1
|
Mayorca-Torres D, León-Salas AJ, Peluffo-Ordoñez DH. Systematic review of computational techniques, dataset utilization, and feature extraction in electrocardiographic imaging. Med Biol Eng Comput 2025; 63:1289-1317. [PMID: 39779645 DOI: 10.1007/s11517-024-03264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to analyze computational techniques in ECG imaging (ECGI) reconstruction, focusing on dataset identification, problem-solving, and feature extraction. We employed a PRISMA approach to review studies from Scopus and Web of Science, applying Cochrane principles to assess risk of bias. The selection was limited to English peer-reviewed papers published from 2010 to 2023, excluding studies that lacked computational technique descriptions. From 99 reviewed papers, trends show a preference for traditional methods like the boundary element and Tikhonov methods, alongside a rising use of advanced technologies including hybrid techniques and deep learning. These advancements have enhanced cardiac diagnosis and treatment precision. Our findings underscore the need for robust data utilization and innovative computational integration in ECGI, highlighting promising areas for future research and advances. This shift toward tailored cardiac care suggests significant progress in diagnostic and treatment methods.
Collapse
Affiliation(s)
- Dagoberto Mayorca-Torres
- Department of Software Systems and Programming Languages, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain.
- Faculty of Engineering, Universidad Mariana, Cl 18 34 - 104, Pasto, 52001, Colombia.
| | - Alejandro J León-Salas
- Department of Software Systems and Programming Languages, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
| | - Diego H Peluffo-Ordoñez
- Faculty of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto, 520001, Colombia
- College of Computing, Mohammed VI Polytechnic University, Lot 660, Ben Guerir, 43150, Morocco
- SDAS Research Group, Ben Guerir, 43150, Morocco
| |
Collapse
|
2
|
Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev 2024; 104:1265-1333. [PMID: 38153307 PMCID: PMC11381036 DOI: 10.1152/physrev.00017.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julie Shade
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Phadumdeo VM, Mallare BL, Hund TJ, Weinberg SH. Long-term changes in heart rate and electrical remodeling contribute to alternans formation in heart failure: a patient-specific in silico study. Am J Physiol Heart Circ Physiol 2023; 325:H414-H431. [PMID: 37417871 PMCID: PMC11575914 DOI: 10.1152/ajpheart.00220.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Individuals with chronic heart failure (CHF) have an increased risk of ventricular arrhythmias, which has been linked to pathological cellular remodeling and may also be mediated by changes in heart rate. Heart rate typically fluctuates on a timescale ranging from seconds to hours, termed heart rate variability (HRV). This variability is reduced in CHF, and this HRV reduction is associated with a greater risk for arrhythmias. Furthermore, variations in heart rate influence the formation of proarrhythmic alternans, a beat-to-beat alternation in the action potential duration (APD), or intracellular calcium (Ca). In this study, we investigate how long-term changes in heart rate and electrical remodeling associated with CHF influence alternans formation. We measure key statistical properties of the RR-interval sequences from ECGs of individuals with normal sinus rhythm (NSR) and CHF. Patient-specific RR-interval sequences and synthetic sequences (randomly generated to mimicking these statistical properties) are used as the pacing protocol for a discrete time-coupled map model that governs APD and intracellular Ca handling of a single cardiac myocyte, modified to account for pathological electrical remodeling in CHF. Patient-specific simulations show that beat-to-beat differences in APD vary temporally in both populations, with alternans formation more prevalent in CHF. Parameter studies using synthetic sequences demonstrate that increasing the autocorrelation time or mean RR-interval reduces APD alternations, whereas increasing the RR-interval standard deviation leads to higher alternans magnitudes. Importantly, we find that although both the CHF-associated changes in heart rate and electrical remodeling influence alternans formation, variations in heart rate may be more influential.NEW & NOTEWORTHY Using patient-specific data, we show that both the changes in heart rate and electrical remodeling associated with chronic heart failure influence the formation of proarrhythmic alternans in the heart.
