1
|
Bendiksen BA, McGinley G, Sjaastad I, Zhang L, Espe EKS. A 4D continuous representation of myocardial velocity fields from tissue phase mapping magnetic resonance imaging. PLoS One 2021; 16:e0247826. [PMID: 33647070 PMCID: PMC7920379 DOI: 10.1371/journal.pone.0247826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/14/2021] [Indexed: 11/19/2022] Open
Abstract
Myocardial velocities carry important diagnostic information in a range of cardiac diseases, and play an important role in diagnosing and grading left ventricular diastolic dysfunction. Tissue Phase Mapping (TPM) Magnetic Resonance Imaging (MRI) enables discrete sampling of the myocardium’s underlying smooth and continuous velocity field. This paper presents a post-processing framework for constructing a spatially and temporally smooth and continuous representation of the myocardium’s velocity field from TPM data. In the proposed scheme, the velocity field is represented through either linear or cubic B-spline basis functions. The framework facilitates both interpolation and noise reducing approximation. As a proof-of-concept, the framework was evaluated using artificially noisy (i.e., synthetic) velocity fields created by adding different levels of noise to an original TPM data. The framework’s ability to restore the original velocity field was investigated using Bland-Altman statistics. Moreover, we calculated myocardial material point trajectories through temporal integration of the original and synthetic fields. The effect of noise reduction on the calculated trajectories was investigated by assessing the distance between the start and end position of material points after one complete cardiac cycle (end point error). We found that the Bland-Altman limits of agreement between the original and the synthetic velocity fields were reduced after application of the framework. Furthermore, the integrated trajectories exhibited consistently lower end point error. These results suggest that the proposed method generates a realistic continuous representation of myocardial velocity fields from noisy and discrete TPM data. Linear B-splines resulted in narrower limits of agreement between the original and synthetic fields, compared to Cubic B-splines. The end point errors were also consistently lower for Linear B-splines than for cubic. Linear B-splines therefore appear to be more suitable for TPM data.
Collapse
Affiliation(s)
- Bård A. Bendiksen
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Bjørknes University College, Oslo, Norway
- * E-mail:
| | - Gary McGinley
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Emil K. S. Espe
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Chitiboi T, Axel L. Magnetic resonance imaging of myocardial strain: A review of current approaches. J Magn Reson Imaging 2017; 46:1263-1280. [PMID: 28471530 DOI: 10.1002/jmri.25718] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/14/2017] [Indexed: 11/07/2022] Open
Abstract
Contraction of the heart is central to its purpose of pumping blood around the body. While simple global function measures (such as the ejection fraction) are most commonly used in the clinical assessment of cardiac function, MRI also provides a range of approaches for quantitatively characterizing regional cardiac function, including the local deformation (or strain) within the heart wall. While they have been around for some years, these methods are still undergoing further technical development, and they have had relatively little clinical evaluation. However, they can provide potentially useful new ways to assess cardiac function, which may be able to contribute to better classification and treatment of heart disease. This article provides some basic background on the physical and physiological factors that determine the motion of the heart, in health and disease and then reviews some of the ways that MRI methods are being developed to image and quantify strain within the myocardium. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1263-1280.
