1
|
Kilinc MS, Pakdaman Zangabad R, Arvanitis C, Levent Degertekin F. CMUT as a Transmitter for Microbubble-Assisted Blood-Brain Barrier Opening. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1042-1050. [PMID: 38905098 PMCID: PMC11403385 DOI: 10.1109/tuffc.2024.3417818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Focused ultrasound (FUS) combined with microbubbles (MBs) has emerged as a promising strategy for transiently opening the blood-brain barrier (BBB) to enhance drug permeability in the brain. Current FUS systems for BBB opening use piezoelectric transducers as transmitters and receivers. While capacitive micromachined ultrasonic transducers (CMUTs) have been suggested as an FUS receiver alternative due to their broad bandwidth, their capabilities as transmitters have not been investigated. This is mainly due to the intrinsic nonlinear behavior of CMUTs, which complicates the detection of MB generated harmonic signals and their low-pressure output at FUS frequencies. Various methods have been proposed to mitigate CMUT nonlinearity; however, these approaches have primarily targeted contrast enhanced ultrasound imaging. In this study, we propose the use of polyphase modulation (PM) technique to isolate MB emissions when CMUTs are employed as transmitters for BBB opening. Our calculations for a human scale FUS system with multiple CMUT transmitters show that 10-kPa peak negative pressure (PNP) at 150-mm focal distance will be sufficient for MB excitation for BBB opening. Experimental findings indicate that this pressure level can be easily generated at 400-800 kHz using a readily available CMUT. Furthermore, more than 50-dB suppression of the fundamental harmonic signal is obtained in free field and transcranial hydrophone measurements by processing receive signals in response to phase-modulated transmit waveforms. In vitro validation of PM is also conducted using Definity MB flowing through a tube phantom. MB-filled tube phantoms show adequate nonlinear signal isolation and SNR for MB harmonic detection. Together our findings indicate that PM can effectively mitigate CMUT harmonic generation, thereby creating new opportunities for wideband transmission and receive operation for BBB opening in clinical and preclinical applications.
Collapse
|
2
|
Chang KW, Belekov E, Wang X, Wong KY, Oralkan Ö, Xu G. Photoacoustic imaging of visually evoked cortical and subcortical hemodynamic activity in mouse brain: feasibility study with piezoelectric and capacitive micromachined ultrasonic transducer (CMUT) arrays. BIOMEDICAL OPTICS EXPRESS 2023; 14:6283-6290. [PMID: 38420324 PMCID: PMC10898584 DOI: 10.1364/boe.503475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 03/02/2024]
Abstract
This study investigates the feasibility of capturing visually evoked hemodynamic responses in the mouse brain using photoacoustic tomography (PAT) and ultrasound (US) dual-modality imaging. A commercial piezoelectric transducer array and a capacitive micromachined ultrasonic transducer (CMUT) array were compared using a programmable PAT-US imaging system. The system resolution was measured by imaging phantoms. We also tested the ability of the system to capture visually evoked hemodynamic responses in the superior colliculus as well as the primary visual cortex in wild-type mice. Results show that the piezoelectric transducer array and the CMUT array exhibit comparable imaging performance, and both arrays can capture visually evoked hemodynamic responses in subcortical as well as cortical regions of the mouse brain.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ermek Belekov
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kwoon Y. Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Ömer Oralkan
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
3
|
Sahoo A, He H, Darrow D, Chen CC, Ebbini ES. Image-Guided Measurement of Radiation Force Induced by Focused Ultrasound Beams. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:138-146. [PMID: 36350863 PMCID: PMC10079628 DOI: 10.1109/tuffc.2022.3221049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The radiation force balance (RFB) is a widely used method for measuring acoustic power output of ultrasonic transducers. The reflecting cone target is attractive due to its simplicity and long-term stability, at a reasonable cost. However, accurate measurements using this method depend on the alignment between the ultrasound beam and cone axes, especially for highly focused beams utilized in therapeutic applications. With the advent of dual-mode ultrasound arrays (DMUAs) for imaging and therapy, image-guided measurements of acoustic output using the RFB method can be used to improve measurement accuracy. In this article, we describe an image-guided RFB measurement of focused DMUA beams using a widely used commercial instrument. DMUA imaging is used to optimize the alignment between the acoustic beam and reflecting cone axes. In addition to image-guided alignment, DMUA echo data is used to track the displacement of the cone, which provides an auxiliary measurement of acoustic power. Experimental results using a DMUA prototype with [Formula: see text] shows that 1-2 mm of misalignment can result in 5%-14% error in the measured acoustic power. In addition to the use of B-mode image guidance for improving measurement accuracy, we present preliminary results demonstrating the benefit of displacement tracking using real-time DMUA imaging during the application of (sub)therapeutic focused beams. Displacement tracking provides a direct measurement of the radiation force with high sensitivity and follows the expected dependence on changes in amplitude and duty cycle (DC) of the focused ultrasound (FUS) beam. This could lead to simpler, more reliable methods for measuring acoustic power based on the radiation force principle. Combined with appropriate computational modeling, the direct measurement of acoustic radiation force could lead to reliable dosimetry in situ in emerging applications such as transcranial FUS (tFUS) therapies.
