1
|
Ou S, Hori K, Muangkram Y, Himeno Y, Tachibanaki S, Amano A. Analysis of the relationship between rod cell membrane currents and the photoreceptor component of electroretinograms using a cable model. Sci Rep 2025; 15:11211. [PMID: 40175484 PMCID: PMC11965377 DOI: 10.1038/s41598-025-95998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
This study presents a one-dimensional bidomain cable model for analyzing the relationship between rod membrane currents and rod electroretinogram (ERG) waveform components. The model incorporates the detailed structural and electrophysiological properties of rod photoreceptors by assuming the distribution of various ion currents. Simulation results indicate that the outer segment current (Iphoto) primarily influences the photoreceptor component of ERG in low-intensity light, while the transient potential notch shape called "nose," observed under high-intensity light stimulation, is mainly attributed to the Ih current in the inner segment. In addition, capacitive currents in the outer segment play a crucial role in maintaining extracellular current loops when Iphoto is inactive. These findings highlight that currents other than Iphoto, such as Ih and capacitive currents, contribute significantly to the ERG waveform, particularly under high-intensity light, as theoretically suggested by Robson et al. The model successfully reproduced the experimentally measured rod ERG waveforms and their local components, providing a foundational platform for further investigation of ERG mechanisms. This enhanced understanding could lead to improved clinical applications of ERG in the diagnosis and assessment of retinal conditions. Future work will focus on refining the ion channel distribution, incorporating additional transport mechanisms, and validating the model using a broader range of experimental data to better replicate the complex electrophysiological phenomena of rod photoreceptor cells.
Collapse
Affiliation(s)
- Shaocong Ou
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan
| | - Kouta Hori
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan
| | - Yuttamol Muangkram
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan
| | - Yukiko Himeno
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan
| | - Shuji Tachibanaki
- Division of Biology, Department of Natural Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Amano
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan.
| |
Collapse
|
2
|
Plank G, Loewe A, Neic A, Augustin C, Huang YL, Gsell MAF, Karabelas E, Nothstein M, Prassl AJ, Sánchez J, Seemann G, Vigmond EJ. The openCARP simulation environment for cardiac electrophysiology. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106223. [PMID: 34171774 DOI: 10.1016/j.cmpb.2021.106223] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Cardiac electrophysiology is a medical specialty with a long and rich tradition of computational modeling. Nevertheless, no community standard for cardiac electrophysiology simulation software has evolved yet. Here, we present the openCARP simulation environment as one solution that could foster the needs of large parts of this community. METHODS AND RESULTS openCARP and the Python-based carputils framework allow developing and sharing simulation pipelines which automate in silico experiments including all modeling and simulation steps to increase reproducibility and productivity. The continuously expanding openCARP user community is supported by tailored infrastructure. Documentation and training material facilitate access to this complementary research tool for new users. After a brief historic review, this paper summarizes requirements for a high-usability electrophysiology simulator and describes how openCARP fulfills them. We introduce the openCARP modeling workflow in a multi-scale example of atrial fibrillation simulations on single cell, tissue, organ and body level and finally outline future development potential. CONCLUSION As an open simulator, openCARP can advance the computational cardiac electrophysiology field by making state-of-the-art simulations accessible. In combination with the carputils framework, it offers a tailored software solution for the scientific community and contributes towards increasing use, transparency, standardization and reproducibility of in silico experiments.
Collapse
Affiliation(s)
- Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Christoph Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Yung-Lin Huang
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg. Bad Krozingen, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias A F Gsell
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - Mark Nothstein
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anton J Prassl
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Jorge Sánchez
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg. Bad Krozingen, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France; Université Bordeaux, IMB, UMR 5251, F-33400 Talence, France
| |
Collapse
|
3
|
Kojic M, Milosevic M, Simic V, Geroski V, Ziemys A, Filipovic N, Ferrari M. Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue. Comput Biol Med 2019; 108:288-304. [PMID: 31015049 DOI: 10.1016/j.compbiomed.2019.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
Basic functions of living organisms are governed by the nervous system through bidirectional signals transmitted from the brain to neural networks. These signals are similar to electrical waves. In electrophysiology the goal is to study the electrical properties of biological cells and tissues, and the transmission of signals. From a physics perspective, there exists a field of electrical potential within the living body, the nervous system, extracellular space and cells. Electrophysiological problems can be investigated experimentally and also theoretically by developing appropriate mathematical or computational models. Due to the enormous complexity of biological systems, it would be almost impossible to establish a detailed computational model of the electrical field, even for only a single organ (e.g. heart), including the entirety of cells comprising the neural network. In order to make computational models feasible for practical applications, we here introduce the concept of smeared fields, which represents a generalization of the previously formulated multiscale smeared methodology for mass transport in blood vessels, lymph, and tissue. We demonstrate the accuracy of the smeared finite element computational models for the electric field in numerical examples. The electrical field is further coupled with ionic mass transport within tissue composed of interstitial spaces extracellularly and by cytoplasm and organelles intracellularly. The proposed methodology, which couples electrophysiology and molecular ionic transport, is applicable to a variety of biological systems.
