1
|
Cui J, Sun Y, Jing H, Chen Q, Huang Z, Qi X, Cui H. A Novel Continuous Sleep State Artificial Neural Network Model Based on Multi-Feature Fusion of Polysomnographic Data. Nat Sci Sleep 2024; 16:769-786. [PMID: 38894976 PMCID: PMC11182880 DOI: 10.2147/nss.s463897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose Sleep structure is crucial in sleep research, characterized by its dynamic nature and temporal progression. Traditional 30-second epochs falter in capturing the intricate subtleties of various micro-sleep states. This paper introduces an innovative artificial neural network model to generate continuous sleep depth value (SDV), utilizing a novel multi-feature fusion approach with EEG data, seamlessly integrating temporal consistency. Methods The study involved 50 normal and 100 obstructive sleep apnea-hypopnea syndrome (OSAHS) participants. After segmenting the sleep data into 3-second intervals, a diverse array of 38 feature values were meticulously extracted, including power, spectrum entropy, frequency band duration and so on. The ensemble random forest model calculated the timing fitness value for all the features, from which the top 7 time-correlated features were selected to create detailed sleep sample values ranging from 0 to 1. Subsequently, an artificial neural network (ANN) model was trained to delineate sleep continuity details, unravel concealed patterns, and far surpassed the traditional 5-stage categorization (W, N1, N2, N3, and REM). Results The SDV changes from wakeful stage (mean 0.7021, standard deviation 0.2702) to stage N3 (mean 0.0396, standard deviation 0.0969). During the arousal epochs, the SDV increases from the range (0.1 to 0.3) to the range around 0.7, and decreases below 0.3. When in the deep sleep (≤0.1), the probability of arousal of normal individuals is less than 10%, while the average arousal probability of OSA patients is close to 30%. Conclusion A sleep continuity model is proposed based on multi-feature fusion, which generates SDV ranging from 0 to 1 (representing deep sleep to wakefulness). It can capture the nuances of the traditional five stages and subtle differences in microstates of sleep, considered as a complement or even an alternative to traditional sleep analysis.
Collapse
Affiliation(s)
- Jian Cui
- Department of Big Data and Fundamental Sciences, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong, 257061, People’s Republic of China
| | - Yunliang Sun
- Department of Respiratory and Sleep Medicine, Bin Zhou Medical University Hospital, Binzhou, Shandong, 256600, People’s Republic of China
| | - Haifeng Jing
- College of Software and Microelectronics, Peking University, Beijing, 100000, People’s Republic of China
| | - Qiang Chen
- Department of Big Data and Fundamental Sciences, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong, 257061, People’s Republic of China
| | - Zhihao Huang
- Department of Big Data and Fundamental Sciences, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong, 257061, People’s Republic of China
| | - Xin Qi
- Department of Big Data and Fundamental Sciences, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong, 257061, People’s Republic of China
| | - Hao Cui
- Department of Big Data and Fundamental Sciences, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong, 257061, People’s Republic of China
| |
Collapse
|
2
|
Pascucci D, Rubega M, Plomp G. Modeling time-varying brain networks with a self-tuning optimized Kalman filter. PLoS Comput Biol 2020; 16:e1007566. [PMID: 32804971 PMCID: PMC7451990 DOI: 10.1371/journal.pcbi.1007566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/27/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Brain networks are complex dynamical systems in which directed interactions between different areas evolve at the sub-second scale of sensory, cognitive and motor processes. Due to the highly non-stationary nature of neural signals and their unknown noise components, however, modeling dynamic brain networks has remained one of the major challenges in contemporary neuroscience. Here, we present a new algorithm based on an innovative formulation of the Kalman filter that is optimized for tracking rapidly evolving patterns of directed functional connectivity under unknown noise conditions. The Self-Tuning Optimized Kalman filter (STOK) is a novel adaptive filter that embeds a self-tuning memory decay and a recursive regularization to guarantee high network tracking accuracy, temporal precision and robustness to noise. To validate the proposed algorithm, we performed an extensive comparison against the classical Kalman filter, in both realistic surrogate networks and real electroencephalography (EEG) data. In both simulations and real data, we show that the STOK filter estimates time-frequency patterns of directed connectivity with significantly superior performance. The advantages of the STOK filter were even clearer in real EEG data, where the algorithm recovered latent structures of dynamic connectivity from epicranial EEG recordings in rats and human visual evoked potentials, in excellent agreement with known physiology. These results establish the STOK filter as a powerful tool for modeling dynamic network structures in biological systems, with the potential to yield new insights into the rapid evolution of network states from which brain functions emerge. During normal behavior, brains transition between functional network states several times per second. This allows humans to quickly read a sentence, and a frog to catch a fly. Understanding these fast network dynamics is fundamental to understanding how brains work, but up to now it has proven very difficult to model fast brain dynamics for various methodological reasons. To overcome these difficulties, we designed a new Kalman filter (STOK) by innovating on previous solutions from control theory and state-space modelling. We show that STOK accurately models fast network changes in simulations and real neural data, making it an essential new tool for modelling fast brain networks in the time and frequency domain.