Collapse
|
4
|
Zubair M, Adams MS, Diederich CJ. An endoluminal cylindrical sectored-ring ultrasound phased-array applicator for minimally-invasive therapeutic ultrasound. Med Phys 2023; 50:1-19. [PMID: 36413363 PMCID: PMC9870260 DOI: 10.1002/mp.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The size of catheter-based ultrasound devices for delivering ultrasound energy to deep-seated tumors is constrained by the access pathway which limits their therapeutic capabilities. PURPOSE To devise and investigate a deployable applicator suitable for minimally-invasive delivery of therapeutic ultrasound, consisting of a 2D cylindrical sectored-ring ultrasound phased array, integrated within an expandable paraboloid-shaped balloon-based reflector. The balloon can be collapsed for compact delivery and expanded close to the target position to mimic a larger-diameter concentric-ring sector-vortex array for enhanced dynamic control of focal depth and volume. METHODS Acoustic and biothermal simulations were employed in 3D generalized homogeneous and patient-specific heterogeneous models, for three-phased array transducers with 32, 64, and 128 elements, composed of sectored 4, 8, and 16 tubular ring transducers, respectively. The applicator performance was characterized as a function of array configuration, focal depth, phasing modes, and balloon reflector geometry. A 16-element proof-of-concept phased array applicator assembly, consisting of four tubular transducers each divided into four sectors, was fabricated, and characterized with hydrophone measurements along and across the axis, and ablations in ex vivo tissue. RESULTS Simulation results indicated that transducer arrays (1.5 MHz, 9 mm OD × 20 mm long), balloon sizes (41-50 mm expanded diameter, 20-60 mm focal depth), phasing mode (0-4) and sonication duration (30 s) can produce spatially localized acoustic intensity focal patterns (focal length: 3-22 mm, focal width: 0.7-8.7 mm) and ablative thermal lesions (width: 2.7-16 mm, length: 6-46 mm) in pancreatic tissue across a 10-90 mm focal depth range. Patient-specific studies indicated that 0.1, 0.46, and 1.2 cm3 volume of tumor can be ablated in the body of the pancreas for 120 s sonications using a single axial focus (Mode 0), or four, and eight simultaneous foci in a toroidal pattern (Mode 2 and 4, respectively). Hydrophone measurements demonstrated good agreement with simulation. Experiments in which chicken meat was thermally ablated indicated that volumetric ablation can be produced using single or multiple foci. CONCLUSIONS The results of this study demonstrated the feasibility of a novel compact ultrasound applicator design capable of focusing, deep penetration, electronic steering, and volumetric thermal ablation. The proposed applicator can be used for compact endoluminal or laparoscopic delivery of localized ultrasound energy to deep-seated targets.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology University of California San Francisco USA
| | - Matthew S. Adams
- Department of Radiation Oncology University of California San Francisco USA
| | - Chris J. Diederich
- Department of Radiation Oncology University of California San Francisco USA
| |
Collapse
|
5
|
Khan M, Khan TM. Tunable Q matching networks for capacitive ultrasound transmitters. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING 2022; 111:301-312. [DOI: 10.1007/s10470-021-01857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/25/2021] [Accepted: 04/22/2021] [Indexed: 09/01/2023]
|
6
|
Joseph J, Ma B, Khuri-Yakub BT. Applications of Capacitive Micromachined Ultrasonic Transducers: A Comprehensive Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:456-467. [PMID: 34520356 DOI: 10.1109/tuffc.2021.3112917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Capacitive micromachined ultrasonic transducer (CMUT) was introduced as an alternative to the piezoelectric thick-film-based transducers in medical imaging applications. Gradually, CMUTs have been investigated in almost all the applications in acoustics due to their superior transduction properties. CMOS compatible process flow and limitless possibilities of miniaturization made CMUT a preferred choice for the ultrasound industry. This article comprehensively reviews all the applications in which CMUT was used until now. Such a complete review of the practical applications of CMUT has not been reported elsewhere. A topicwise presentation approach is adopted, and wherever possible, the necessary details of the device properties and experimental niceties were briefly covered.
Collapse
|
7
|
Wang J, Liu X, Yu Y, Li Y, Cheng C, Zhang S, Mak P, Vai M, Pun S. A Review on Analytical Modeling for Collapse Mode Capacitive Micromachined Ultrasonic Transducer of the Collapse Voltage and the Static Membrane Deflections. MICROMACHINES 2021; 12:mi12060714. [PMID: 34207176 PMCID: PMC8235715 DOI: 10.3390/mi12060714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Analytical modeling of capacitive micromachined ultrasonic transducer (CMUT) is one of the commonly used modeling methods and has the advantages of intuitive understanding of the physics of CMUTs and convergent when modeling of collapse mode CMUT. This review article summarizes analytical modeling of the collapse voltage and shows that the collapse voltage of a CMUT correlates with the effective gap height and the electrode area. There are analytical expressions for the collapse voltage. Modeling of the membrane deflections are characterized by governing equations from Timoshenko, von Kármán equations and the 2D plate equation, and solved by various methods such as Galerkin’s method and perturbation method. Analytical expressions from Timoshenko’s equation can be used for small deflections, while analytical expression from von Kármán equations can be used for both small and large deflections.
Collapse
Affiliation(s)
- JiuJiang Wang
- College of Computer Science and AI, Neijiang Normal University, Neijiang 641100, China; (J.W.); (Y.L.); (S.Z.)
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
- BeiDou and Wisdom Medical Doctor Workstation, Neijiang Normal University, Neijiang 641100, China
| | - Xin Liu
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
| | - YuanYu Yu
- College of Computer Science and AI, Neijiang Normal University, Neijiang 641100, China; (J.W.); (Y.L.); (S.Z.)