Collapse
Affiliation(s)
- Teodora Chitiboi
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| | - Leon Axel
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| |
Collapse
|
3
|
Prediction of myocardial infarction by assessing regional cardiac wall in CMR images through active mesh modeling. Comput Biol Med 2017; 80:56-64. [DOI: 10.1016/j.compbiomed.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/22/2022]
|
4
|
Yoder JH, Peloquin JM, Song G, Tustison NJ, Moon SM, Wright AC, Vresilovic EJ, Gee JC, Elliott DM. Internal three-dimensional strains in human intervertebral discs under axial compression quantified noninvasively by magnetic resonance imaging and image registration. J Biomech Eng 2015; 136:1897007. [PMID: 25109533 DOI: 10.1115/1.4028250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/12/2014] [Indexed: 11/08/2022]
Abstract
Study objectives were to develop, validate, and apply a method to measure three-dimensional (3D) internal strains in intact human discs under axial compression. A custom-built loading device applied compression and permitted load-relaxation outside of the magnet while also maintaining compression and hydration during imaging. Strain was measured through registration of 300 μm isotropic resolution images. Excellent registration accuracy was achieved, with 94% and 65% overlap of disc volume and lamellae compared to manual segmentation, and an average Hausdorff, a measure of distance error, of 0.03 and 0.12 mm for disc volume and lamellae boundaries, respectively. Strain maps enabled qualitative visualization and quantitative regional annulus fibrosus (AF) strain analysis. Axial and circumferential strains were highest in the lateral AF and lowest in the anterior and posterior AF. Radial strains were lowest in the lateral AF, but highly variable. Overall, this study provided new methods that will be valuable in the design and evaluation surgical procedures and therapeutic interventions.
Collapse
|
5
|
Ardekani S, Gunter G, Jain S, Weiss RG, Miller MI, Younes L. Estimating dense cardiac 3D motion using sparse 2D tagged MRI cross-sections. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5101-4. [PMID: 25571140 DOI: 10.1109/embc.2014.6944772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this work, we describe a new method, an extension of the Large Deformation Diffeomorphic Metric Mapping to estimate three-dimensional deformation of tagged Magnetic Resonance Imaging Data. Our approach relies on performing non-rigid registration of tag planes that were constructed from set of initial reference short axis tag grids to a set of deformed tag curves. We validated our algorithm using in-vivo tagged images of normal mice. The mapping allows us to compute root mean square distance error between simulated tag curves in a set of long axis image planes and the acquired tag curves in the same plane. Average RMS error was 0.31 ± 0.36(SD) mm, which is approximately 2.5 voxels, indicating good matching accuracy.
Collapse
|
6
|
Jiang K, Yu X. Quantification of regional myocardial wall motion by cardiovascular magnetic resonance. Quant Imaging Med Surg 2014; 4:345-57. [PMID: 25392821 DOI: 10.3978/j.issn.2223-4292.2014.09.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
Abstract
Cardiovascular magnetic resonance (CMR) is a versatile tool that also allows comprehensive and accurate measurement of both global and regional myocardial contraction. Quantification of regional wall motion parameters, such as strain, strain rate, twist and torsion, has been shown to be more sensitive to early-stage functional alterations. Since the invention of CMR tagging by magnetization saturation in 1988, several CMR techniques have been developed to enable the measurement of regional myocardial wall motion, including myocardial tissue tagging, phase contrast mapping, displacement encoding with stimulated echoes (DENSE), and strain encoded (SENC) imaging. These techniques have been developed with their own advantages and limitations. In this review, two widely used and closely related CMR techniques, i.e., tissue tagging and DENSE, will be discussed from the perspective of pulse sequence development and image-processing techniques. The clinical and preclinical applications of tissue tagging and DENSE in assessing wall motion mechanics in both normal and diseased hearts, including coronary artery diseases, hypertrophic cardiomyopathy, aortic stenosis, and Duchenne muscular dystrophies, will be discussed.