Collapse
Affiliation(s)
- Vrishti M Phadumdeo
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Brianna L Mallare
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Thomas J Hund
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
4
|
Coveney S, Corrado C, Oakley JE, Wilkinson RD, Niederer SA, Clayton RH. Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators. Front Physiol 2021; 12:693015. [PMID: 34366883 PMCID: PMC8339909 DOI: 10.3389/fphys.2021.693015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Calibration of cardiac electrophysiology models is a fundamental aspect of model personalization for predicting the outcomes of cardiac therapies, simulation testing of device performance for a range of phenotypes, and for fundamental research into cardiac function. Restitution curves provide information on tissue function and can be measured using clinically feasible measurement protocols. We introduce novel "restitution curve emulators" as probabilistic models for performing model exploration, sensitivity analysis, and Bayesian calibration to noisy data. These emulators are built by decomposing restitution curves using principal component analysis and modeling the resulting coordinates with respect to model parameters using Gaussian processes. Restitution curve emulators can be used to study parameter identifiability via sensitivity analysis of restitution curve components and rapid inference of the posterior distribution of model parameters given noisy measurements. Posterior uncertainty about parameters is critical for making predictions from calibrated models, since many parameter settings can be consistent with measured data and yet produce very different model behaviors under conditions not effectively probed by the measurement protocols. Restitution curve emulators are therefore promising probabilistic tools for calibrating electrophysiology models.
Collapse
Affiliation(s)
- Sam Coveney
- Insigneo Institute for In-Silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Cesare Corrado
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Jeremy E. Oakley
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Richard D. Wilkinson
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Steven A. Niederer
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Richard H. Clayton
- Insigneo Institute for In-Silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Gillette K, Gsell MAF, Prassl AJ, Karabelas E, Reiter U, Reiter G, Grandits T, Payer C, Štern D, Urschler M, Bayer JD, Augustin CM, Neic A, Pock T, Vigmond EJ, Plank G. A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Med Image Anal 2021; 71:102080. [PMID: 33975097 DOI: 10.1016/j.media.2021.102080] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
Cardiac digital twins (Cardiac Digital Twin (CDT)s) of human electrophysiology (Electrophysiology (EP)) are digital replicas of patient hearts derived from clinical data that match like-for-like all available clinical observations. Due to their inherent predictive potential, CDTs show high promise as a complementary modality aiding in clinical decision making and also in the cost-effective, safe and ethical testing of novel EP device therapies. However, current workflows for both the anatomical and functional twinning phases within CDT generation, referring to the inference of model anatomy and parameters from clinical data, are not sufficiently efficient, robust and accurate for advanced clinical and industrial applications. Our study addresses three primary limitations impeding the routine generation of high-fidelity CDTs by introducing; a comprehensive parameter vector encapsulating all factors relating to the ventricular EP; an abstract reference frame within the model allowing the unattended manipulation of model parameter fields; a novel fast-forward electrocardiogram (Electrocardiogram (ECG)) model for efficient and bio-physically-detailed simulation required for parameter inference. A novel workflow for the generation of CDTs is then introduced as an initial proof of concept. Anatomical twinning was performed within a reasonable time compatible with clinical workflows (<4h) for 12 subjects from clinically-attained magnetic resonance images. After assessment of the underlying fast forward ECG model against a gold standard bidomain ECG model, functional twinning of optimal parameters according to a clinically-attained 12 lead ECG was then performed using a forward Saltelli sampling approach for a single subject. The achieved results in terms of efficiency and fidelity demonstrate that our workflow is well-suited and viable for generating biophysically-detailed CDTs at scale.