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
- BeiDou and Wisdom Medical Doctor Workstation, Neijiang Normal University, Neijiang 641100, China
- Correspondence: (Y.Y.); (P.M.); Tel.: +86-832-234-3466 (Y.Y.); +853-8822-4393 (P.M.)
| | - Yao Li
- College of Computer Science and AI, Neijiang Normal University, Neijiang 641100, China; (J.W.); (Y.L.); (S.Z.)
| | - ChingHsiang Cheng
- School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Shuang Zhang
- College of Computer Science and AI, Neijiang Normal University, Neijiang 641100, China; (J.W.); (Y.L.); (S.Z.)
- BeiDou and Wisdom Medical Doctor Workstation, Neijiang Normal University, Neijiang 641100, China
| | - PengUn Mak
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
- Correspondence: (Y.Y.); (P.M.); Tel.: +86-832-234-3466 (Y.Y.); +853-8822-4393 (P.M.)
| | - MangI Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - SioHang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
| |
Collapse
|
8
|
Yaralioglu GG, Ergun AS, Bozkurt A. Vertical cavity capacitive transducer. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2137. [PMID: 33940872 DOI: 10.1121/10.0003931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The capacitive micromachined ultrasonic transducer (CMUT) has inherent advantages, such as larger bandwidth and monolithic integration capability with electronics, when compared to the piezoelectric transducer. The most significant shortcoming of the device is the trade-off between input and output sensitivities. Adequate receive sensitivity requires an electric field intensity on the order of 105 V/m, which can be achieved by sub-micron gap heights. However, a small gap limits the device stroke and, consequently, the maximum output pressure. This paper addresses this problem by proposing a CMUT with a vertical cavity. The membrane of the device has a piston part that is surrounded by the sidewalls of a vertical cylinder formed in the substrate. The fringing electric field pulls the piston in the vertical direction; hence, the gap height remains fixed, which alleviates the hard limit on device stroke. The performance of the proposed device is compared to that of the conventional CMUT by theoretical and analytical methods, and a micro-fabrication method is devised. Additionally, a millimeter-scale device has been manufactured and tested as a proof of concept.
Collapse
Affiliation(s)
| | - A Sanli Ergun
- Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
9
|
Luo H, Kusunose J, Pinton G, Caskey CF, Grissom WA. Rapid quantitative imaging of high intensity ultrasonic pressure fields. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:660. [PMID: 32873034 PMCID: PMC7414943 DOI: 10.1121/10.0001689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
High intensity focused ultrasound (FUS) is a noninvasive technique for treatment of tissues that can lie deep within the body. There is a need for methods to rapidly and quantitatively map FUS pressure beams for quality assurance and accelerate development of FUS systems and techniques. However, conventional ultrasound pressure beam mapping instruments, including hydrophones and optical techniques, are slow, not portable, and expensive, and most cannot map beams at actual therapeutic pressure levels. Here, a rapid projection imaging method to quantitatively map FUS pressure beams based on continuous-wave background-oriented schlieren (CW-BOS) imaging is reported. The method requires only a water tank, a background pattern, and a camera and uses a multi-layer deep neural network to reconstruct two-dimensional root-mean-square (RMS) projected pressure maps that resolve the ultrasound propagation dimension and one lateral dimension. In this work, the method was applied to collect beam maps over a 3 × 1 cm2 field-of-view with 0.425 mm resolution for focal pressures up to 9 MPa. Results at two frequencies and comparisons to hydrophone measurements show that CW-BOS imaging produces high-resolution quantitative RMS projected FUS pressure maps in under 10 s, the technique is linear and robust to beam rotations and translations, and it can map aberrated beams.
Collapse
Affiliation(s)
- Huiwen Luo
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt University Station B Number 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, USA
| | - Jiro Kusunose
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | - Gianmarco Pinton
- Department of Biomedical Engineering, University of North Carolina, 333 South Columbia Street, Chapel Hill, North Carolina 27514, USA
| | - Charles F Caskey
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | - William A Grissom
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt University Station B Number 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, USA
| |
Collapse
|
10
|
N'Djin WA, Gerold B, Vion-Bailly J, Canney MS, Nguyen-Dinh A, Carpentier A, Chapelon JY. Capacitive Micromachined Ultrasound Transducers for Interstitial High-Intensity Ultrasound Therapies. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1245-1260. [PMID: 28541897 DOI: 10.1109/tuffc.2017.2707663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Capacitive micromachined ultrasound transducers (CMUTs) exhibit several potential advantages over conventional piezo technologies for use in therapeutic ultrasound (US) devices, including ease of miniaturization and integration with electronics, broad bandwidth (>several megahertz), and compatibility with magnetic resonance imaging (MRI). In this paper, the electroacoustic performance of CMUTs designed for interstitial high-intensity contact US (HICU) applications was evaluated and the feasibility of generating US-induced heating and thermal destruction of biological tissues was studied. One-dimensional CMUT linear arrays as well as a prism-shaped 2-D array composed of multiple 1-D linear arrays mounted on a cylindrical catheter were fabricated. The electromechanical and acoustic characteristics of the CMUTs were first studied at low intensity. Then, the acoustic output during continuous wave (CW) driving was studied while varying the bias voltage ( VDC ) and driving voltage ( VAC ). US heating was performed in tissue-mimicking gel phantoms under infrared (IR) or MR-thermometry monitoring. Acoustic intensities compatible with thermal ablation were obtained by driving the CMUTs in the collapse-snapback operation mode ( [Formula: see text]). Hysteresis in the acoustic output was observed with varying VDC . IR- and MR-thermometry monitoring showed directional US-induced heating patterns in tissue-mimicking phantoms (frequency: 6-8 MHz and exposure time: 60-240 s) extending over 1.5-cm depth from the CMUT surface. Irreversible thermal damage was produced in turkey breast tissue samples ( [Formula: see text]). Multidirectional US-induced heating was also achieved in 3-D with the CMUT catheter. These studies demonstrate that CMUTs can be integrated into HICU devices and be used for heating and destruction of tissue under MR guidance.
