Mirfathollahi A, Ghodrati MT, Shalchyan V, Daliri MR. Decoding locomotion speed and slope from local field potentials of rat motor cortex.
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022;
223:106961. [PMID:
35759821 DOI:
10.1016/j.cmpb.2022.106961]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE
Local Field Potentials (LFPs) recorded from the primary motor cortex (M1) have been shown to be very informative for decoding movement parameters, and these signals can be used to decode forelimb kinematic and kinetic parameters accurately. Although locomotion is one of the most basic and important motor abilities of humans and animals, the potential of LFPs in decoding abstract hindlimb locomotor parameters has not been investigated. This study investigates the feasibility of decoding speed and slope of locomotion, as two important abstract parameters of walking, using the LFP signals.
METHODS
Rats were trained to walk smoothly on a treadmill with different speeds and slopes. The brain signals were recorded using the microwire arrays chronically implanted in the hindlimb area of M1 while rats walked on the treadmill. LFP channels were spatially filtered using optimal common spatial patterns to increase the discriminability of speeds and slopes of locomotion. Logarithmic wavelet band powers were extracted as basic features, and the best features were selected using the statistical dependency criterion before classification.
RESULTS
Using 5 s LFP trials, the average classification accuracies of four different speeds and seven different slopes reached 90.8% and 86.82%, respectively. The high-frequency LFP band (250-500 Hz) was the most informative band about these parameters and contributed more than other frequency bands in the final decoder model.
CONCLUSIONS
Our results show that the LFP signals in M1 accurately decode locomotion speed and slope, which can be considered as abstract walking parameters needed for designing long-term brain-computer interfaces for hindlimb locomotion control.
Collapse