Collapse
Affiliation(s)
- Kai Jiang
- 1 Departments of Biomedical Engineering, 2 Case Center for Imaging Research, 3 Radiology, and 4 Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- 1 Departments of Biomedical Engineering, 2 Case Center for Imaging Research, 3 Radiology, and 4 Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Tavakoli V, Bhatia N, Longaker RA, Stoddard MF, Amini AA. Tissue Doppler Imaging Optical Flow (TDIOF): A Combined B-Mode and Tissue Doppler Approach for Cardiac Motion Estimation in Echocardiographic Images. IEEE Trans Biomed Eng 2014; 61:2264-77. [DOI: 10.1109/tbme.2014.2299551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Schreibmann E, Crocker I, Schuster DM, Curran WJ, Fox T. Four-dimensional (4D) motion detection to correct respiratory effects in treatment response assessment using molecular imaging biomarkers. Technol Cancer Res Treat 2013; 13:571-82. [PMID: 24000982 PMCID: PMC4215703 DOI: 10.7785/tcrtexpress.2013.600255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Observing early metabolic changes in positron emission tomography (PET) is an essential tool to assess treatment efficiency in radiotherapy. However, for thoracic regions, the use of three-dimensional (3D) PET imaging is unfeasible because the radiotracer activity is smeared by the respiratory motion and averaged during the imaging acquisition process. This motion-induced degradation is similar in magnitude with the treatment-induced changes, and the two occurrences become indiscernible. We present a customized temporal-spatial deformable registration method for quantifying respiratory motion in a four-dimensional (4D) PET dataset. Once the motion is quantified, a motion-corrected (MC) dataset is created by tracking voxels to eliminate breathing-induced changes in the 4D imaging scan. The 4D voxel-tracking data is then summed to yield a 3D MC-PET scan containing only treatment-induced changes. This proof of concept is exemplified on both phantom and clinical data, where the proposed algorithm tracked the trajectories of individual points through the 4D datasets reducing motion to less than 4 mm in all phases. This correction approach using deformable registration can discern motion blurring from treatment-induced changes in treatment response assessment using PET imaging.
Collapse
Affiliation(s)
- Eduard Schreibmann
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|
9
|
Wang H, Amini AA. Cardiac motion and deformation recovery from MRI: a review. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:487-503. [PMID: 21997253 DOI: 10.1109/tmi.2011.2171706] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Magnetic resonance imaging (MRI) is a highly advanced and sophisticated imaging modality for cardiac motion tracking and analysis, capable of providing 3D analysis of global and regional cardiac function with great accuracy and reproducibility. In the past few years, numerous efforts have been devoted to cardiac motion recovery and deformation analysis from MR image sequences. Many approaches have been proposed for tracking cardiac motion and for computing deformation parameters and mechanical properties of the heart from a variety of cardiac MR imaging techniques. In this paper, an updated and critical review of cardiac motion tracking methods including major references and those proposed in the past ten years is provided. The MR imaging and analysis techniques surveyed are based on cine MRI, tagged MRI, phase contrast MRI, DENSE, and SENC. This paper can serve as a tutorial for new researchers entering the field.
Collapse
Affiliation(s)
- Hui Wang
- Department of Electrical and Computer Engineering,University of Louisville, Louisville, KY 40292 USA.
| | | |
Collapse
|
10
|
Ibrahim ESH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 2011; 13:36. [PMID: 21798021 PMCID: PMC3166900 DOI: 10.1186/1532-429x-13-36] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging.
Collapse
|
11
|
Chen SY, Guan Q. Parametric Shape Representation by a Deformable NURBS Model for Cardiac Functional Measurements. IEEE Trans Biomed Eng 2011; 58:480-7. [PMID: 20952325 DOI: 10.1109/tbme.2010.2087331] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheng Yong Chen
- College of Computer Science, Zhejiang University of Technology, Hangzhou 310023, China.
| | | |
Collapse
|
12
|
Kramer U, Hennemuth A, Fenchel M. [Myocardial MR tagging: analysis of regional and global myocardial function]. Radiologe 2010; 50:532-40. [PMID: 20393692 DOI: 10.1007/s00117-010-1989-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Myocardial MR tagging is a powerful method which allows for assessment of myocardial function and may become an important tool for clinical evaluation of cardiac dysfunction, particularly in ischemic heart disease. In addition to visual assessment it allows direct quantification of myocardial deformation and strain to measure contractility. The use of myocardial tagging has provided new insights into the (patho)physiology of regional wall motion, and several parameters have been described as being useful to identify an ischemic response of the myocardium. One challenge encountered with tagging at 1.5 T is the fading of tags at end-diastole, greatly limiting the evaluation of myocardial function during diastole. Due to longer T(1) relaxation times of the myocardium, tagging at 3 T has shown to have a higher CNR(Tag) and better tag persistence when compared to current clinical gradient-echo tagging protocols at 1.5 T. As a consequence, tagging at higher field strengths may be well suited for the characterization of the diastolic portion of the cardiac cycle in future applications.