Collapse
|
11
|
Qiu Z, Piyawattanamatha W. New Endoscopic Imaging Technology Based on MEMS Sensors and Actuators. MICROMACHINES 2017; 8:mi8070210. [PMID: 30400401 PMCID: PMC6190023 DOI: 10.3390/mi8070210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
Over the last decade, optical fiber-based forms of microscopy and endoscopy have extended the realm of applicability for many imaging modalities. Optical fiber-based imaging modalities permit the use of remote illumination sources and enable flexible forms supporting the creation of portable and hand-held imaging instrumentations to interrogate within hollow tissue cavities. A common challenge in the development of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, microelectromechanical systems (MEMS) sensors and actuators have been playing a key role in shaping the miniaturization of these components. This is due to the precision mechanics of MEMS, microfabrication techniques, and optical functionality enabling a wide variety of movable and tunable mirrors, lenses, filters, and other optical structures. Many promising results from MEMS based optical fiber endoscopy have demonstrated great potentials for clinical translation. In this article, reviews of MEMS sensors and actuators for various fiber-optical endoscopy such as fluorescence, optical coherence tomography, confocal, photo-acoustic, and two-photon imaging modalities will be discussed. This advanced MEMS based optical fiber endoscopy can provide cellular and molecular features with deep tissue penetration enabling guided resections and early cancer assessment to better treatment outcomes.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Wibool Piyawattanamatha
- Departments of Biomedical and Electronics Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
12
|
Farhanieh O, Sahafi A, Bardhan Roy R, Ergun AS, Bozkurt A. Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:534-546. [PMID: 28333640 DOI: 10.1109/tbcas.2017.2649942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Conventional High Intensity Focused Ultrasound (HIFU) is a therapeutic modality which is extracorporeally administered. In applications where a relatively small HIFU lesion is required, an intravascular HIFU probe can be deployed to the ablation site. In this paper, we demonstrate the design and implementation a fully integrated HIFU drive system on a chip to be placed on a 6 Fr catheter probe. An 8-element capacitive micromachined ultrasound transducer (CMUT) ring array of 2 mm diameter has been used as the ultrasound source. The driver chip is fabricated in 0.35 μm AMS high-voltage CMOS technology and comprises eight continuous-wave (CW) high-voltage CMUT drivers (10.9 ns and 9.4 ns rise and fall times at 20 V pp output into a 15 pF), an eight-channel digital beamformer (8-12 MHz output frequency with 11.25 ° phase accuracy) and a phase locked loop with an integrated VCO as a tunable clock source (128-192 MHz). The chip occupies 1.85 × 1.8 mm 2 area including input and output (I/O) pads. When the transducer array is immersed in sunflower oil and driven by the IC with eight 20 Vpp CW pulses at 10 MHz, real-time thermal images of the HIFU beam indicate that the focal temperature rises by 16.8 °C in 11 seconds. Each HV driver consumes around 67 mW of power when driving the CMUT array at 10 MHz, which adds up to 560 mW for the whole chip. FEM based analysis reveals that the outer surface temperature of the catheter is expected to remain below the 42 °C tissue damage limit during therapy.
Collapse
|
13
|
Greenlay BA, Zemp RJ. Fabrication of Linear Array and Top-Orthogonal-to-Bottom Electrode CMUT Arrays With a Sacrificial Release Process. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:93-107. [PMID: 28092505 DOI: 10.1109/tuffc.2016.2620425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The microfabrication processes for sacrificial-release-based capacitive micromachined ultrasound transducer arrays are provided with an emphasis on top-orthogonal-to-bottom electrode 2-D arrays. These arrays have significant promise for high-quality 3-D imaging with reduced wiring complexity compared with fully wired arrays. The protocols and best practices are outlined in significant detail along with design considerations and notes of caution for pitfalls and factors impacting yield.
Collapse
|
14
|
Yoon HS, Chang C, Jang JH, Bhuyan A, Choe JW, Nikoozadeh A, Watkins RD, Stephens DN, Butts Pauly K, Khuri-Yakub BT. Ex Vivo HIFU Experiments Using a $32 \times 32$ -Element CMUT Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:2150-2158. [PMID: 27913330 PMCID: PMC5241055 DOI: 10.1109/tuffc.2016.2606126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
High-intensity focused ultrasound (HIFU) has been used as noninvasive treatment for various diseases. For these therapeutic applications, capacitive micromachined ultrasonic transducers (CMUTs) have advantages that make them potentially preferred transducers over traditional piezoelectric transducers. In this paper, we present the design and the fabrication process of an 8 ×8 -mm 2 32 ×32 -element 2-D CMUT array for HIFU applications. To reduce the system complexity for addressing the 1024 transducer elements, we propose to group the CMUT array elements into eight HIFU channels based on the phase delay from the CMUT element to the targeted focal point. Designed to focus at an 8-mm depth with a 5-MHz exciting frequency, this grouping scheme was realized using a custom application-specific integrated circuit. With a 40-V dc bias and a 60-V peak-to-peak ac excitation, the surface pressure was measured 1.2 MPa peak-to-peak and stayed stable for a long enough time to create a lesion. With this dc and ac voltage combination, the measured peak-to-peak output pressure at the focus was 8.5 MPa, which is expected to generate a lesion in a minute according to the temperature simulation. The following ex vivo tissue experiments successfully demonstrated its capability to make lesions in both bovine muscle and liver tissue.
