1
|
Lin LY, Wu CK, Juang JMJ, Wang YC, Su MYM, Lai LP, Hwang JJ, Chiang FT, Tseng WYI, Lin JL. Myocardial Regional Interstitial Fibrosis is Associated With Left Intra-Ventricular Dyssynchrony in Patients With Heart Failure: A Cardiovascular Magnetic Resonance Study. Sci Rep 2016; 6:20711. [PMID: 26846306 PMCID: PMC4742892 DOI: 10.1038/srep20711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Left ventricular (LV) dyssynchrony is associated with poor prognosis in patients with heart failure (HF). The mechanisms leading to LV dyssynchrony are not fully elucidated. This study evaluates whether myocardium regional variation in interstitial fibrosis is associated with LV dyssynchrony. Forty-two patients with systolic heart failure (SHF), 76 patients with heart failure with preserved ejection fraction (HFpEF) and 20 patients without HF received cardiovascular magnetic resonance imaging (MRI) study. LV was divided into 18 segments by short-axis view. In each segment, regional extracellular volume fraction (ECV) and the time taken to reach minimum regional volume (Tmv) were derived. Intra-LV dyssynchrony were represented by maximum difference (Dysyn_max) and standard deviation (Dysyn_sd) of all Tmv. The results showed that among the covariates, only age (1.87, 95% CI: 0.61-3.13, p = 0.004) and ECV (3.77, 95% CI: 2.72-4.81, p < 0.001) were positively associated with Tmv. The results remained robust in certain subgroups. In conclusion, we demonstrated that LV myocardium regional variation in interstitial fibrosis is closely related to LV intra-ventricular dyssynchrony irrespective of the LV global function. These data might help explain the pathophysiology of LV dyssynchrony and it's underlying mechanisms leading to poor prognosis.
Collapse
Affiliation(s)
- Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Cho-Kai Wu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Jyh-Ming Jimmy Juang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Yi-Chih Wang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Mao-Yuan Marine Su
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Ling-Ping Lai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Juey-Jen Hwang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Fu-Tien Chiang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Wen-Yih Issac Tseng
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jiunn-Lee Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Suever JD, Fornwalt BK, Neuman LR, Delfino JG, Lloyd MS, Oshinski JN. Method to create regional mechanical dyssynchrony maps from short-axis cine steady-state free-precession images. J Magn Reson Imaging 2013; 39:958-65. [PMID: 24123528 DOI: 10.1002/jmri.24257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/15/2013] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop a robust method to assess regional mechanical dyssynchrony from cine short-axis MR images. Cardiac resynchronization therapy (CRT) is an effective treatment for patients with heart failure and evidence of left-ventricular (LV) dyssynchrony. Patient response to CRT is greatest when the LV pacing lead is placed in the most dyssynchronous segment. Existing techniques for assessing regional dyssynchrony require difficult acquisition and/or postprocessing. Our goal was to develop a widely applicable and robust method to assess regional mechanical dyssynchrony. MATERIALS AND METHODS Using the endocardial boundary, radial displacement curves (RDCs) were generated throughout the LV. Cross-correlation was used to determine the delay time between each RDC and a patient-specific reference. Delay times were projected onto the American Heart Association 17-segment model creating a regional dyssynchrony map. Our method was tested in 10 normal individuals and 10 patients enrolled for CRT (QRS > 120 ms, NYHA III-IV, EF < 35%). RESULTS Delay times over the LV were 23.9 ± 33.8 ms and 93.1 ± 99.9 ms (P < 0.001) in normal subjects and patients, respectively. Interobserver reproducibility for segment averages was 6.8 ± 39.3 ms and there was 70% agreement in identifying the latest contracting segment. CONCLUSION We have developed a method that can reliably calculate regional delay times from cine steady-state free-precession (SSFP) images. Maps of regional dyssynchrony could be used to identify the latest-contracting segment to assist in CRT lead implantation.
Collapse
Affiliation(s)
- Jonathan D Suever
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology / Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
3
|
Mischi M, Kaklidou F, Houthuizen P, Aben JP, Prinzen FW, Bracke F, van den Bosch H, Korsten HHM. Three-dimensional quantification of regional left-ventricular dyssynchrony by magnetic resonance imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2646-9. [PMID: 22254885 DOI: 10.1109/iembs.2011.6090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heart failure accounts for over five million patients in the United States alone. Many of them present dyssynchronous left ventricular (LV) contraction, whose treatment by cardiac resynchronization therapy (CRT) is until now guided by electrocardiographic analysis. One third of the selected patients, however, does not respond to the therapy. Aiming at improving the response rate, recent studies showed the importance of left bundle branch block (LBBB) configurations. Therefore, in order to detect motion patterns that relate to LBBB, this paper presents a novel method for three-dimensional quantification of regional LV mechanical dyssynchrony. LV wall-motion analysis is performed on magnetic resonance imaging (MRI) cines segmented by commercial software. Mutual delays between endocardial wall motion in different LV regions are estimated by cross correlation followed by phase difference analysis in frequency domain, achieving unlimited time resolution. Rather than focusing on the systolic phase, the full cardiac cycle is used to estimate the contraction timing. The method was successfully validated against MRI tagging in five dogs before and after LBBB induction. Preliminary validation in humans with 10 LBBB patients and 7 healthy subjects showed the method feasibility and reproducibility, with sensitivity and specificity in LBBB detection equal to 95.1% and 99.4%, respectively.
Collapse
Affiliation(s)
- M Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
4
|
AlJaroudi W, Chen J, Jaber WA, Lloyd SG, Cerqueira MD, Marwick T. Nonechocardiographic imaging in evaluation for cardiac resynchronization therapy. Circ Cardiovasc Imaging 2011; 4:334-43. [PMID: 21586744 DOI: 10.1161/circimaging.111.963504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wael AlJaroudi
- Department of Cardiovascular Medicine, Section of Imaging, Cleveland Clinic, Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Delfino JG, Fornwalt BK, Oshinski JN, Lerakis S. Role of MRI in patient selection for CRT. Echocardiography 2009; 25:1176-85. [PMID: 18986405 DOI: 10.1111/j.1540-8175.2008.00783.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Magnetic resonance imaging has great potential for aiding in the selection of patients who will respond to CRT. MRI is the only imaging tool that can simultaneously assess mechanical dyssynchrony, determine the amount and location of myocardial scar tissue, and map the location of cardiac venous anatomy-three important factors in predicting a patient's response to CRT. The goal of this manuscript is to review the MRI methods that can be used in the selection of patients for CRT.
Collapse
Affiliation(s)
- Jana G Delfino
- Department of Radiology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
6
|
Bibliography. Current world literature. Imaging and echocardiography. Curr Opin Cardiol 2008; 23:512-5. [PMID: 18670264 DOI: 10.1097/hco.0b013e32830d843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|