Collapse
Affiliation(s)
- Karli Gillette
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias A F Gsell
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | - Anton J Prassl
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; Institute for Mathematics and Natural Sciences, University of Graz, Austria
| | - Ursula Reiter
- Department of Radiology, Medical University of Graz, Graz, Austria
| | - Gert Reiter
- Department of Radiology, Medical University of Graz, Graz, Austria; Research and Development, Siemens Healthcare Diagnostics, Graz, Austria
| | - Thomas Grandits
- Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | - Christian Payer
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | - Darko Štern
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | - Martin Urschler
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | - Jason D Bayer
- LIRYC Electrophysiology and Heart Modeling Institute, Bordeaux Foundation, Pessac, France
| | - Christoph M Augustin
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | | | - Thomas Pock
- Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | | | - Gernot Plank
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
6
|
Dhamala J, Bajracharya P, Arevalo HJ, Sapp JL, Horácek BM, Wu KC, Trayanova NA, Wang L. Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models. Med Image Anal 2020; 62:101670. [PMID: 32171168 DOI: 10.1016/j.media.2020.101670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 12/16/2019] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
The estimation of patient-specific tissue properties in the form of model parameters is important for personalized physiological models. Because tissue properties are spatially varying across the underlying geometrical model, it presents a significant challenge of high-dimensional (HD) optimization at the presence of limited measurement data. A common solution to reduce the dimension of the parameter space is to explicitly partition the geometrical mesh. In this paper, we present a novel concept that uses a generative variational auto-encoder (VAE) to embed HD Bayesian optimization into a low-dimensional (LD) latent space that represents the generative code of HD parameters. We further utilize VAE-encoded knowledge about the generative code to guide the exploration of the search space. The presented method is applied to estimating tissue excitability in a cardiac electrophysiological model in a range of synthetic and real-data experiments, through which we demonstrate its improved accuracy and substantially reduced computational cost in comparison to existing methods that rely on geometry-based reduction of the HD parameter space.
Collapse
Affiliation(s)
- Jwala Dhamala
- Rochester Institute of Technology, Rochester, NY, USA. http://www.jwaladhamala.com
| | | | | | | | | | | | | | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
7
|
Dhamala J, Arevalo HJ, Sapp J, Horácek BM, Wu KC, Trayanova NA, Wang L. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Med Image Anal 2018; 48:43-57. [PMID: 29843078 DOI: 10.1016/j.media.2018.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/17/2018] [Accepted: 05/14/2018] [Indexed: 02/02/2023]
Abstract
Model personalization requires the estimation of patient-specific tissue properties in the form of model parameters from indirect and sparse measurement data. Moreover, a low-dimensional representation of the parameter space is needed, which often has a limited ability to reveal the underlying tissue heterogeneity. As a result, significant uncertainty can be associated with the estimated values of the model parameters which, if left unquantified, will lead to unknown variability in model outputs that will hinder their reliable clinical adoption. Probabilistic estimation of model parameters, however, remains an unresolved challenge. Direct Markov Chain Monte Carlo (MCMC) sampling of the posterior distribution function (pdf) of the parameters is infeasible because it involves repeated evaluations of the computationally expensive simulation model. To accelerate this inference, one popular approach is to construct a computationally efficient surrogate and sample from this approximation. However, by sampling from an approximation, efficiency is gained at the expense of sampling accuracy. In this paper, we address this issue by integrating surrogate modeling of the posterior pdf into accelerating the Metropolis-Hastings (MH) sampling of the exact posterior pdf. It is achieved by two main components: (1) construction of a Gaussian process (GP) surrogate of the exact posterior pdf by actively selecting training points that allow for a good global approximation accuracy with a focus on the regions of high posterior probability; and (2) use of the GP surrogate to improve the proposal distribution in MH sampling, in order to improve the acceptance rate. The presented framework is evaluated in its estimation of the local tissue excitability of a cardiac electrophysiological model in both synthetic data experiments and real data experiments. In addition, the obtained posterior distributions of model parameters are interpreted in relation to the factors contributing to parameter uncertainty, including different low-dimensional representations of the parameter space, parameter non-identifiability, and parameter correlations.