Collapse
|
15
|
Fouan D, Bouakaz A. Investigation of Classical Pulse Sequences for Contrast-Enhanced Ultrasound Imaging With a cMUT Probe. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1496-1504. [PMID: 27187953 DOI: 10.1109/tuffc.2016.2567641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Capacitive micromachined ultrasonic transducers (cMUTs) provide promising ultrasonic technology that could become an alternative to piezoelectric probes for medical applications. cMUTs could be very valuable for contrast-enhanced ultrasound imaging based on higher harmonics detection. However, their use is restricted by the intrinsic nonlinearity of the cMUT transmitters themselves, because it is difficult to distinguish between the nonlinearity of the microbubbles and the nonlinearity arising from the emitting transducer. A number of approaches have been proposed in recent years to cancel the nonlinearity of cMUTs. However, these techniques have limitations in terms of implementation with current ultrasound scanner electronics. The solution to be comparable with classical methods should not need precharacterization of the probe or changing the bias voltage (amplitude or polarity) but does need good sensitivity and a high frame rate to avoid motion artifacts. We propose here proof of a concept of an adapted amplitude modulation sequence with cMUT where transmit elements operate alternately. We show that this method, which is currently used with piezoelectric probes, is fully applicable to cMUT probes and the intrinsic nonlinearity of the transmitter is no longer an issue.
Collapse
|
16
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
17
|
Lim J, Arkan EF, Degertekin FL, Ghovanloo M. Toward a reduced-wire readout system for ultrasound imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:5080-4. [PMID: 25571135 DOI: 10.1109/embc.2014.6944767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.
Collapse
|
18
|
Yu Y, Pun SH, Mak PU, Cheng CH, Wang J, Mak PI, Vai MI. Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:854-863. [PMID: 27101605 DOI: 10.1109/tuffc.2016.2554612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.
Collapse
|
19
|
Behnamfar P, Molavi R, Mirabbasi S. Transceiver Design for CMUT-Based Super-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:383-393. [PMID: 25974944 DOI: 10.1109/tbcas.2015.2406777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A recently introduced structure for the capacitive micromachined ultrasonic transducers (CMUTs) has focused on the applications of the asymmetric mode of vibration and has shown promising results in construction of super-resolution ultrasound images. This paper presents the first implementation and experimental results of a transceiver circuit to interface such CMUT structures. The multiple input/multiple output receiver in this work supports both fundamental and asymmetric modes of operation and includes transimpedance amplifiers and low-power variable-gain stages. These circuit blocks are designed considering the trade-offs between gain, input impedance, noise, linearity and power consumption. The high-voltage transmitter can generate pulse voltages up to 60 V while occupying a considerably small area. The overall circuit is designed and laid out in a 0.35 μm CMOS process and a four-channel transceiver occupies 0.86 × 0.38 mm(2). The prototype chip is characterized in both electrical and mechanical domains. Measurement results show that each receiver channel has a nominal gain of 110 dBΩ with a 3 dB bandwidth of 9 MHz while consuming 1.02 mW from a 3.3 V supply. The receiver is also highly linear, with 1 dB compression point of minimum 1.05 V which is considerably higher than the previously reported designs. The transmitter consumes 98.1 mW from a 30 V supply while generating 1.38 MHz, 30 V pulses. The CMOS-CMUT system is tested in the transmit mode and shows full functionality in air medium.
Collapse
|
20
|
Joseph J, Singh SG, Vanjari SRK. Fabrication of SU-8 based Capacitive Micromachined Ultrasonic Transducer for low frequency therapeutic applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:1365-8. [PMID: 26736522 DOI: 10.1109/embc.2015.7318622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper we present a simple post-CMOS compatible sacrificial release method of fabricating SU-8 based Capacitive Micromachined Ultrasonic Transducer (CMUT) for low frequency therapeutic applications. CMUTs fabricated with Silicon Nitride and Silicon Dioxide lay constraints in terms of area and power consumption especially in the low frequency range. Fabrication of these devices need complex high temperature processes that makes them incompatible for post-CMOS processing. Analytical modeling shows that SU-8 based CMUT consumes less area (below 25%) and power compared to Silicon Nitride and Silicon Dioxide based CMUTs. The proposed fabrication method overcomes inherent disadvantages of sacrificial release method by providing uniformity in air gap and reducing the possibility of stiction.
Collapse
|
21
|
Abstract
High intensity focused ultrasound (HIFU) is rapidly gaining clinical acceptance as a technique capable of providing non-invasive heating and ablation for a wide range of applications. Usually requiring only a single session, treatments are often conducted as day case procedures, with the patient either fully conscious, lightly sedated or under light general anesthesia. HIFU scores over other thermal ablation techniques because of the lack of necessity for the transcutaneous insertion of probes into the target tissue. Sources placed either outside the body (for treatment of tumors or abnormalities of the liver, kidney, breast, uterus, pancreas brain and bone), or in the rectum (for treatment of the prostate), provide rapid heating of a target tissue volume, the highly focused nature of the field leaving tissue in the ultrasound propagation path relatively unaffected. Numerous extra-corporeal, transrectal and interstitial devices have been designed to optimize application-specific treatment delivery for the wide-ranging areas of application that are now being explored with HIFU. Their principle of operation is described here, and an overview of their design principles is given.