Collapse
Affiliation(s)
- U Kramer
- Abt. für Diagnostische und Interventionelle Radiologie, Radiologische Klinik, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen.
| | | | | |
Collapse
|
13
|
Kermani S, Moradi MH, Abrishami-Moghaddam H, Saneei H, Marashi MJ, Shahbazi-Gahrouei D. Quantitative analysis of left ventricular performance from sequences of cardiac magnetic resonance imaging using active mesh model. Comput Med Imaging Graph 2009; 33:222-34. [PMID: 19196492 DOI: 10.1016/j.compmedimag.2008.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/06/2008] [Accepted: 12/12/2008] [Indexed: 12/01/2022]
Abstract
In this study, the local and global left ventricular function are estimated by fitting three-dimensional active mesh model (3D-AMM) to the initial sparse displacement which is measured from an establishing point correspondence procedure. To evaluate the performance of the algorithm, eight image sequences were used and the results were compared with those reported by other researchers. The findings were consistent with previously published values and the clinical evidence as well. The results demonstrated the superiority of the novel strategy with respect to formerly presented algorithm reported by author et al. Furthermore, the results are comparable to the current state-of-the-art methods.
Collapse
Affiliation(s)
- S Kermani
- Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | | | |
Collapse
|
14
|
Schreibmann E, Thorndyke B, Li T, Wang J, Xing L. Four-dimensional image registration for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 2008; 71:578-86. [PMID: 18374499 DOI: 10.1016/j.ijrobp.2008.01.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 12/10/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE Newly emerged four-dimensional (4D) imaging techniques such as 4D-computed tomography (CT), 4D-cone beam CT, 4D-magnetic resonance imaging, and 4D-positron emission tomography are effective tools to reveal the spatiotemporal details of patients' anatomy. To use the 4D data acquired under different conditions or using different modalities, an algorithm for registering 4D images must be in place. We developed an automated 4D-4D registration method to take advantage of 4D information. METHODS AND MATERIALS We used 4D-4D matching to find the appropriate three-dimensional anatomy in the fixed image for each phase of the moving image and spatially register them. A search algorithm was implemented to simultaneously find the best phase and spatial match of two 4D inputs. An interpolation scheme capable of deriving an image set based on temporally adjacent three-dimensional data sets was developed to deal with the situation in which the discrete temporal points of the two inputs do not coincide or correspond. RESULTS In a phantom study, our technique was able to reproduce the known "ground truth" with high spatial fidelity. The technique regenerated all deliberately introduced "missing" three-dimensional images at different phases of the input using temporal interpolation. In the registration of gated-magnetic resonance imaging and 4D-CT, the algorithm was able to select the appropriate CT phase. The technique was also able to register 4D-CT with 4D-cone beam CT and two 4D-CT scans acquired at different times. A spatial accuracy of <3 mm was achieved in 98% of voxels in all cases. CONCLUSION Automated 4D-4D registration can find the best possible spatiotemporal match between two 4D data sets and is useful for image-guided radiotherapy applications.
