1
|
Noh DH, Zadeh AH, Zhang H, Wang F, Ryu S, Zhang C, Kim S. Convection-Enhanced Drug Delivery: Experimental and Analytical Studies of Infusion Behavior in an In Vitro Brain Surrogate. Ann Biomed Eng 2024; 52:1693-1705. [PMID: 38502430 DOI: 10.1007/s10439-024-03482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Convection-enhanced drug delivery (CED) directly infuses drugs with a large molecular weight toward target cells as a therapeutic strategy for neurodegenerative diseases and brain cancers. Despite the success of many previous in vitro experiments on CED, challenges still remain. In particular, a theoretical predictive model is needed to form a basis for treatment planning, and developing such a model requires well-controlled injection tests that can rigorously capture the convective (advective) and diffusive transport of an infusate. For this purpose, we investigated the advection-diffusion transport of an infusate (bromophenol blue solution) in the brain surrogate (0.2% w/w agarose gel) at different injection rates, ranging from 0.25 to 4 μL/min, by closely monitoring changes in the color intensity, propagation distance, and injection pressures. One dimensional closed-form solution was examined with two variable sets, such as the mathematically calculated coefficient of molecular diffusion and average velocity, and the hydraulic dispersion coefficient and seepage velocity by the least squared method. As a result, the seepage velocity was greater than the average velocity to some extent, particularly for the later infusion times. The poroelastic deformation in the brain surrogate might lead to changes in porosity, and consequently, slight increases in the actual flow velocity as infusion continues. The limitation of efficiency of the single catheter was analyzed by dimensionless analysis. Lastly, this study suggests a simple but robust approach that can properly capture the convective (advective) and diffusive transport of an infusate in an in vitro brain surrogate via well-controlled injection tests.
Collapse
Affiliation(s)
- Dong-Hwa Noh
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amin Hosseini Zadeh
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Alfred Benesch & Company, Lincoln, Nebraska, USA
| | - Haipeng Zhang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Fei Wang
- Department of Radiation Oncology, University of Nebraska-Medical Center, Omaha, Nebraska, USA
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Chi Zhang
- Department of Radiation Oncology, University of Nebraska-Medical Center, Omaha, Nebraska, USA
| | - Seunghee Kim
- Department of Civil and Environmental Engineering; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
2
|
Quantitative monitoring and modelling of retrodialysis drug delivery in a brain phantom. Sci Rep 2023; 13:1900. [PMID: 36732612 PMCID: PMC9894834 DOI: 10.1038/s41598-023-28915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
A vast number of drug molecules are unable to cross the blood-brain barrier, which results in a loss of therapeutic opportunities when these molecules are administered by intravenous infusion. To circumvent the blood-brain barrier, local drug delivery devices have been developed over the past few decades such as reverse microdialysis. Reverse microdialysis (or retrodialysis) offers many advantages, such as a lack of net volume influx to the intracranial cavity and the ability to sample the tumour's micro-environment. However, the translation of this technique to efficient drug delivery has not been systematically studied. In this work, we present an experimental platform to evaluate the performance of microdialysis devices in reverse mode in a brain tissue phantom. The mass of model drug delivered is measured by computing absorbance fields from optical images. Concentration maps are reconstructed using a modern and open-source implementation of the inverse Abel transform. To illustrate our method, we assess the capability of a commercial probe in delivering methylene blue to a gel phantom. We find that the delivery rate can be described by classical microdialysis theory, except at low dialysate flow rates where it is impacted by gravity, and high flow rates where significant convection to the gel occurs. We also show that the flow rate has an important impact not only on the overall size of the drug plume, but also on its shape. The numerical tools developed for this study have been made freely available to ensure that the method presented can be used to rapidly and inexpensively optimise probe design and protocol parameters before proceeding to more in-depth studies.
