1
|
Abbasiasl T, Sutova H, Niazi S, Celebi G, Karavelioglu Z, Kirabali U, Yilmaz A, Uvet H, Kutlu O, Ekici S, Ghorbani M, Kosar A. A Flexible Cystoscope Based on Hydrodynamic Cavitation for Tumor Tissue Ablation. IEEE Trans Biomed Eng 2021; 69:513-524. [PMID: 34329154 DOI: 10.1109/tbme.2021.3100542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Hydrodynamic cavitation is characterized by the formation of bubbles inside a flow due to local reduction of pressure below the saturation vapor pressure. The resulting growth and violent collapse of bubbles lead to a huge amount of released energy. This energy can be implemented in different fields such as heat transfer enhancement, wastewater treatment and chemical reactions. In this study, a cystoscope based on small scale hydrodynamic cavitation was designed and fabricated to exploit the destructive energy of cavitation bubbles for treatment of tumor tissues. The developed device is equipped with a control system, which regulates the movement of the cystoscope in different directions. According to our experiments, the fabricated cystoscope was able to locate the target and expose cavitating flow to the target continuously and accurately. The designed cavitation probe embedded into the cystoscope caused a significant damage to prostate cancer and bladder cancer tissues within less than 15 minutes. The results of our experiments showed that the cavitation probe could be easily coupled with endoscopic devices because of its small diameter. We successfully integrated a biomedical camera, a suction tube, tendon cables, and the cavitation probe into a 6.7 mm diameter cystoscope, which could be controlled smoothly and accurately via a control system. The developed device is considered as a mechanical ablation therapy, can be a solid alternative for minimally invasive tissue ablation methods such as radiofrequency (RF) and laser ablation, and could have lower side effects compared to ultrasound therapy and cryoablation.
Collapse
|
2
|
Xiong R, Xu RX, Huang C, De Smedt S, Braeckmans K. Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 2021; 50:5746-5776. [PMID: 33972972 DOI: 10.1039/c9cs00839j] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive nanobubbles have received increased attention for their application in spatial and temporal resolution of diagnostic techniques and therapies, particularly in multiple imaging methods, and they thus have significant potential for applications in the field of biomedicine. This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel applications. Properties of both internal- and external-stimuli responsive nanobubbles are highlighted and discussed considering the potential features required for biomedical applications. Furthermore, the methods used for synthesis and characterization of nanobubbles are outlined. Finally, novel biomedical applications are proposed alongside the advantages and shortcomings inherent to stimuli-responsive nanobubbles.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, P. R. China and Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China.
| | - Stefaan De Smedt
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Rokhsar Talabazar F, Jafarpour M, Zuvin M, Chen H, Gevari MT, Villanueva LG, Grishenkov D, Koşar A, Ghorbani M. Design and fabrication of a vigorous "cavitation-on-a-chip" device with a multiple microchannel configuration. MICROSYSTEMS & NANOENGINEERING 2021; 7:44. [PMID: 34567757 PMCID: PMC8433160 DOI: 10.1038/s41378-021-00270-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 05/28/2023]
Abstract
Hydrodynamic cavitation is one of the major phase change phenomena and occurs with a sudden decrease in the local static pressure within a fluid. With the emergence of microelectromechanical systems (MEMS), high-speed microfluidic devices have attracted considerable attention and been implemented in many fields, including cavitation applications. In this study, a new generation of 'cavitation-on-a-chip' devices with eight parallel structured microchannels is proposed. This new device is designed with the motivation of decreasing the upstream pressure (input energy) required for facile hydrodynamic cavitation inception. Water and a poly(vinyl alcohol) (PVA) microbubble (MB) suspension are used as the working fluids. The results show that the cavitation inception upstream pressure can be reduced with the proposed device in comparison with previous studies with a single flow restrictive element. Furthermore, using PVA MBs further results in a reduction in the upstream pressure required for cavitation inception. In this new device, different cavitating flow patterns with various intensities can be observed at a constant cavitation number and fixed upstream pressure within the same device. Moreover, cavitating flows intensify faster in the proposed device for both water and the water-PVA MB suspension in comparison to previous studies. Due to these features, this next-generation 'cavitation-on-a-chip' device has a high potential for implementation in applications involving microfluidic/organ-on-a-chip devices, such as integrated drug release and tissue engineering.