Collapse
Affiliation(s)
- Jwala Dhamala
- Rochester Institute of Technology, Rochester, NY, USA. http://www.jwaladhamala.com
| | | | - John Sapp
- Dalhousie University, Halifax, Canada
| | | | | | | | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
8
|
Pathmanathan P, Gray RA. Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology. Front Physiol 2018; 9:106. [PMID: 29497385 PMCID: PMC5818422 DOI: 10.3389/fphys.2018.00106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Computational models of cardiac electrophysiology have a long history in basic science applications and device design and evaluation, but have significant potential for clinical applications in all areas of cardiovascular medicine, including functional imaging and mapping, drug safety evaluation, disease diagnosis, patient selection, and therapy optimisation or personalisation. For all stakeholders to be confident in model-based clinical decisions, cardiac electrophysiological (CEP) models must be demonstrated to be trustworthy and reliable. Credibility, that is, the belief in the predictive capability, of a computational model is primarily established by performing validation, in which model predictions are compared to experimental or clinical data. However, there are numerous challenges to performing validation for highly complex multi-scale physiological models such as CEP models. As a result, credibility of CEP model predictions is usually founded upon a wide range of distinct factors, including various types of validation results, underlying theory, evidence supporting model assumptions, evidence from model calibration, all at a variety of scales from ion channel to cell to organ. Consequently, it is often unclear, or a matter for debate, the extent to which a CEP model can be trusted for a given application. The aim of this article is to clarify potential rationale for the trustworthiness of CEP models by reviewing evidence that has been (or could be) presented to support their credibility. We specifically address the complexity and multi-scale nature of CEP models which makes traditional model evaluation difficult. In addition, we make explicit some of the credibility justification that we believe is implicitly embedded in the CEP modeling literature. Overall, we provide a fresh perspective to CEP model credibility, and build a depiction and categorisation of the wide-ranging body of credibility evidence for CEP models. This paper also represents a step toward the extension of model evaluation methodologies that are currently being developed by the medical device community, to physiological models.
Collapse
Affiliation(s)
- Pras Pathmanathan
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | |
Collapse
|
9
|
Dhamala J, Arevalo HJ, Sapp J, Horacek M, Wu KC, Trayanova NA, Wang L. Spatially Adaptive Multi-Scale Optimization for Local Parameter Estimation in Cardiac Electrophysiology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1966-1978. [PMID: 28459685 PMCID: PMC5687096 DOI: 10.1109/tmi.2017.2697820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To obtain a patient-specific cardiac electro-physiological (EP) model, it is important to estimate the 3-D distributed tissue properties of the myocardium. Ideally, the tissue property should be estimated at the resolution of the cardiac mesh. However, such high-dimensional estimation faces major challenges in identifiability and computation. Most existing works reduce this dimension by partitioning the cardiac mesh into a pre-defined set of segments. The resulting low-resolution solutions have a limited ability to represent the underlying heterogeneous tissue properties of varying sizes, locations, and distributions. In this paper, we present a novel framework that, going beyond a uniform low-resolution approach, is able to obtain a higher resolution estimation of tissue properties represented by spatially non-uniform resolution. This is achieved by two central elements: 1) a multi-scale coarse-to-fine optimization that facilitates higher resolution optimization using the lower resolution solution and 2) a spatially adaptive decision criterion that retains lower resolution in homogeneous tissue regions and allows higher resolution in heterogeneous tissue regions. The presented framework is evaluated in estimating the local tissue excitability properties of a cardiac EP model on both synthetic and real data experiments. Its performance is compared with optimization using pre-defined segments. Results demonstrate the feasibility of the presented framework to estimate local parameters and to reveal heterogeneous tissue properties at a higher resolution without using a high number of unknowns.