Collapse
|
3
|
Finite Element Model to Reproduce the Effect of Pre-Stress and Needle Insertion Velocity During Infusions into Brain Phantom Gel. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2020.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Choi J, Taal AJ, Pollmann EH, Lee C, Kim K, Moreaux LC, Roukes ML, Shepard KL. A 512-Pixel, 51-kHz-Frame-Rate, Dual-Shank, Lens-less, Filter-less Single Photon Avalanche Diode CMOS Neural Imaging Probe. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2019; 54:2957-2968. [PMID: 31798187 PMCID: PMC6886722 DOI: 10.1109/jssc.2019.2941529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present an implantable single photon shank-based imager, monolithically integrated onto a single CMOS IC. The imager comprises of 512 single photon avalanche diodes distributed along two shanks, with a 6-bit depth in-pixel memory and an on-chip digital-to-time converter. To scale down the system to a minimally invasive form factor, we substitute optical filtering and focusing elements with a time-gated, angle-sensitive detection system. The imager computationally reconstructs the position of fluorescent sources within a three-dimensional volume of 3.4 mm × 600 µm × 400 µm.
Collapse
Affiliation(s)
- Jaebin Choi
- Electrical Engineering Department, Columbia University, New York, NY, USA
| | - Adriaan J Taal
- Electrical Engineering Department, Columbia University, New York, NY, USA
| | - Eric H Pollmann
- Electrical Engineering Department, Columbia University, New York, NY, USA
| | - Changhyuk Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Kukjoo Kim
- Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | | | | | - Kenneth L Shepard
- Bioelectronic Systems Laboratories, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Maximising coverage of brain structures using controlled reflux, convection-enhanced delivery and the recessed step catheter. J Neurosci Methods 2018; 308:337-345. [DOI: 10.1016/j.jneumeth.2018.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/14/2018] [Accepted: 08/31/2018] [Indexed: 11/18/2022]
|
6
|
Systems engineers’ role in biomedical research. Convection-enhanced drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-63964-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
7
|
Moody AS, Baghernejad PC, Webb KR, Sharma B. Surface Enhanced Spatially Offset Raman Spectroscopy Detection of Neurochemicals Through the Skull. Anal Chem 2017; 89:5688-5692. [DOI: 10.1021/acs.analchem.7b00985] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Amber S. Moody
- Department
of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Peymon C. Baghernejad
- Department
of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Kelsey R. Webb
- Department
of Chemistry, University of Virginia−Wise, 1 College Avenue, Wise, Virginia 24293, United States
| | - Bhavya Sharma
- Department
of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
8
|
Tangen K, Narasimhan NS, Sierzega K, Preden T, Alaraj A, Linninger AA. Clearance of Subarachnoid Hemorrhage from the Cerebrospinal Fluid in Computational and In Vitro Models. Ann Biomed Eng 2016; 44:3478-3494. [DOI: 10.1007/s10439-016-1681-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/18/2016] [Indexed: 12/30/2022]
|
9
|
Mehta AI, Linninger A, Lesniak MS, Engelhard HH. Current status of intratumoral therapy for glioblastoma. J Neurooncol 2015; 125:1-7. [DOI: 10.1007/s11060-015-1875-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/26/2015] [Indexed: 12/26/2022]
|
10
|
Mangubat EZ, Kellogg RG, Harris TJ, Rossi MA. On-demand pulsatile intracerebral delivery of carisbamate with closed-loop direct neurostimulation therapy in an electrically induced self-sustained focal-onset epilepsy rat model. J Neurosurg 2015; 122:1283-92. [PMID: 25723302 DOI: 10.3171/2015.1.jns14946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECT The authors evaluated the preclinical feasibility of acutely stabilizing an active bihemispheric limbic epileptic circuit using closed-loop direct neurostimulation therapy in tandem with "on-demand'" convection-enhanced intracerebral delivery of the antiepileptic drug (AED) carisbamate. A rat model of electrically induced self-sustained focal-onset epilepsy was employed. METHODS A 16-contact depth-recording microelectrode was implanted bilaterally in the dentate gyrus (DG) of the hippocampus of Fischer 344 rats. The right microelectrode array included an integrated microcatheter for drug delivery at the distal tip. Bihemispheric spontaneous self-sustained limbic status epilepticus (SSLSE) was induced in freely moving rats using a 90-minute stimulation paradigm delivered to the right medial perforant white matter pathway. Immediately following SSLSE induction, closed-loop right PP stimulation