1
|
Almekkawy M, Ebbini ES. The Optimization of Transcostal Phased Array Refocusing Using the Semidefinite Relaxation Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:318-328. [PMID: 31567081 PMCID: PMC8651278 DOI: 10.1109/tuffc.2019.2944434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumors in organs partially obscured by the rib cage represent a challenge for high-intensity focused ultrasound (HIFU) therapy. The ribs distort the HIFU beams in a manner that reduces the focusing gain at the target, which could result in treatment-limiting collateral damage. In fact, skin burns are a common complication during the ablation of hepatic tumors. This problem can be addressed by employing optimal refocusing algorithms that are designed to achieve a specified focusing gain at the target while controlling the exposure to the ribs in the path of the HIFU beam. However, previously proposed optimal refocusing algorithms did not allow for the controlled transmission through the ribs. In this article, we introduce a new approach for refocusing that can more efficiently steer power toward the target while limiting the power deposition on the ribs. The approach utilizes the semidefinite relaxation (SDR) technique to approximate the original (nonconvex) optimization problem. An important advantage of the SDR-based method over previously proposed optimization methods is the control of the side lobes in the focal plane. The method also allows for specifying an acceptable level of exposure to the ribs. Simulation results using a 1-MHz spherical concave phased array focused on an inhomogeneous medium are presented to demonstrate the performance of the SDR refocusing approach. A finite-difference time-domain propagation model was used to model the propagation in the inhomogeneous tissues, including the ribs. Temperature simulations based on the inhomogeneous transient bioheat transfer equation (tBHTE) demonstrate the significance of the improvements in the focusing gain when using the limited power deposition (LPD) method. The results also demonstrate that the LPD method yields well-behaved array excitation vectors, realizable by currently existing drivers.
Collapse
|
2
|
Mazumder D, Kar G, Vasu RM, Roy D, Kanhirodan R. Orthotropic elastic moduli of biological tissues from ultrasound-assisted diffusing-wave spectroscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2017; 34:1945-1956. [PMID: 29091642 DOI: 10.1364/josaa.34.001945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
We obtain vibro-acoustic (VA) spectral signatures of a remotely palpated region in tissue or tissue-like objects through diffusing-wave spectroscopy (DWS) measurements. Remote application of force is through focused ultrasound, and the spectral signatures correspond to vibrational modes of the focal volume (also called the ROI) excited through ultrasound forcing. In DWS, one recovers the time evolution of mean-square displacement (MSD) of Brownian particles from the measured decay of intensity autocorrelation of light, adapted also to local particles pertaining only to the ROI. We observe that the plateau of the MSD-versus-time curve has noisy fluctuations when ultrasound is applied, which disappear when forcing is removed. It is shown that the spectrum of fluctuations contains peaks corresponding to some of the modes of vibration of the ROI. This enables us to measure the vibrational modes carried by VA waves. We also show recovery of components of the orthotropic elastic tensor pertaining to the material of the ROI from the measured vibrational modes. We first recover the elastic constants for agar slabs, which are verified to be isotropic. Thereafter, we repeat the exercise on fat recovered from pork back tissue, which, from these measurements, is seen to be orthotropic. We validate some of our present measurements through independent runs in a rheometer. The present work is the first step taken, to the best of our knowledge, to characterize biological tissue on the basis of the anisotropic elasticity property, which may potentially aid in the diagnosis and tracking of the progress of cancer in soft-tissue organs.
Collapse
|
3
|
Mazumder D, Umesh S, Vasu RM, Roy D, Kanhirodan R, Asokan S. Quantitative vibro-acoustography of tissue-like objects by measurement of resonant modes. Phys Med Biol 2016; 62:107-126. [DOI: 10.1088/1361-6560/62/1/107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Suomi V, Han Y, Konofagou E, Cleveland RO. The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements. Phys Med Biol 2016; 61:7427-7447. [PMID: 27694703 DOI: 10.1088/0031-9155/61/20/7427] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple ultrasound elastography techniques rely on acoustic radiation force (ARF) in monitoring high-intensity focused ultrasound (HIFU) therapy. However, ARF is dependent on tissue attenuation and sound speed, both of which are also known to change with temperature making the therapy monitoring more challenging. Furthermore, the viscoelastic properties of tissue are also temperature dependent, which affects the displacements induced by ARF. The aim of this study is to quantify the temperature dependent changes in the acoustic and viscoelastic properties of liver and investigate their effect on ARF induced displacements by using both experimental methods and simulations. Furthermore, the temperature dependent viscoelastic properties of liver are experimentally measured over a frequency range of 0.1-200 Hz at temperatures reaching 80 °C, and both conventional and fractional Zener models are used to fit the data. The fractional Zener model was found to fit better with the experimental viscoelasticity data with respect to the conventional model with up to two orders of magnitude lower sum of squared errors (SSE). The characteristics of experimental displacement data were also seen in the simulations due to the changes in attenuation coefficient and lesion development. At low temperatures before thermal ablation, attenuation was found to affect the displacement amplitude. At higher temperature, the decrease in displacement amplitude occurs approximately at 60-70 °C due to the combined effect of viscoelasticity changes and lesion growth overpowering the effect of attenuation. The results suggest that it is necessary to monitor displacement continuously during HIFU therapy in order to ascertain when ablation occurs.