Collapse
Affiliation(s)
- Gail Ter Haar
- Joint Department of Physics, The Institute of Cancer Research, Sutton, London, UK.
| |
Collapse
|
22
|
Song J, Xue C, He C, Zhang R, Mu L, Cui J, Miao J, Liu Y, Zhang W. Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Underwater Imaging Applications. SENSORS 2015; 15:23205-17. [PMID: 26389902 PMCID: PMC4610594 DOI: 10.3390/s150923205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/16/2022]
Abstract
A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V) characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The -6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20 Vpp excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system.
Collapse
Affiliation(s)
- Jinlong Song
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.
- Key Laboratory of Science and Technology on Electronic Test & Measurement, North University of China, Taiyuan 030051, China.
| | - Chenyang Xue
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.
- Key Laboratory of Science and Technology on Electronic Test & Measurement, North University of China, Taiyuan 030051, China.
| | - Changde He
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.
- Key Laboratory of Science and Technology on Electronic Test & Measurement, North University of China, Taiyuan 030051, China.
| | - Rui Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.
- Key Laboratory of Science and Technology on Electronic Test & Measurement, North University of China, Taiyuan 030051, China.
| | - Linfeng Mu
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.
- Key Laboratory of Science and Technology on Electronic Test & Measurement, North University of China, Taiyuan 030051, China.
| | - Juan Cui
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.
- Key Laboratory of Science and Technology on Electronic Test & Measurement, North University of China, Taiyuan 030051, China.
| | - Jing Miao
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.
- Key Laboratory of Science and Technology on Electronic Test & Measurement, North University of China, Taiyuan 030051, China.
| | - Yuan Liu
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.
- Key Laboratory of Science and Technology on Electronic Test & Measurement, North University of China, Taiyuan 030051, China.
| | - Wendong Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.
- Key Laboratory of Science and Technology on Electronic Test & Measurement, North University of China, Taiyuan 030051, China.
| |
Collapse
|
23
|
Novell A, Arena CB, Kasoji S, Dayton PA. Optimization of multi-pulse sequences for nonlinear contrast agent imaging using a cMUT array. Phys Med Biol 2015; 60:3111-27. [PMID: 25803232 DOI: 10.1088/0031-9155/60/8/3111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Capacitive micromachined ultrasonic transducer (cMUT) technology provides advantages such as wide frequency bandwidth, which can be exploited for contrast agent imaging. Nevertheless, the efficiency of traditional multi-pulse imaging schemes, such as pulse inversion (PI), remains limited because of the intrinsic nonlinear character of cMUTs. Recently, a new contrast imaging sequence, called bias voltage modulation sequence (BVM), has been specifically developed for cMUTs to suppress their unwanted nonlinear behavior. In this study, we propose to optimize contrast agent detection by combining the BVM sequence with PI and/or chirp reversal (CR). An aqueous dispersion of lipid encapsulated microbubbles was exposed to several combinations of multi-pulse imaging sequences. Approaches were evaluated in vitro using 9 inter-connected elements of a cMUT linear array (excitation frequency of 4 MHz; peak negative pressure of 100 kPa). For sequences using chirp excitations, a specific compression filter was designed to compress and extract several nonlinear components from the received microbubble responses. A satisfactory cancellation of the nonlinear signal from the source is achieved when BVM is combined with PI and CR. In comparison with PI and CR imaging modes alone, using sequences incorporating BVM increases the contrast-to-tissue ratio by 10.0 dB and 4.6 dB, respectively. Furthermore, the combination of BVM with CR and PI results in a significant increase of the contrast-to-noise ratio (+29 dB). This enhancement is attributed to the use of chirps as excitation signals and the improved preservation of several nonlinear components contained within the contrast agent response.
Collapse
Affiliation(s)
- Anthony Novell
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
24
|
Ménigot S, Certon D, Gross D, Girault JM. Automatic optimal input command for linearization of cMUT output by a temporal target. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1742-1753. [PMID: 25265182 DOI: 10.1109/tuffc.2013.006330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Capacitive micromachined ultrasonic transducers (cMUTs) are a promising alternative to the piezoelectric transducer. However, their native nonlinear behavior is a limitation for their use in medical ultrasound applications. Several methods based on the pre-compensation of a preselected input voltage have been proposed to cancel out the harmonic components generated. Unfortunately, these existing pre-compensation methods have two major flaws. The first is that the pre-compensation procedure is not generally automatic, and the second is that they can only reduce the second harmonic component. This can, therefore, limit their use for some imaging methods, which require a broader bandwidth, e.g., to receive the third harmonic component. In this study, we generalized the presetting methods to reduce all nonlinearities in the cMUT output. Our automatic pre-compensation method can work whatever the excitation waveform. The precompensation method is based on the nonlinear modeling of harmonic components from a Volterra decomposition in which the parameters are evaluated by using a Nelder-Mead algorithm. To validate the feasibility of this approach, the method was applied to an element of a linear array with several types of excitation often encountered in encoded ultrasound imaging. The results showed that the nonlinear components were reduced by up to 21.2 dB.