therapy concurrent with on-demand nanoboluses of the AED [(14)C]-carisbamate (n = 4), or on-demand [(14)C]-carisbamate alone (n = 4), was introduced for a mean of 10 hours. In addition, 2 reference groups received either closed-loop stimulation therapy alone (n = 4) or stimulation therapy with saline vehicle only (n = 4). All animals were sacrificed after completing the specified therapy regimen. In situ [(14)C]-autoradiography was used to determine AED distribution. RESULTS Closed-loop direct stimulation therapy delivered unilaterally in the right PP aborted ictal runs detected in either ipsi- or contralateral hippocampi. Freely moving rats receiving closed-loop direct stimulation therapy with ondemand intracerebral carisbamate delivery experienced a significant reduction in seizure frequency (p < 0.001) and minimized seizure frequency variability during the final 50% of the therapy/recording session compared with closed-loop stimulation therapy alone. CONCLUSIONS Unilateral closed-loop direct stimulation therapy delivered to afferent hippocampal white matter pathways concurrent with on-demand ipsilateral intracerebral delivery of nano-bolused carisbamate can rapidly decrease the frequency of electrographic seizures in an active bihemispheric epileptic network. Additionally, direct pulsatile delivery of carisbamate can stabilize seizure frequency variability compared with direct stimulation therapy alone.
Collapse
Affiliation(s)
| | | | - Timothy J Harris
- 2Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Marvin A Rossi
- 2Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
The substitute brain and the potential of the gel model. Ann Neurosci 2014; 20:118-22. [PMID: 25206029 PMCID: PMC4117117 DOI: 10.5214/ans.0972.7531.200309] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/12/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022] Open
Abstract
This purpose of this paper is to review the recent history of the use of agarose gels. Although originally confined to electrophoresis work, agarose gels have proven themselves useful to a number of disciplines in the modern world, which includes brain infusion studies for research involving the treatment of various neurological conditions, such as Parkinson’s Disease. In reviewing the relevant research leading up to the modern day, this paper attempts to track agarose gels through their stages of accuracy verification, highlighting why they are useful to the neurosurgery discipline and characterizing the nature of their use. Agarose gels do have significant limitations, which are also discussed, but they have substantial potential as a modifiable medium or as a basis of comparison for even more accurate models in the future.
Collapse
|
12
|
Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue. J Biomed Mater Res B Appl Biomater 2014; 103:282-91. [DOI: 10.1002/jbm.b.33197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/31/2014] [Accepted: 04/24/2014] [Indexed: 01/29/2023]
|
13
|
Oh JS, Kwon YS, Lee KH, Jeong W, Chung SK, Rhee K. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles. Comput Biol Med 2014; 44:37-43. [DOI: 10.1016/j.compbiomed.2013.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/19/2013] [Indexed: 12/20/2022]
|
14
|
The effect of pulsatile flow on intrathecal drug delivery in the spinal canal. Ann Biomed Eng 2011; 39:2592-602. [PMID: 21751071 DOI: 10.1007/s10439-011-0346-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/25/2011] [Indexed: 12/24/2022]
Abstract
Clinical studies have shown that drugs delivered intrathecally distribute much faster than can be accounted for by pure molecular diffusion. However, drug transport inside the cerebrospinal fluid (CSF)-filled spinal canal is poorly understood. In this study, comprehensive experimental and computational studies were conducted to quantify the effect of pulsatile CSF flow on the accelerated drug dispersion in the spinal canal. Infusion tests with a radionucleotide and fluorescent dye under stagnant and pulsatile flow conditions were conducted inside an experimental surrogate model of the human spinal canal. The tracer distributions were quantified optically and by single photon emission computed tomography (SPECT). The experimental results show that CSF flow oscillations substantially enhance fluorescent dye and radionucleotide dispersion in the spinal canal experiment. The experimental observations were interpreted by rigorous computer simulations. To demonstrate the clinical significance, the dispersion of intrathecally infused baclofen, an anti-spasticity drug, was predicted by using patient-specific spinal data and CSF flow measurements. The computational predictions are expected to enable the rational design of intrathecal drug therapies.
Collapse
|