensor array design. The CMOS biosensor is implemented in a standard 130-nm BiCMOS process. Theoretical analyses and finite element method (FEM) simulations of the on-chip DEP operations are conducted as proof of concept. Biological assay measurements (DEP actuation/electrochemical potentiostat/impedance sensing) with E.coli bacteria and microbeads (optical shadow imaging) demonstrate rapid detection of low-concentration analytes and simultaneous manipulation and detection of large particles. The on-chip DEP operations draw the analytes closer to the sensor electrode surface, which overcomes the diffusion limit and accelerates low-concentration analyte sensing. Moreover, the DEP-based movement of large particles can be readily detected by on-chip photodiode arrays to achieve close-loop manipulation and sensing of particles and droplets. These show the unique advantages of the DEP-assisted multi-functional biosensor.
Collapse
|
6
|
Iyer V, Issadore DA, Aflatouni F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. LAB ON A CHIP 2023; 23:2553-2576. [PMID: 37114950 DOI: 10.1039/d2lc01163h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the field's inception, pioneers in microfluidics have made significant progress towards realizing complete lab-on-chip systems capable of sophisticated sample analysis and processing. One avenue towards this goal has been to join forces with the related field of microelectronics, using integrated circuits (ICs) to perform on-chip actuation and sensing. While early demonstrations focused on using microfluidic-IC hybrid chips to miniaturize benchtop instruments, steady advancements in the field have enabled a new generation of devices that expand past miniaturization into high-performance applications that would not be possible without IC hybrid integration. In this review, we identify recent examples of labs-on-chip that use high-resolution, high-speed, and multifunctional electronic and photonic chips to expand the capabilities of conventional sample analysis. We focus on three particularly active areas: a) high-throughput integrated flow cytometers; b) large-scale microelectrode arrays for stimulation and multimodal sensing of cells over a wide field of view; c) high-speed biosensors for studying molecules with high temporal resolution. We also discuss recent advancements in IC technology, including on-chip data processing techniques and lens-free optics based on integrated photonics, that are poised to further advance microfluidic-IC hybrid chips.
Collapse
Affiliation(s)
- Vasant Iyer
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David A Issadore
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Iakovlev AP, Erofeev AS, Gorelkin PV. Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review. BIOSENSORS 2022; 12:956. [PMID: 36354465 PMCID: PMC9688261 DOI: 10.3390/bios12110956] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/02/2023]
Abstract
This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
Collapse
Affiliation(s)
| | | | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia
| |
Collapse
|
8
|
Shen B, Dawes J, Johnston ML. A 10 M Ω, 50 kHz-40 MHz Impedance Measurement Architecture for Source-Differential Flow Cytometry. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:766-778. [PMID: 35727776 DOI: 10.1109/tbcas.2022.3182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A low-power, impedance-based integrated circuit (IC) readout architecture is presented for cell analysis and cytometry applications. A three-electrode layout and source-differential excitation cancels baseline current prior to the sensor front-end, which enables the use of a high-gain readout circuit for the difference current. A lock-in architecture is employed with down-conversion and up-conversion in the feedback loop, enabling high closed-loop gain (up to 10 M Ω) and high bandwidth (up to 40 MHz). A hybrid-RC feedback network mitigates the SNR degradation seen over a wide operating frequency range when using purely capacitive feedback. The effect of phase shift on the closed-loop system gain and noise performance are analyzed in detail, along with optimization strategies, and the design includes fine-grained phase adjustment to minimize phase error. The impedance sensor was fabricated in a 0.18 μ m CMOS process and consumes 9.7 mW with an operating frequency from 50 kHz to 40 MHz and provides adjustable bandwidth. Measurements demonstrate that the impedance sensor achieves 6 pA [Formula: see text] input-referred noise over 200 Hz bandwidth at 0.5 MHz modulation frequency. Combined with a microfluidic flow cell, measured results using this source-differential measurement approach are presented using both monodisperse and polydisperse sample solutions and demonstrate single-cell resolution, detecting 3 μ m diameter particles in solution with 22 dB SNR.
Collapse
|
9
|
Zhu C, Maldonado J, Sengupta K. A Fully Integrated CMOS-controlled Scalable Microfluidics and Pneumatic-free Cell Actuation and Cytometry Sensing Device. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1279-1282. [PMID: 36086451 DOI: 10.1109/embc48229.2022.9871457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Moore's law has enabled massive scaling of complex computing and sensing systems in modern-day chip-scale architectures allowing extremely high yield and system complexity at very low-cost. Exploiting such Moore's law, we explore silicon-based integrated circuits and chip-scale systems to interface with biological fluids to manipulate, sense, and detect cells in real-time for an end-to-end low cost, miniaturized, and high sensitivity point-of-care diagnostics platform. Elimi-nating the need for complex, expensive, large and bulky syringe pumps and optical-based cytometers, the proposed system allows pneumatic-free AC electro-osmosis bulk fluid driving capabilities controlled by the CMOS chip, and integrated dielectrophoretic cell actuation with 2μm focusing accuracy, impedance spectroscopy sensing, and separation capabilities. The paper presents, for the first-time, a CMOS-driven cellular sensing platform for microfluidics that can be translated to a wide range of biomedical applications.
Collapse
|
10
|
Ebrahimi G, Samadi Pakchin P, Shamloo A, Mota A, de la Guardia M, Omidian H, Omidi Y. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases. Mikrochim Acta 2022; 189:252. [PMID: 35687204 DOI: 10.1007/s00604-022-05316-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
The integration of microfluidics with electrochemical analysis has resulted in the development of single miniaturized detection systems, which allows the precise control of sample volume with multianalyte detection capability in a cost- and time-effective manner. Microfluidic electrochemical sensing devices (MESDs) can potentially serve as precise sensing and monitoring systems for the detection of molecular markers in various detrimental diseases. MESDs offer several advantages, including (i) automated sample preparation and detection, (ii) low sample and reagent requirement, (iii) detection of multianalyte in a single run, (iv) multiplex analysis in a single integrated device, and (v) portability with simplicity in application and disposability. Label-free MESDs can serve an affordable real-time detection with a simple analysis in a short processing time, providing point-of-care diagnosis/detection possibilities in precision medicine, and environmental analysis. In the current review, we elaborate on label-free microfluidic biosensors, provide comprehensive insights into electrochemical detection techniques, and discuss the principles of label-free microfluidic-based sensing approaches.
Collapse
Affiliation(s)
- Ghasem Ebrahimi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Mota
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|