Collapse
|
25
|
Novell A, Legros M, Grégoire JM, Dayton PA, Bouakaz A. Evaluation of bias voltage modulation sequence for nonlinear contrast agent imaging using a capacitive micromachined ultrasonic transducer array. Phys Med Biol 2014; 59:4879-96. [PMID: 25098319 DOI: 10.1088/0031-9155/59/17/4879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many clinical diagnoses have now been improved thanks to the development of new techniques dedicated to contrast agent nonlinear imaging. Over the past few years, Capacitive Micromachined Ultrasonic Transducers (cMUTs) have emerged as a promising alternative to traditional piezoelectric transducers. One notable advantage of cMUTs is their wide frequency bandwidth. However, their use in nonlinear imaging approaches such as those used to detect contrast agents have been challenging due their intrinsic nonlinear character. We propose a new contrast imaging sequence, called bias voltage modulation (BVM), specifically developed for cMUTs to suppress their inherent nonlinear behavior. Theoretical and experimental results show that a complete cancellation of the nonlinear signal from the source can be reached when the BVM sequence is implemented. In-vitro validation of the sequence is performed using a cMUT probe connected to an open scanner and a flow phantom setup containing SonoVue microbubbles. Compared to the standard amplitude modulation imaging mode, a 6 dB increase of contrast-to-tissue ratio was achieved when the BVM sequence is applied. These results reveal that the problem of cMUT nonlinearity can be addressed, thus expanding the potential of this new transducer technology for nonlinear contrast agent detection and imaging.
Collapse
Affiliation(s)
- Anthony Novell
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR U930, Tours, France. Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
26
|
Ellens N, Hynynen K. Simulation study of the effects of near- and far-field heating during focused ultrasound uterine fibroid ablation using an electronically focused phased array: A theoretical analysis of patient safety. Med Phys 2014; 41:072902. [DOI: 10.1118/1.4883777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Kamaya A, Machtaler S, Safari Sanjani S, Nikoozadeh A, Graham Sommer F, Pierre Khuri-Yakub BT, Willmann JK, Desser TS. New technologies in clinical ultrasound. Semin Roentgenol 2014; 48:214-23. [PMID: 23796372 DOI: 10.1053/j.ro.2013.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aya Kamaya
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
McLaughlan J, Ingram N, Smith PR, Harput S, Coletta PL, Evans S, Freear S. Increasing the sonoporation efficiency of targeted polydisperse microbubble populations using chirp excitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2511-20. [PMID: 24297017 DOI: 10.1109/tuffc.2013.2850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The therapeutic use of microbubbles for targeted drug or gene delivery is a highly active area of research. Phospholipid- encapsulated microbubbles typically have a polydisperse size distribution over the 1 to 10 μm range and can be functionalized for molecular targeting and loaded with drugcarrying liposomes. Sonoporation through the generation of shear stress on the cell membrane by microbubble oscillations is one mechanism that results in pore formation in the cell membrane and can improve drug delivery. A microbubble oscillating at its resonant frequency would generate maximum shear stress on a membrane. However, because of the polydisperse nature of phospholipid microbubbles, a range of resonant frequencies would exist in a single population. In this study, the use of linear chirp excitations was compared with equivalent duration and acoustic pressure tone excitations when measuring the sonoporation efficiency of targeted microbubbles on human colorectal cancer cells. A 3 to 7 MHz chirp had the greatest sonoporation efficiency of 26.9 ± 5.6%, compared with 16.4 ± 1.1% for the 1.32 to 3.08 MHz chirp. The equivalent 2.2- and 5-MHz tone excitations have efficiencies of 12.8 ± 2.1% and 15.6 ± 1.1%, respectively, which were all above the efficiency of 4.1 ± 3.1% from the control exposure.
Collapse
|
29
|
Sénégond N, Boulmé A, Plag C, Teston F, Certon D. Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1505-1518. [PMID: 25004518 DOI: 10.1109/tuffc.2013.2723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response--of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a fourth--order Runge-Kutta algorithm. The model takes into account the electrostatic nonlinearity and the contact with the bottom electrode when the membrane is collapsed. Mutual acoustic coupling between cells is introduced through the numerical implementation of analytical solutions of the impulse diffraction theory established in the case of acoustic sources with rectangular geometry. Processing times are very short: they vary from a few minutes for a single cell to a maximum of 30 min for one element of an array. After a description of the model, the impact of the nonlinearity and the pull-in/pull-out phenomena on the dynamic behavior of the cMUT diaphragm is discussed. Experimental results of mechanical displacements obtained by interferometric measurements and the acoustic pressure field are compared with simulations. Different excitation signals-high-frequency bandwidth pulses and toneburst excitations of varying central frequency-were chosen to compare theory with experimental results.
Collapse
|
30
|
Yamaner FY, Olçum S, Oğuz HK, Bozkurt A, Köymen H, Atalar A. High-power CMUTs: design and experimental verification. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1276-1284. [PMID: 22718878 DOI: 10.1109/tuffc.2012.2318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with -28 dBc second harmonic at the surface of the array.