Collapse
Affiliation(s)
- Farzad Rokhsar Talabazar
- Faculty of Engineering and Natural Science, Sabanci University, Tuzla, Istanbul Turkey
- Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul Turkey
| | - Mohammad Jafarpour
- Faculty of Engineering and Natural Science, Sabanci University, Tuzla, Istanbul Turkey
- Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul Turkey
| | - Merve Zuvin
- Faculty of Engineering and Natural Science, Sabanci University, Tuzla, Istanbul Turkey
- Advanced NEMS Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hongjian Chen
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Stockholm, Sweden
| | - Moein Talebian Gevari
- Division of Solid State Electronics, Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Luis Guillermo Villanueva
- Advanced NEMS Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Stockholm, Sweden
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, Tuzla, Istanbul Turkey
- Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, Tuzla, Istanbul Turkey
| | - Morteza Ghorbani
- Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul Turkey
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Stockholm, Sweden
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, Tuzla, Istanbul Turkey
| |
Collapse
|
4
|
Li F, Yuan F, Sankin G, Yang C, Zhong P. A Microfluidic System with Surface Patterning for Investigating Cavitation Bubble(s)-Cell Interaction and the Resultant Bioeffects at the Single-cell Level. J Vis Exp 2017. [PMID: 28117807 DOI: 10.3791/55106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this manuscript, we first describe the fabrication protocol of a microfluidic chip, with gold dots and fibronectin-coated regions on the same glass substrate, that precisely controls the generation of tandem bubbles and individual cells patterned nearby with well-defined locations and shapes. We then demonstrate the generation of tandem bubbles by using two pulsed lasers illuminating a pair of gold dots with a few-microsecond time delay. We visualize the bubble-bubble interaction and jet formation by high-speed imaging and characterize the resultant flow field using particle image velocimetry (PIV). Finally, we present some applications of this technique for single cell analysis, including cell membrane poration with macromolecule uptake, localized membrane deformation determined by the displacements of attached integrin-binding beads, and intracellular calcium response from ratiometric imaging. Our results show that a fast and directional jetting flow is produced by the tandem bubble interaction, which can impose a highly localized shear stress on the surface of a cell grown in close proximity. Furthermore, different bioeffects can be induced by altering the strength of the jetting flow by adjusting the standoff distance from the cell to the tandem bubbles.
Collapse
Affiliation(s)
- Fenfang Li
- Mechanical Engineering and Materials Science, Duke University;
| | | | - Georgy Sankin
- Mechanical Engineering and Materials Science, Duke University
| | - Chen Yang
- Mechanical Engineering and Materials Science, Duke University
| | - Pei Zhong
- Mechanical Engineering and Materials Science, Duke University
| |
Collapse
|
5
|
Ghorbani M, Oral O, Ekici S, Gozuacik D, Kosar A. Review on Lithotripsy and Cavitation in Urinary Stone Therapy. IEEE Rev Biomed Eng 2016; 9:264-83. [PMID: 27249837 DOI: 10.1109/rbme.2016.2573381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cavitation is the sudden formation of vapor bubbles or voids in liquid media and occurs after rapid changes in pressure as a consequence of mechanical forces. It is mostly an undesirable phenomenon. Although the elimination of cavitation is a major topic in the study of fluid dynamics, its destructive nature could be exploited for therapeutic applications. Ultrasonic and hydrodynamic sources are two main origins for generating cavitation. The purpose of this review is to give the reader a general idea about the formation of cavitation phenomenon and existing biomedical applications of ultrasonic and hydrodynamic cavitation. Because of the high number of the studies on ultrasound cavitation in the literature, the main focus of this review is placed on the lithotripsy techniques, which have been widely used for the treatment of urinary stones. Accordingly, cavitation phenomenon and its basic concepts are presented in Section II. The significance of the ultrasound cavitation in the urinary stone treatment is discussed in Section III in detail and hydrodynamic cavitation as an important alternative for the ultrasound cavitation is included in Section IV. Finally, side effects of using both ultrasound and hydrodynamic cavitation in biomedical applications are presented in Section V.