Collapse
Affiliation(s)
- D Pascucci
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland.,Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M Rubega
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland.,Department of Neurosciences, University of Padova, Padova, Italy
| | - G Plomp
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. Clin Neurophysiol 2020; 131:285-307. [DOI: 10.1016/j.clinph.2019.06.234] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/17/2019] [Accepted: 06/02/2019] [Indexed: 01/22/2023]
|
4
|
|
5
|
Li X, Cui L, Tao S, Chen J, Zhang X, Zhang GQ. HyCLASSS: A Hybrid Classifier for Automatic Sleep Stage Scoring. IEEE J Biomed Health Inform 2018; 22:375-385. [DOI: 10.1109/jbhi.2017.2668993] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage 2017; 180:577-593. [PMID: 29196270 DOI: 10.1016/j.neuroimage.2017.11.062] [Citation(s) in RCA: 648] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
The present review discusses a well-established method for characterizing resting-state activity of the human brain using multichannel electroencephalography (EEG). This method involves the examination of electrical microstates in the brain, which are defined as successive short time periods during which the configuration of the scalp potential field remains semi-stable, suggesting quasi-simultaneity of activity among the nodes of large-scale networks. A few prototypic microstates, which occur in a repetitive sequence across time, can be reliably identified across participants. Researchers have proposed that these microstates represent the basic building blocks of the chain of spontaneous conscious mental processes, and that their occurrence and temporal dynamics determine the quality of mentation. Several studies have further demonstrated that disturbances of mental processes associated with neurological and psychiatric conditions manifest as changes in the temporal dynamics of specific microstates. Combined EEG-fMRI studies and EEG source imaging studies have indicated that EEG microstates are closely associated with resting-state networks as identified using fMRI. The scale-free properties of the time series of EEG microstates explain why similar networks can be observed at such different time scales. The present review will provide an overview of these EEG microstates, available methods for analysis, the functional interpretations of findings regarding these microstates, and their behavioral and clinical correlates.
Collapse
Affiliation(s)
- Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; Lemanic Biomedical Imaging Centre (CIBM), Lausanne and Geneva, Switzerland.