Collapse
|
10
|
Giffard-Roisin S, Jackson T, Fovargue L, Lee J, Delingette H, Razavi R, Ayache N, Sermesant M. Noninvasive Personalization of a Cardiac Electrophysiology Model From Body Surface Potential Mapping. IEEE Trans Biomed Eng 2016; 64:2206-2218. [PMID: 28113292 DOI: 10.1109/tbme.2016.2629849] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GOAL We use noninvasive data (body surface potential mapping, BSPM) to personalize the main parameters of a cardiac electrophysiological (EP) model for predicting the response to different pacing conditions. METHODS First, an efficient forward model is proposed, coupling the Mitchell-Schaeffer transmembrane potential model with a current dipole formulation. Then, we estimate the main parameters of the cardiac model: activation onset location and tissue conductivity. A large patient-specific database of simulated BSPM is generated, from which specific features are extracted to train a machine learning algorithm. The activation onset location is computed from a Kernel Ridge Regression and a second regression calibrates the global ventricular conductivity. RESULTS The evaluation of the results is done both on a benchmark dataset of a patient with premature ventricular contraction (PVC) and on five nonischaemic implanted cardiac resynchonization therapy (CRT) patients with a total of 21 different pacing conditions. Good personalization results were found in terms of the activation onset location for the PVC (mean distance error, MDE = 20.3 mm), for the pacing sites (MDE = 21.7 mm) and for the CRT patients (MDE = 24.6 mm). We tested the predictive power of the personalized model for biventricular pacing and showed that we could predict the new electrical activity patterns with a good accuracy in terms of BSPM signals. CONCLUSION We have personalized the cardiac EP model and predicted new patient-specific pacing conditions. SIGNIFICANCE This is an encouraging first step towards a noninvasive preoperative prediction of the response to different pacing conditions to assist clinicians for CRT patient selection and therapy planning.
Collapse
|
11
|
Chen Z, Cabrera-Lozoya R, Relan J, Sohal M, Shetty A, Karim R, Delingette H, Gill J, Rhode K, Ayache N, Taggart P, Rinaldi CA, Sermesant M, Razavi R. Biophysical Modeling Predicts Ventricular Tachycardia Inducibility and Circuit Morphology: A Combined Clinical Validation and Computer Modeling Approach. J Cardiovasc Electrophysiol 2016; 27:851-60. [PMID: 27094470 DOI: 10.1111/jce.12991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 04/11/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Computational modeling of cardiac arrhythmogenesis and arrhythmia maintenance has made a significant contribution to the understanding of the underlying mechanisms of arrhythmia. We hypothesized that a cardiac model using personalized electro-anatomical parameters could define the underlying ventricular tachycardia (VT) substrate and predict reentrant VT circuits. We used a combined modeling and clinical approach in order to validate the concept. METHODS AND RESULTS Non-contact electroanatomic mapping studies were performed in 7 patients (5 ischemics, 2 non-ischemics). Three ischemic cardiomyopathy patients underwent a clinical VT stimulation study. Anatomical information was obtained from cardiac magnetic resonance imaging (CMR) including high-resolution scar imaging. A simplified biophysical mono-domain action potential model personalized with the patients' anatomical and electrical information was used to perform in silico VT stimulation studies for comparison. The personalized in silico VT stimulations were able to predict VT inducibility as well as the macroscopic characteristics of the VT circuits in patients who had clinical VT stimulation studies. The patients with positive clinical VT stimulation studies had wider distribution of action potential duration restitution curve (APD-RC) slopes and APDs than the patient with a negative VT stimulation study. The exit points of reentrant VT circuits encompassed a higher percentage of the maximum APD-RC slope compared to the scar and non-scar areas, 32%, 4%, and 0.2%, respectively. CONCLUSIONS VT stimulation studies can be simulated in silico using a personalized biophysical cardiac model. Myocardial spatial heterogeneity of APD restitution properties and conductivity may help predict the location of crucial entry/exit points of reentrant VT circuits.