Collapse
|
6
|
Uzusen D, Demir E, Yavuz Perk O, Oral O, Ekici S, Unel M, Gozuacik D, Kosar A. Assessment of Probe-to-Specimen Distance Effect in Kidney Stone Treatment With Hydrodynamic Cavitation. J Med Device 2015. [DOI: 10.1115/1.4030274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of this study is to focus on the effect of probe-to-specimen distance in kidney stone treatment with hydrodynamic bubbly cavitation. Cavitating bubbles were generated by running phosphate buffered saline (PBS) through stainless steel tubing of inner diameter of 1.56 mm at an inlet pressure of ∼10,000 kPa, which was connected to a 0.75 mm long probe with an inner diameter of 147 μm at the exit providing a sudden contraction and thus low local pressures. The bubbles were targeted on the surface of nine calcium oxalate kidney stones (submerged in a water pool at room temperature and atmospheric pressure) from three different distances, namely, 0.5 mm, 2.75 mm, and 7.75 mm. The experiments were repeated for three different time durations (5 min, 10 min, and 20 min). The experimental data show that amongst the three distances considered, the distance of 2.75 mm results in the highest erosion amount and highest erosion rate (up to 0.94 mg/min), which suggests that a closer distance does not necessarily lead to a higher erosion rate and that the probe-to-specimen distance is a factor of great importance, which needs to be optimized. In order to be able to explain the experimental results, a visualization study was also conducted with a high speed CMOS camera. A new correlation was developed to predict the erosion rates on kidney stones exposed to hydrodynamic cavitation as a function of material properties, time, and distance.
Collapse
Affiliation(s)
- Dogan Uzusen
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Orhanli, Istanbul 34956, Turkey e-mail:
| | - Ebru Demir
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Orhanli, Istanbul 34956, Turkey e-mail:
| | - Osman Yavuz Perk
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Orhanli, Istanbul 34956, Turkey e-mail:
| | - Ozlem Oral
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University Nanotechnology Research and Application Center, Sabancı University, Orhanli, Tulza, Istanbul 34956, Turkey e-mail:
| | - Sinan Ekici
- Department of Urology, Maltepe University Hospital, Maltepe University, Maltepe, Istanbul 34956, Turkey e-mail:
| | - Mustafa Unel
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Orhanli, Istanbul 34956, Turkey e-mail:
| | - Devrim Gozuacik
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Orhanli, Tuzla, Istanbul 34956, Turkey e-mail:
| | - Ali Kosar
- Mem. ASME Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Orhanli, Istanbul 34956, Turkey e-mail:
| |
Collapse
|
7
|
Kaminski GA. Computational Studies of the Effect of Shock Waves on the Binding of Model Complexes. J Chem Theory Comput 2014; 10:4972-4981. [PMID: 25400519 PMCID: PMC4230379 DOI: 10.1021/ct500461s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 01/03/2023]
Abstract
We have simulated effects of a shock wave in water that would result from the collapse of a cavitation bubble on binding in model complexes. We have considered a benzene dimer, a pair of uracil molecules, a complex of fragments of the X-linked inhibitor of apoptosis and caspase-9, and a fragment of c-Myc oncoprotein in binding with its dimerization partner Max. The effect of the shock waves was simulated by adding a momentum to a slab of solvent water molecules and observing the system as the slab moved and caused changes. In the cases of the small molecular pairs, the passage of the shock waves lead to dissociation of the complexes. The behavior of the protein systems was more complex, yet significant disruption of the binding and geometry was also observed. In all the cases, the effects did not occur during the immediate impact of the high-momentum solvent molecules, but rather during the expansion of the compressed system that followed the passage of the waves. The rationale of the studies was in attempting to understand the strong effects that irradiation with a low-intensity ultrasound can have on biomolecular systems, because such ultrasound irradiation can cause cavitation bubbles to be produced and collapse, thus leading to local shock wave generation. The long-term objective is to contribute to future design of synergetic ultrasound and chemical drug strategy of protein inhibition.