Collapse
Affiliation(s)
- Visa Suomi
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | | | | | | |
Collapse
|
5
|
Jin Z, Choi Y, Ko SY, Park JO, Park S. Experimental and simulation studies on focused ultrasound triggered drug delivery. Biotechnol Appl Biochem 2016; 64:134-142. [PMID: 26517977 DOI: 10.1002/bab.1453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/25/2015] [Indexed: 12/16/2022]
Abstract
To improve drug delivery efficiency in cancer therapy, many researchers have recently concentrated on drug delivery systems that use anticancer drug loaded micro- or nanoparticles. In addition, induction methods, such as ultrasound, magnetic field, and infrared light, have been considered as active induction methods for drug delivery. Among these, focused ultrasound has been regarded as a promising candidate for the active induction method of drug delivery system because it can penetrate a deep site in soft tissue, and its energy can be focused on the targeted lesion. In this research, we employed focused ultrasound as an active induction method. For an anticancer drug loaded microparticles, we fabricated poly-lactic-co-glycolic acid docetaxel (PLGA-DTX) nanoparticle encapsulated alginate microbeads using the single-emulsion technique and the aeration method. To select the appropriate operating parameter for the focused ultrasound, we measured the pressure and temperature induced by the focused ultrasound at the focal area using a needle-type hydrophone and a digital thermal detector, respectively. Additionally, we conducted a simulation of focused ultrasound using COMSOL Multiphysics 4.3a. The experimental measurement results were compared with the simulation results. In addition, the drug release rates of the PLGA-DTX-encapsulated alginate microbeads induced by the focused ultrasound were tested. Through these experiments, we determined that the appropriate focused ultrasound parameter was peak pressure of 1 MPa, 10 cycle/burst, and burst period of 20 μSec. Finally, we performed the cell cytotoxicity and drug uptake test with focused ultrasound induction and found that the antitumor effect and drug uptake efficiency were significantly enhanced by the focused ultrasound induction. Thus, we confirmed that focused ultrasound can be an effective induction method for an anticancer drug delivery system.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Korea
| | - Yongjin Choi
- Robot Research Initiative, Chonnam National University, Gwangju, Korea
| | - Seong Young Ko
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Korea.,Robot Research Initiative, Chonnam National University, Gwangju, Korea
| | - Jong-Oh Park
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Korea.,Robot Research Initiative, Chonnam National University, Gwangju, Korea
| | - Sukho Park
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Korea.,Robot Research Initiative, Chonnam National University, Gwangju, Korea
| |
Collapse
|
6
|
Carias M, Hynynen K. Combined Therapeutic and Monitoring Ultrasonic Catheter for Cardiac Ablation Therapies. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:196-207. [PMID: 26431798 DOI: 10.1016/j.ultrasmedbio.2015.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
This study evaluated the feasibility of a combined therapeutic and diagnostic ultrasonic catheter for cardiac ablation therapies. Ultrasound can be used to determine when diseased cardiac tissues have become fully coagulated through a method known as local harmonic motion imaging (LHMI). LHMI is an imaging modality for treatment monitoring that uses acoustic radiation force, displacement tracking and the different mechanical properties of viable and ablated tissues. In this study, we developed catheters that are capable of LHMI measurements. Experiments were conducted in phantoms, ex vivo cardiac samples and the in vivo beating hearts of healthy porcine subjects. In vivo experiments revealed that four of four epicardial sonications revealed a decrease in measured displacements from LHMI experiments and that when lower power was used, no lesions formed and there was no corresponding decrease in measured displacement amplitudes. In addition, two of three endocardial lesions were confirmed and corresponded to a decrease in the measured displacement amplitude.
Collapse
Affiliation(s)
- Mathew Carias
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Suomi V, Edwards D, Cleveland R. Optical Quantification of Harmonic Acoustic Radiation Force Excitation in a Tissue-Mimicking Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:3216-3232. [PMID: 26330365 DOI: 10.1016/j.ultrasmedbio.2015.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/18/2015] [Accepted: 07/16/2015] [Indexed: 06/05/2023]
Abstract
Optical tracking was used to characterize acoustic radiation force-induced displacements in a tissue-mimicking phantom. Amplitude-modulated 3.3-MHz ultrasound was used to induce acoustic radiation force in the phantom, which was embedded with 10-μm microspheres that were tracked using a microscope objective and high-speed camera. For sine and square amplitude modulation, the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with acoustic radiation force up to 10 μm, with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic, but energy was present in the third harmonic. For the sine modulation, energy was present in the second harmonic and low energy in the third harmonic. A finite-element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements.