Collapse
Affiliation(s)
- Zhong Chen
- Kings College London, London, UK.,Guy's and St. Thomas' Hospital, London, UK
| | | | - Jatin Relan
- Inria, Asclepios Team, Sophia Antipolis, France
| | - Manav Sohal
- Kings College London, London, UK.,Guy's and St. Thomas' Hospital, London, UK
| | - Anoop Shetty
- Kings College London, London, UK.,Guy's and St. Thomas' Hospital, London, UK
| | | | | | - Jaswinder Gill
- Kings College London, London, UK.,Guy's and St. Thomas' Hospital, London, UK
| | | | | | | | | | | | - Reza Razavi
- Kings College London, London, UK.,Guy's and St. Thomas' Hospital, London, UK
| |
Collapse
|
12
|
Prakosa A, Sermesant M, Allain P, Villain N, Rinaldi CA, Rhode K, Razavi R, Delingette H, Ayache N. Cardiac electrophysiological activation pattern estimation from images using a patient-specific database of synthetic image sequences. IEEE Trans Biomed Eng 2014; 61:235-45. [PMID: 24058008 DOI: 10.1109/tbme.2013.2281619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While abnormal patterns of cardiac electrophysiological activation are at the origin of important cardiovascular diseases (e.g., arrhythmia, asynchrony), the only clinically available method to observe detailed left ventricular endocardial surface activation pattern is through invasive catheter mapping. However, this electrophysiological activation controls the onset of the mechanical contraction; therefore, important information about the electrophysiology could be deduced from the detailed observation of the resulting motion patterns. In this paper, we present the study of this inverse cardiac electrokinematic relationship. The objective is to predict the activation pattern knowing the cardiac motion from the analysis of cardiac image sequences. To achieve this, we propose to create a rich patient-specific database of synthetic time series of the cardiac images using simulations of a personalized cardiac electromechanical model, in order to study this complex relationship between electrical activity and kinematic patterns in the context of this specific patient. We use this database to train a machine-learning algorithm which estimates the depolarization times of each cardiac segment from global and regional kinematic descriptors based on displacements or strains and their derivatives. Finally, we use this learning to estimate the patient’s electrical activation times using the acquired clinical images. Experiments on the inverse electrokinematic learning are demonstrated on synthetic sequences and are evaluated on clinical data with promising results. The error calculated between our prediction and the invasive intracardiac mapping ground truth is relatively small (around 10 ms for ischemic patients and 20 ms for nonischemic patient). This approach suggests the possibility of noninvasive electrophysiological pattern estimation using cardiac motion imaging.
Collapse
|
13
|
Images as drivers of progress in cardiac computational modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:198-212. [PMID: 25117497 PMCID: PMC4210662 DOI: 10.1016/j.pbiomolbio.2014.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/02/2014] [Indexed: 11/28/2022]
Abstract
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.
Collapse
|
14
|
Blauer JJE, Swenson D, Higuchi K, Plank G, Ranjan R, Marrouche N, Macleod RS. Sensitivity and specificity of substrate mapping: an in silico framework for the evaluation of electroanatomical substrate mapping strategies. J Cardiovasc Electrophysiol 2014; 25:774-80. [PMID: 24762029 DOI: 10.1111/jce.12444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Voltage mapping is an important tool for characterizing proarrhythmic electrophysiological substrate, yet it is subject to geometric factors that influence bipolar amplitudes and thus compromise performance. The aim of this study was to characterize the impact of catheter orientation on the ability of bipolar amplitudes to accurately discriminate between healthy and diseased tissues. METHODS AND RESULTS We constructed a 3-dimensional, in silico, bidomain model of cardiac tissue containing transmural lesions of varying diameter. A planar excitation wave was stimulated and electrograms were sampled with a realistic catheter model at multiple positions and orientations. We carried out validation studies in animal experiments of acute ablation lesions mapped with a clinical mapping system. Bipolar electrograms sampled at higher inclination angles of the catheter with respect to the tissue demonstrated improvements in both sensitivity and specificity of lesion detection. Removing low-voltage electrograms with concurrent activation of both electrodes, suggesting false attenuation of the bipolar electrogram due to alignment with the excitation wavefront, had little effect on the accuracy of voltage mapping. CONCLUSIONS Our results demonstrate possible mechanisms for the impact of catheter orientation on voltage mapping accuracy. Moreover, results from our simulations suggest that mapping accuracy may be improved by selectively controlling the inclination of the catheter to record at higher angles with respect to the tissue.