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| |
Collapse
|
7
|
Boostani R, Karimzadeh F, Nami M. A comparative review on sleep stage classification methods in patients and healthy individuals. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 140:77-91. [PMID: 28254093 DOI: 10.1016/j.cmpb.2016.12.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/17/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Proper scoring of sleep stages can give clinical information on diagnosing patients with sleep disorders. Since traditional visual scoring of the entire sleep is highly time-consuming and dependent to experts' experience, automatic schemes based on electroencephalogram (EEG) analysis are broadly developed to solve these problems. This review presents an overview on the most suitable methods in terms of preprocessing, feature extraction, feature selection and classifier adopted to precisely discriminate the sleep stages. METHODS This study round up a wide range of research findings concerning the application of the sleep stage classification. The fundamental qualitative methods along with the state-of-the-art quantitative techniques for sleep stage scoring are comprehensively introduced. Moreover, according to the results of the investigated studies, five research papers are chosen and practically implemented on a well-known public available sleep EEG dataset. They are applied to single-channel EEG of 40 subjects containing equal number of healthy and patient individuals. Feature extraction and classification schemes are assessed in terms of accuracy and robustness against noise. Furthermore, an additional implementation phase is added to this research in which all combinations of the implemented features and classifiers are considered to find the best combination for sleep analysis. RESULTS According to our achieved results on both groups, entropy of wavelet coefficients along with random forest classifier are chosen as the best feature and classifier, respectively. The mentioned feature and classifier provide 87.06% accuracy on healthy subjects and 69.05% on patient group. CONCLUSIONS In this paper, the road map of EEG-base sleep stage scoring methods is clearly sketched. Implementing the state-of-the-art methods and even their combination on both healthy and patient datasets indicates that although the accuracy on healthy subjects are remarkable, the results for the main community (patient group) by the quantitative methods are not promising yet. The reasons rise from adopting non-matched sleep EEG features from other signal processing fields such as communication. As a conclusion, developing sleep pattern-related features deem necessary to enhance the performance of this process.
Collapse
Affiliation(s)
- Reza Boostani
- Department of Computer Science and Information technology, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
| | - Foroozan Karimzadeh
- Department of Computer Science and Information technology, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Fingelkurts AA, Fingelkurts AA. Operational Architectonics Methodology for EEG Analysis: Theory and Results. MODERN ELECTROENCEPHALOGRAPHIC ASSESSMENT TECHNIQUES 2013. [DOI: 10.1007/7657_2013_60] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Koley B, Dey D. An ensemble system for automatic sleep stage classification using single channel EEG signal. Comput Biol Med 2012; 42:1186-95. [PMID: 23102750 DOI: 10.1016/j.compbiomed.2012.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 07/20/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
Abstract
The present work aims at automatic identification of various sleep stages like, sleep stages 1, 2, slow wave sleep (sleep stages 3 and 4), REM sleep and wakefulness from single channel EEG signal. Automatic scoring of sleep stages was performed with the help of pattern recognition technique which involves feature extraction, selection and finally classification. Total 39 numbers of features from time domain, frequency domain and from non-linear analysis were extracted. After extraction of features, SVM based recursive feature elimination (RFE) technique was used to find the optimum number of feature subset which can provide significant classification performance with reduced number of features for the five different sleep stages. Finally for classification, binary SVMs were combined with one-against-all (OAA) strategy. Careful extraction and selection of optimum feature subset helped to reduce the classification error to 8.9% for training dataset, validated by k-fold cross-validation (CV) technique and 10.61% in the case of independent testing dataset. Agreement of the estimated sleep stages with those obtained by expert scoring for all sleep stages of training dataset was 0.877 and for independent testing dataset it was 0.8572. The proposed ensemble SVM-based method could be used as an efficient and cost-effective method for sleep staging with the advantage of reducing stress and burden imposed on subjects.
Collapse
Affiliation(s)
- B Koley
- Department of Instrumentation Engineering, Dr. B.C. Roy Engineering College, Durgapur, West Bengal, India.