Collapse
Affiliation(s)
- Visa Suomi
- University of Oxford, Parks Road, Oxford, UK.
| | | | | |
Collapse
|
8
|
Konofagou EE, Maleke C, Vappou J. Harmonic Motion Imaging (HMI) for Tumor Imaging and Treatment Monitoring. Curr Med Imaging 2012; 8:16-26. [PMID: 25364321 DOI: 10.2174/157340512799220616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Palpation is an established screening procedure for the detection of several superficial cancers including breast, thyroid, prostate, and liver tumors through both self and clinical examinations. This is because solid masses typically have distinct stiffnesses compared to the surrounding normal tissue. In this paper, the application of Harmonic Motion Imaging (HMI) for tumor detection based on its stiffness as well as its relevance in thermal treatment is reviewed. HMI uses a focused ultrasound (FUS) beam to generate an oscillatory acoustic radiation force for an internal, non-contact palpation to internally estimate relative tissue hardness. HMI studies have dealt with the measurement of the tissue dynamic motion in response to an oscillatory acoustic force at the same frequency, and have been shown feasible in simulations, phantoms, ex vivo human and bovine tissues as well as animals in vivo. Using an FUS beam, HMI can also be used in an ideal integration setting with thermal ablation using high-intensity focused ultrasound (HIFU), which also leads to an alteration in the tumor stiffness. In this paper, a short review of HMI is provided that encompasses the findings in all the aforementioned areas. The findings presented herein demonstrate that the HMI displacement can accurately depict the underlying tissue stiffness, and the HMI image of the relative stiffness could accurately detect and characterize the tumor or thermal lesion based on its distinct properties. HMI may thus constitute a non-ionizing, cost-efficient and reliable complementary method for noninvasive tumor detection, localization, diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Caroline Maleke
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Jonathan Vappou
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
9
|
Hou GY, Luo J, Marquet F, Maleke C, Vappou J, Konofagou EE. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:2013-27. [PMID: 22036637 PMCID: PMC4005895 DOI: 10.1016/j.ultrasmedbio.2011.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 05/11/2023]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.
Collapse
Affiliation(s)
- Gary Y. Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jianwen Luo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fabrice Marquet
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Caroline Maleke
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jonathan Vappou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. AN OVERVIEW OF ELASTOGRAPHY - AN EMERGING BRANCH OF MEDICAL IMAGING. Curr Med Imaging 2011; 7:255-282. [PMID: 22308105 PMCID: PMC3269947 DOI: 10.2174/157340511798038684] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field.In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals.Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice.
Collapse
|
11
|
Maleke C, Luo J, Gamarnik V, Lu XL, Konofagou EE. Simulation study of amplitude-modulated (AM) harmonic motion imaging (HMI) for stiffness contrast quantification with experimental validation. ULTRASONIC IMAGING 2010; 32:154-176. [PMID: 20718245 DOI: 10.1177/016173461003200304] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The objective of this study is to show that Harmonic Motion Imaging (HMI) can be used as a reliable tumor-mapping technique based on the tumor's distinct stiffness at the early onset of disease. HMI is a radiation-force-based imaging method that generates a localized vibration deep inside the tissue to estimate the relative tissue stiffness based on the resulting displacement amplitude. In this paper, a finite-element model (FEM) study is presented, followed by an experimental validation in tissue-mimicking polyacrylamide gels and excised human breast tumors ex vivo. This study compares the resulting tissue motion in simulations and experiments at four different gel stiffnesses and three distinct spherical inclusion diameters. The elastic moduli of the gels were separately measured using mechanical testing. Identical transducer parameters were used in both the FEM and experimental studies, i.e., a 4.5-MHz single-element focused ultrasound (FUS) and a 7.5-MHz diagnostic (pulse-echo) transducer. In the simulation, an acoustic pressure field was used as the input stimulus to generate a localized vibration inside the target. Radiofrequency (rf) signals were then simulated using a 2D convolution model. A one-dimensional cross-correlation technique was performed on the simulated and experimental rf signals to estimate the axial displacement resulting from the harmonic radiation force. In order to measure the reliability of the displacement profiles in estimating the tissue stiffness distribution, the contrast-transfer efficiency (CTE) was calculated. For tumor mapping ex vivo, a harmonic radiation force was applied using a 2D raster-scan technique. The 2D HMI images of the breast tumor ex vivo could detect a malignant tumor (20 x 10 mm2) surrounded by glandular and fat tissues. The FEM and experimental results from both gels and breast tumors ex vivo demonstrated that HMI was capable of detecting and mapping the tumor or stiff inclusion with various diameters or stiffnesses. HMI may thus constitute a promising technique in tumor detection (>3 mm in diameter) and mapping based on its distinct stiffness.
Collapse
Affiliation(s)
- Caroline Maleke
- Departments of Biomedical Engineering, 351 Engineering Terrace, mail code 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|