Collapse
Affiliation(s)
- M Kojic
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA; Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia.
| | - M Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia; Belgrade Metropolitan University, Tadeuša Košćuška 63, 11000, Belgrade, Serbia
| | - V Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
| | - V Geroski
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
| | - A Ziemys
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA
| | - N Filipovic
- University of Kragujevac, Faculty for Engineering Sciences, Sestre Janic 6, 34000, Kragujevac, Serbia
| | - M Ferrari
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements. BIOMED RESEARCH INTERNATIONAL 2015; 2015:473279. [PMID: 26583112 PMCID: PMC4637157 DOI: 10.1155/2015/473279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/20/2015] [Accepted: 04/09/2015] [Indexed: 11/17/2022]
Abstract
We discuss the application of the spectral element method to the monodomain and bidomain equations describing propagation of cardiac action potential. Models of cardiac electrophysiology consist of a system of partial differential equations coupled with a system of ordinary differential equations representing cell membrane dynamics. The solution of these equations requires solving multiple length scales due to the ratio of advection to diffusion that varies among the different equations. High order approximation of spectral elements provides greater flexibility in resolving multiple length scales. Furthermore, spectral elements are extremely efficient to model propagation phenomena on complex shapes using fewer degrees of freedom than its finite element equivalent (for the same level of accuracy). We illustrate a fully unstructured all-hexahedra approach implementation of the method and we apply it to the solution of full 3D monodomain and bidomain test cases. We discuss some key elements of the proposed approach on some selected benchmarks and on an anatomically based whole heart human computational model.
Collapse
|
5
|
Multiscale coupling of transcranial direct current stimulation to neuron electrodynamics: modeling the influence of the transcranial electric field on neuronal depolarization. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:360179. [PMID: 25404950 PMCID: PMC4227389 DOI: 10.1155/2014/360179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/17/2014] [Indexed: 11/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model's validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model's predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.
Collapse
|
6
|
Bernabeu MO, Pathmanathan P, Pitt-Francis J, Kay D. Stimulus protocol determines the most computationally efficient preconditioner for the bidomain equations. IEEE Trans Biomed Eng 2010; 57:2806-15. [PMID: 20876005 DOI: 10.1109/tbme.2010.2078817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The efficient solution of the bidomain equations is a fundamental tool in the field of cardiac electrophysiology. When choosing a finite element discretization of the coupled system, one has to deal with the solution of a large, highly sparse system of linear equations. The conjugate gradient algorithm, along with suitable preconditioning, is the natural choice in this scenario. In this study, we identify the optimal preconditioners with respect to both stimulus protocol and mesh geometry. The results are supported by a comprehensive study of the mesh-dependence properties of several preconditioning techniques found in the literature. Our results show that when only intracellular stimulus is considered, incomplete LU factorization remains a valid choice for current cardiac geometries. However, when extracellular shocks are delivered to tissue, preconditioners that take into account the structure of the system minimize execution time and ensure mesh-independent convergence.
Collapse
|
7
|
A numerical guide to the solution of the bi-domain equations of cardiac electrophysiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 102:136-55. [PMID: 20553747 DOI: 10.1016/j.pbiomolbio.2010.05.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/19/2010] [Indexed: 11/22/2022]
Abstract
Simulation of cardiac electrical activity using the bi-domain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bi-domain modelling. Each component of bi-domain simulations--discretization, ODE-solution, linear system solution, and parallelization--is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme.
Collapse
|