Collapse
Affiliation(s)
- F Yalçin Yamaner
- Electronics Engineering Department, Sabanci University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
31
|
Ozgurluk A, Atalar A, Köymen H, Olçum S. Radiation impedance of collapsed capacitive micromachined ultrasonic transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1301-1308. [PMID: 22718881 DOI: 10.1109/tuffc.2012.2321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The radiation impedance of a capacitive micromachined ultrasonic transducer (CMUT) array is a critical parameter to achieve high performance. In this paper, we present a calculation of the radiation impedance of collapsed, clamped, circular CMUTs both analytically and using finite element method (FEM) simulations. First, we model the radiation impedance of a single collapsed CMUT cell analytically by expressing its velocity profile as a linear combination of special functions for which the generated pressures are known. For an array of collapsed CMUT cells, the mutual impedance between the cells is also taken into account. The radiation impedances for arrays of 7, 19, 37, and 61 circular collapsed CMUT cells for different contact radii are calculated both analytically and by FEM simulations. The radiation resistance of an array reaches a plateau and maintains this level for a wide frequency range. The variation of radiation reactance with respect to frequency indicates an inductance-like behavior in the same frequency range. We find that the peak radiation resistance value is reached at higher kd values in the collapsed case as compared with the uncollapsed case, where k is the wavenumber and d is the center-to-center distance between two neighboring CMUT cells.
Collapse
Affiliation(s)
- Alper Ozgurluk
- Electrical and Electronics Engineering Department, Bilkent University, Ankara, Turkey
| | | | | | | |
Collapse
|
32
|
Stephens DN, Truong UT, Nikoozadeh A, Oralkan O, Seo CH, Cannata J, Dentinger A, Thomenius K, de la Rama A, Nguyen T, Lin F, Khuri-Yakub P, Mahajan A, Shivkumar K, O'Donnell M, Sahn DJ. First in vivo use of a capacitive micromachined ultrasound transducer array-based imaging and ablation catheter. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:247-56. [PMID: 22298868 PMCID: PMC3420825 DOI: 10.7863/jum.2012.31.2.247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
OBJECTIVES The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequency ablation (RFA) catheter. Preliminary thermal strain imaging (TSI)-derived temperature data were obtained from within the endocardium simultaneously during RFA to show the feasibility of direct ablation guidance procedures. METHODS The new 9F forward-looking ICE catheter was constructed with 3 complementary technologies: a CMUT imaging array with a custom electronic array buffer, catheter surface electrodes for EAM guidance, and a special ablation tip, that permits simultaneous TSI and RFA. In vivo imaging studies of 5 anesthetized porcine models with 5 CMUT catheters were performed. RESULTS The ML-CMUT ICE catheter provided high-resolution real-time wideband 2-dimensional (2D) images at greater than 8 MHz and is capable of both RFA and EAM guidance. Although the 24-element array aperture dimension is only 1.5 mm, the imaging depth of penetration is greater than 30 mm. The specially designed ultrasound-compatible metalized plastic tip allowed simultaneous imaging during ablation and direct acquisition of TSI data for tissue ablation temperatures. Postprocessing analysis showed a first-order correlation between TSI and temperature, permitting early development temperature-time relationships at specific myocardial ablation sites. CONCLUSIONS Multifunctional forward-looking ML-CMUT ICE catheters, with simultaneous intracardiac guidance, ultrasound imaging, and RFA, may offer a new means to improve interventional ablation procedures.
Collapse
|
33
|
Olcum S, Yamaner FY, Bozkurt A, Atalar A. Deep-collapse operation of capacitive micromachined ultrasonic transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:2475-2483. [PMID: 22083780 DOI: 10.1109/tuffc.2011.2104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have been introduced as a promising technology for ultrasound imaging and therapeutic ultrasound applications which require high transmitted pressures for increased penetration, high signal-to-noise ratio, and fast heating. However, output power limitation of CMUTs compared with piezoelectrics has been a major drawback. In this work, we show that the output pressure of CMUTs can be significantly increased by deep-collapse operation, which utilizes an electrical pulse excitation much higher than the collapse voltage. We extend the analyses made for CMUTs working in the conventional (uncollapsed) region to the collapsed region and experimentally verify the findings. The static deflection profile of a collapsed membrane is calculated by an analytical approach within 0.6% error when compared with static, electromechanical finite element method (FEM) simulations. The electrical and mechanical restoring forces acting on a collapsed membrane are calculated. It is demonstrated that the stored mechanical energy and the electrical energy increase nonlinearly with increasing pulse amplitude if the membrane has a full-coverage top electrode. Utilizing higher restoring and electrical forces in the deep-collapsed region, we measure 3.5 MPa peak-to-peak pressure centered at 6.8 MHz with a 106% fractional bandwidth at the surface of the transducer with a collapse voltage of 35 V, when the pulse amplitude is 160 V. The experimental results are verified using transient FEM simulations.
Collapse
Affiliation(s)
- Selim Olcum
- Bilkent University, Electrical and Electronics Engineering Department, Ankara, Turkey.
| | | | | | | |
Collapse
|
34
|
Ergün AS. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force. ULTRASONICS 2011; 51:786-794. [PMID: 21459399 DOI: 10.1016/j.ultras.2011.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/01/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well.
Collapse
Affiliation(s)
- A Sanlı Ergün
- University of Economics and Technology, Department of Electrical and Electronics Engineering, Ankara, Turkey.
| |
Collapse
|
35
|
Khuri-Yakub BT, Oralkan O. Capacitive micromachined ultrasonic transducers for medical imaging and therapy. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2011; 21:54004-54014. [PMID: 21860542 PMCID: PMC3158704 DOI: 10.1088/0960-1317/21/5/054004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Butrus T Khuri-Yakub
- E. L. Ginzton Laboratory, Center for Nanoscale Science and Engineering, Stanford University, Stanford, CA 94305-4088
| | | |
Collapse
|