Collapse
Affiliation(s)
- Eduard Schreibmann
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847, USA
| | | | | | | | | |
Collapse
|
15
|
Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM, Epstein FH. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE TRANSACTIONS ON MEDICAL IMAGING 2007; 26:15-30. [PMID: 17243581 DOI: 10.1109/tmi.2006.884215] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Displacement encoding with stimulated echoes (DENSE) encodes myocardial tissue displacement into the phase of the MR image. Cine DENSE allows for rapid quantification of myocardial displacement at multiple cardiac phases through the majority of the cardiac cycle. For practical sensitivities to motion, relatively high displacement encoding frequencies are used and phase wrapping typically occurs. In order to obtain absolute measures of displacement, a two-dimensional (2-D) quality-guided phase unwrapping algorithm was adapted to unwrap both spatially and temporally. Both a fully automated algorithm and a faster semi-automated algorithm are proposed. A method for computing the 2-D trajectories of discrete points in the myocardium as they move through the cardiac cycle is introduced. The error in individual displacement measurements is reduced by fitting a time series to sequential displacement measurements along each trajectory. This improvement is in turn reflected in strain maps, which are derived directly from the trajectories. These methods were validated both in vivo and on a rotating phantom. Further measurements were made to optimize the displacement encoding frequency and to estimate the baseline strain noise both on the phantom and in vivo. The fully automated phase unwrapping algorithm was successful for 767 out of 800 images (95.9%), and the semi-automated algorithm was successful for 786 out of 800 images (98.3%). The accuracy of the tracking algorithm for typical cardiac displacements on a rotating phantom is 0.24 +/- 0.15 mm. The optimal displacement encoding frequency is in the region of 0.1 cycles/mm, and, for 2 scans of 17-s duration, the strain noise after temporal fitting was estimated to be 2.5 +/- 3.0% at end-diastole, 3.1 +/- 3.1% at end-systole, and 5.3 +/- 5.0% in mid-diastole. The improvement in intra-myocardial strain measurements due to temporal fitting is apparent in strain histograms, and also in identifying regions of dysfunctional myocardium in studies of patients with infarcts.
Collapse
Affiliation(s)
- B S Spottiswoode
- MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town 7925, South Africa.
| | | | | | | | | | | | | |
Collapse
|
16
|
Generalized n-D C k B-Spline Scattered Data Approximation with Confidence Values. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/11812715_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
17
|
Tustison NJ, Amini AA. Biventricular myocardial strains via nonrigid registration of anatomical NURBS model [corrected]. IEEE TRANSACTIONS ON MEDICAL IMAGING 2006; 25:94-112. [PMID: 16398418 DOI: 10.1109/tmi.2005.861015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present research in which both left and right ventricular deformation is estimated from tagged cardiac magnetic resonance imaging using volumetric deformable models constructed from nonuniform rational B-splines (NURBS). The four model types considered and compared for the left ventricle include two Cartesian NURBS models--one with a cylindrical parameter assignment and one with a prolate spheroidal parameter assignment. The remaining two are non-Cartesian, i.e., prolate spheroidal and cylindrical each with their respective prolate spheroidal and cylindrical parameter assignment regimes. These choices were made based on the typical shape of the left ventricle. For each frame starting with end-diastole, a NURBS model is constructed by fitting two surfaces with the same parameterization to the corresponding set of epicardial and endocardial contours from which a volumetric model is created. Using normal displacements of the three sets of orthogonal tag planes as well as displacements of contour/tag line intersection points and tag plane intersection points, one can solve for the optimal homogeneous coordinates, in a weighted least squares sense, of the control points of the deformed NURBS model at end-diastole using quadratic programming. This allows for subsequent nonrigid registration of the biventricular model at end-diastole to all later time frames. After registration of the model to all later time points, the registered NURBS models are temporally lofted in order to create a comprehensive four-dimensional NURBS model. From the lofted model, we can extract three-dimensional myocardial deformation fields and corresponding Lagrangian and Eulerian strain maps which are local measures of nonrigid deformation. The results show that, in the case of simulated data, the quadratic Cartesian NURBS models with the cylindrical and prolate spheroidal parameter assignments outperform their counterparts in predicting normal strain. The decreased complexity associated with the Cartesian model with the cylindrical parameter assignment prompted its use for subsequent calculations. Lagrangian strains in three canine data, a normal human, and a patient with history of myocardial infarction are presented. Eulerian strains for the normal human data are also included.
Collapse
Affiliation(s)
- Nicholas J Tustison
- Cardiovascular Image Analysis Laboratory, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
18
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2003; 16:510-517. [PMID: 14719526 DOI: 10.1002/nbm.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|