Collapse
Affiliation(s)
- Joshua J E Blauer
- CARMA Center, University of Utah, Salt Lake City, Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang L, Dawoud F, Yeung SK, Shi P, Wong KCL, Liu H, Lardo AC. Transmural imaging of ventricular action potentials and post-infarction scars in swine hearts. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:731-47. [PMID: 23288331 DOI: 10.1109/tmi.2012.2236567] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The problem of using surface data to reconstruct transmural electrophysiological (EP) signals is intrinsically ill-posed without a unique solution in its unconstrained form. Incorporating physiological spatiotemporal priors through probabilistic integration of dynamic EP models, we have previously developed a Bayesian approach to transmural electrophysiological imaging (TEPI) using body-surface electrocardiograms. In this study, we generalize TEPI to using electrical signals collected from heart surfaces, and we test its feasibility on two pre-clinical swine models provided through the STACOM 2011 EP simulation Challenge. Since this new application of TEPI does not require whole-body imaging, there may be more immediate potential in EP laboratories where it could utilize catheter mapping data and produce transmural information for therapy guidance. Another focus of this study is to investigate the consistency among three modalities in delineating scar after myocardial infarction: TEPI, electroanatomical voltage mapping (EAVM), and magnetic resonance imaging (MRI). Our preliminary data demonstrate that, compared to the low-voltage scar area in EAVM, the 3-D electrical scar volume detected by TEPI is more consistent with anatomical scar volume delineated in MRI. Furthermore, TEPI could complement anatomical imaging by providing EP functional features related to both scar and healthy tissue.
Collapse
Affiliation(s)
- Linwei Wang
- Computational Biomedicine Laboratory, Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sebastian R, Zimmerman V, Romero D, Sanchez-Quintana D, Frangi AF. Characterization and modeling of the peripheral cardiac conduction system. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:45-55. [PMID: 23047864 DOI: 10.1109/tmi.2012.2221474] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of biophysical models of the heart has the potential to get insights in the patho-physiology of the heart, which requires to accurately modeling anatomy and function. The electrical activation sequence of the ventricles depends strongly on the cardiac conduction system (CCS). Its morphology and function cannot be observed in vivo, and therefore data available come from histological studies. We present a review on data available of the peripheral CCS including new experiments. In order to build a realistic model of the CCS we designed a procedure to extract morphological characteristics of the CCS from stained calf tissue samples. A CCS model personalized with our measurements has been built using L-systems. The effect of key unknown parameters of the model in the electrical activation of the left ventricle has been analyzed. The CCS models generated share the main characteristics of observed stained Purkinje networks. The timing of the simulated electrical activation sequences were in the physiological range for CCS models that included enough density of PMJs. These results show that this approach is a potential methodology for collecting knowledge-domain data and build improved CCS models of the heart automatically.
Collapse
Affiliation(s)
- Rafael Sebastian
- Computational Multiscale Physiology Laboratory (CoMMLab), Department of Computer Science, Universitat de Valencia, 46100 Valencia, Spain.
| | | | | | | | | |
Collapse
|
17
|
Wang H, Amini AA. Cardiac motion and deformation recovery from MRI: a review. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:487-503. [PMID: 21997253 DOI: 10.1109/tmi.2011.2171706] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Magnetic resonance imaging (MRI) is a highly advanced and sophisticated imaging modality for cardiac motion tracking and analysis, capable of providing 3D analysis of global and regional cardiac function with great accuracy and reproducibility. In the past few years, numerous efforts have been devoted to cardiac motion recovery and deformation analysis from MR image sequences. Many approaches have been proposed for tracking cardiac motion and for computing deformation parameters and mechanical properties of the heart from a variety of cardiac MR imaging techniques. In this paper, an updated and critical review of cardiac motion tracking methods including major references and those proposed in the past ten years is provided. The MR imaging and analysis techniques surveyed are based on cine MRI, tagged MRI, phase contrast MRI, DENSE, and SENC. This paper can serve as a tutorial for new researchers entering the field.
Collapse
Affiliation(s)
- Hui Wang
- Department of Electrical and Computer Engineering,University of Louisville, Louisville, KY 40292 USA.