| | | |
Collapse
|
10
|
Betzel RF, Erickson MA, Abell M, O'Donnell BF, Hetrick WP, Sporns O. Synchronization dynamics and evidence for a repertoire of network states in resting EEG. Front Comput Neurosci 2012; 6:74. [PMID: 23060785 PMCID: PMC3460532 DOI: 10.3389/fncom.2012.00074] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/07/2012] [Indexed: 11/13/2022] Open
Abstract
Intrinsically driven neural activity generated at rest exhibits complex spatiotemporal dynamics characterized by patterns of synchronization across distant brain regions. Mounting evidence suggests that these patterns exhibit fluctuations and nonstationarity at multiple time scales. Resting-state electroencephalographic (EEG) recordings were examined in 12 young adults for changes in synchronization patterns on a fast time scale in the range of tens to hundreds of milliseconds. Results revealed that EEG dynamics continuously underwent rapid transitions between intermittently stable states. Numerous approximate recurrences of states were observed within single recording epochs, across different epochs separated by longer times, and between participants. For broadband (4-30 Hz) data, a majority of states could be grouped into three families, suggesting the existence of a limited repertoire of core states that is continually revisited and shared across participants. Our results document the existence of fast synchronization dynamics iterating amongst a small set of core networks in the resting brain, complementing earlier findings of nonstationary dynamics in electromagnetic recordings and transient EEG microstates.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | | | | | | | | | | |
Collapse
|
11
|
Latchoumane CFV, Kim IH, Sohn H, Jeong J. Dynamical nonstationarity of resting EEGs in patients with attention-deficit/hyperactivity disorder (AD/HD). IEEE Trans Biomed Eng 2012; 60:159-63. [PMID: 22955863 DOI: 10.1109/tbme.2012.2213598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study applied dynamical nonstationarity analysis (DNA) to the resting EEGs of patients with attention-deficit/hyperactivity disorder (AD/HD). We aimed to assess and characterize AD/HD using features based on the local and global duration of dynamical microstate. We hypothesized that AD/HD patients would have difficulties in maintaining stable cognitive states (e.g., attention deficit and impulsivity) and that they would thus exhibit EEGs with temporal dynamics distinct from normal controls, i.e., rapidly and frequently changing dynamics. To test this hypothesis, we recorded EEGs from 12 adolescent subjects with AD/HD and 11 age-matched healthy subjects in the resting state with eyes closed and eyes open. We found that AD/HD patients exhibited significantly faster changes in dynamics than controls in the right temporal region during the eyes closed condition, but slower changes in dynamics in the frontal region during the eyes open condition. AD/HD patients exhibited a disruption in the rate of change of dynamics in the frontotemporal region at rest, probably due to executive and attention processes. We suggest that the DNA using complementary local and global features based on the duration of dynamical microstates could be a useful tool for the clinical diagnosis of subjects with AD/HD.
Collapse
|
12
|
Zempel JM, Politte DG, Kelsey M, Verner R, Nolan TS, Babajani-Feremi A, Prior F, Larson-Prior LJ. Characterization of scale-free properties of human electrocorticography in awake and slow wave sleep States. Front Neurol 2012; 3:76. [PMID: 22701446 PMCID: PMC3373008 DOI: 10.3389/fneur.2012.00076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/18/2012] [Indexed: 12/11/2022] Open
Abstract
Like many complex dynamic systems, the brain exhibits scale-free dynamics that follow power-law scaling. Broadband power spectral density (PSD) of brain electrical activity exhibits state-dependent power-law scaling with a log frequency exponent that varies across frequency ranges. Widely divergent naturally occurring neural states, awake and slow wave sleep (SWS), were used to evaluate the nature of changes in scale-free indices of brain electrical activity. We demonstrate two analytic approaches to characterizing electrocorticographic (ECoG) data obtained during awake and SWS states. A data-driven approach was used, characterizing all available frequency ranges. Using an equal error state discriminator (EESD), a single frequency range did not best characterize state across data from all six subjects, though the ability to distinguish awake and SWS ECoG data in individual subjects was excellent. Multi-segment piecewise linear fits were used to characterize scale-free slopes across the entire frequency range (0.2–200 Hz). These scale-free slopes differed between awake and SWS states across subjects, particularly at frequencies below 10 Hz and showed little difference at frequencies above 70 Hz. A multivariate maximum likelihood analysis (MMLA) method using the multi-segment slope indices successfully categorized ECoG data in most subjects, though individual variation was seen. In exploring the differences between awake and SWS ECoG data, these analytic techniques show that no change in a single frequency range best characterizes differences between these two divergent biological states. With increasing computational tractability, the use of scale-free slope values to characterize ECoG and EEG data will have practical value in clinical and research studies.
Collapse
Affiliation(s)
- John M Zempel
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | | | | | | | | | | | | | | |
Collapse
|