Collapse
Affiliation(s)
- George A. Kaminski
- Department of Chemistry and
Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
8
|
Itah Z, Oral O, Perk OY, Sesen M, Demir E, Erbil S, Dogan-Ekici AI, Ekici S, Kosar A, Gozuacik D. Hydrodynamic cavitation kills prostate cells and ablates benign prostatic hyperplasia tissue. Exp Biol Med (Maywood) 2013; 238:1242-50. [PMID: 24047796 DOI: 10.1177/1535370213503273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrodynamic cavitation is a physical phenomenon characterized by vaporization and bubble formation in liquids under low local pressures, and their implosion following their release to a higher pressure environment. Collapse of the bubbles releases high energy and may cause damage to exposed surfaces. We recently designed a set-up to exploit the destructive nature of hydrodynamic cavitation for biomedical purposes. We have previously shown that hydrodynamic cavitation could kill leukemia cells and erode kidney stones. In this study, we analyzed the effects of cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. We showed that hydrodynamic cavitation could kill prostate cells in a pressure- and time-dependent manner. Cavitation did not lead to programmed cell death, i.e. classical apoptosis or autophagy activation. Following the application of cavitation, we observed no prominent DNA damage and cells did not arrest in the cell cycle. Hence, we concluded that cavitation forces directly damaged the cells, leading to their pulverization. Upon application to BPH tissues from patients, cavitation could lead to a significant level of tissue destruction. Therefore similar to ultrasonic cavitation, we propose that hydrodynamic cavitation has the potential to be exploited and developed as an approach for the ablation of aberrant pathological tissues, including BPH.
Collapse
Affiliation(s)
- Zeynep Itah
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Türköz BK, Zakhariouta A, Sesen M, Taralp A, Koşar A. Reversibility of Functional and Structural Changes of Lysozyme Subjected to Hydrodynamic Flow. J Nanotechnol Eng Med 2012. [DOI: 10.1115/1.4006363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this initial study, the effect of hydrodynamic flow on lysozyme structure and function was investigated using a microchannel device. Protein was subjected to bubbly cavitation as well as noncavitating flow conditions at pH 4.8 and 25 °C. Interestingly, time course analyses indicated that the secondary structure content, the hydrodynamic diameter, and enzymatic activity of lysozyme were unaffected by cavitation. However, noncavitating flow conditions did induce a decrease of the hydrodynamic diameter. The corresponding structural change was subtle to the extent that bioactivity was marginally suppressed. Moreover, native diameter and bioactivity could be fully restored following a brief period of ultrasonication. The findings encouraged further study of various hydrodynamic flow conditions in order to better ascertain the potential risks and benefits of invasive hydrodynamic cavitation in medicine. The results also served to highlight the counter-intuitive notion that proteins need not necessarily be denatured in high-shear media, risks that typically correlate well with forcefully agitated solutions.
Collapse
Affiliation(s)
- Burcu Kaplan Türköz
- Biological Sciences and Engineering Program, Faculty of Natural Sciences and Engineering, Sabanci University, Tuzla, Istanbul, Turkey 34956
| | - Anastassia Zakhariouta
- Biological Sciences and Engineering Program, Faculty of Natural Sciences and Engineering, Sabanci University, Tuzla, Istanbul, Turkey 34956
| | - Muhsincan Sesen
- Mechatronics Program, Faculty of Natural Sciences and Engineering, Sabanci University, Tuzla, Istanbul, Turkey, 34956
| | - Alpay Taralp
- Materials Science and Engineering Program,Faculty of Natural Sciences and Engineering, Sabanci University, Tuzla, Istanbul, Turkey, 34956
| | - Ali Koşar
- Mechatronics Program, Faculty of Natural Sciences and Engineering, Sabanci University, Tuzla, Istanbul, Turkey, 34956
| |
Collapse
|
10
|
Oral O, Oz-Arslan D, Itah Z, Naghavi A, Deveci R, Karacali S, Gozuacik D. Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis 2012; 17:810-20. [DOI: 10.1007/s10495-012-0735-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Perk OY, Şeşen M, Gozuacik D, Koşar A. Kidney Stone Erosion by Micro Scale Hydrodynamic Cavitation and Consequent Kidney Stone Treatment. Ann Biomed Eng 2012; 40:1895-902. [DOI: 10.1007/s10439-012-0559-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/22/2012] [Indexed: 12/25/2022]
|