| | | |
Collapse
|
18
|
Pop M, Sermesant M, Liu G, Relan J, Mansi T, Soong A, Peyrat JM, Truong MV, Fefer P, McVeigh ER, Delingette H, Dick AJ, Ayache N, Wright GA. Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation. Med Image Anal 2011; 16:505-23. [PMID: 22209561 DOI: 10.1016/j.media.2011.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/06/2011] [Accepted: 11/15/2011] [Indexed: 11/29/2022]
Abstract
Cardiac computer models can help us understand and predict the propagation of excitation waves (i.e., action potential, AP) in healthy and pathologic hearts. Our broad aim is to develop accurate 3D MR image-based computer models of electrophysiology in large hearts (translatable to clinical applications) and to validate them experimentally. The specific goals of this paper were to match models with maps of the propagation of optical AP on the epicardial surface using large porcine hearts with scars, estimating several parameters relevant to macroscopic reaction-diffusion electrophysiological models. We used voltage-sensitive dyes to image AP in large porcine hearts with scars (three specimens had chronic myocardial infarct, and three had radiofrequency RF acute scars). We first analyzed the main AP waves' characteristics: duration (APD) and propagation under controlled pacing locations and frequencies as recorded from 2D optical images. We further built 3D MR image-based computer models that have information derived from the optical measures, as well as morphologic MRI data (i.e., myocardial anatomy, fiber directions and scar definition). The scar morphology from MR images was validated against corresponding whole-mount histology. We also compared the measured 3D isochronal maps of depolarization to simulated isochrones (the latter replicating precisely the experimental conditions), performing model customization and 3D volumetric adjustments of the local conductivity. Our results demonstrated that mean APD in the border zone (BZ) of the infarct scars was reduced by ~13% (compared to ~318 ms measured in normal zone, NZ), but APD did not change significantly in the thin BZ of the ablation scars. A generic value for velocity ratio (1:2.7) in healthy myocardial tissue was derived from measured values of transverse and longitudinal conduction velocities relative to fibers direction (22 cm/s and 60 cm/s, respectively). The model customization and 3D volumetric adjustment reduced the differences between measurements and simulations; for example, from one pacing location, the adjustment reduced the absolute error in local depolarization times by a factor of 5 (i.e., from 58 ms to 11 ms) in the infarcted heart, and by a factor of 6 (i.e., from 60 ms to 9 ms) in the heart with the RF scar. Moreover, the sensitivity of adjusted conductivity maps to different pacing locations was tested, and the errors in activation times were found to be of approximately 10-12 ms independent of pacing location used to adjust model parameters, suggesting that any location can be used for model predictions.
Collapse
Affiliation(s)
- Mihaela Pop
- Department of Medical Biophysics, University of Toronto, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Relan J, Chinchapatnam P, Sermesant M, Rhode K, Ginks M, Delingette H, Rinaldi CA, Razavi R, Ayache N. Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus 2011; 1:396-407. [PMID: 22670209 DOI: 10.1098/rsfs.2010.0041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/03/2011] [Indexed: 11/12/2022] Open
Abstract
In order to translate the important progress in cardiac electrophysiology modelling of the last decades into clinical applications, there is a requirement to make macroscopic models that can be used for the planning and performance of the clinical procedures. This requires model personalization, i.e. estimation of patient-specific model parameters and computations compatible with clinical constraints. Simplified macroscopic models can allow a rapid estimation of the tissue conductivity, but are often unreliable to predict arrhythmias. Conversely, complex biophysical models are more complete and have mechanisms of arrhythmogenesis and arrhythmia sustainibility, but are computationally expensive and their predictions at the organ scale still have to be validated. We present a coupled personalization framework that combines the power of the two kinds of models while keeping the computational complexity tractable. A simple eikonal model is used to estimate the conductivity parameters, which are then used to set the parameters of a biophysical model, the Mitchell-Schaeffer (MS) model. Additional parameters related to action potential duration restitution curves for the tissue are further estimated for the MS model. This framework is applied to a clinical dataset derived from a hybrid X-ray/magnetic resonance imaging and non-contact mapping procedure on a patient with heart failure. This personalized MS model is then used to perform an in silico simulation of a ventricular tachycardia (VT) stimulation protocol to predict the induction of VT. This proof of concept opens up possibilities of using VT induction modelling in order to both assess the risk of VT for a given patient and also to plan a potential subsequent radio-frequency ablation strategy to treat VT.
Collapse
Affiliation(s)
- Jatin Relan
- INRIA, Asclepios research project, Sophia Antipolis, France
| | | | | | | | | | | | | | | | | |
Collapse
|