1
|
Lafreniere S, Padasdao B, Konh B. Closed-Loop Control of a Tendon-Driven Active Needle for Tip Tracking at Desired Bending Angle for High-Dose-Rate Prostate Brachytherapy. ROBOTICA 2024; 42:2511-2527. [PMID: 39584068 PMCID: PMC11581187 DOI: 10.1017/s0263574724000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Prostate cancer is the second most common malignancy in American men. High-dose-rate brachytherapy is a popular treatment technique in which a large, localized radiation dose is used to kill cancer. Utilization of curvilinear catheter implantation inside the prostate gland to provide access channels to host the radiation source has shown superiority in terms of improved dosimetric constraints compared to straight needles. To this aim, we have introduced an active needle to curve inside the prostate conformal to the patient's specific anatomical relationship for improved dose distribution to the prostate and reduced toxicity to the organs at risk (OARs). This work presents closed-loop control of our tendon-driven active needle in water medium and air using the position feedback of the tip obtained in real time from an ultrasound (US) or an electromagnetic (EM) tracking sensor, respectively. The active needle consists of a compliant flexure section to realize bending in two directions via actuation of two internal tendons. Tracking errors using US and EM tracker are estimated and compared. Results show that the bending angle of the active needle could be controlled using position feedback of the US or the EM tracking system with a bending angle error of less than 1.00 degree, when delay is disregarded. It is concluded that the actuation system and controller, presented in this work, are able to realize a desired bending angle at the active needle tip with reasonable accuracy paving the path for tip tracking and manipulation control evaluations in a prostate brachytherapy.
Collapse
Affiliation(s)
| | - Blayton Padasdao
- Department of Mechanical Engineering, University of Hawaii at Manoa
| | - Bardia Konh
- Department of Mechanical Engineering, University of Hawaii at Manoa
| |
Collapse
|
2
|
Kim BS, Cho M, Chung GE, Lee J, Kang HY, Yoon D, Cho WS, Lee JC, Bae JH, Kong HJ, Kim S. Density clustering-based automatic anatomical section recognition in colonoscopy video using deep learning. Sci Rep 2024; 14:872. [PMID: 38195632 PMCID: PMC10776865 DOI: 10.1038/s41598-023-51056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Recognizing anatomical sections during colonoscopy is crucial for diagnosing colonic diseases and generating accurate reports. While recent studies have endeavored to identify anatomical regions of the colon using deep learning, the deformable anatomical characteristics of the colon pose challenges for establishing a reliable localization system. This study presents a system utilizing 100 colonoscopy videos, combining density clustering and deep learning. Cascaded CNN models are employed to estimate the appendix orifice (AO), flexures, and "outside of the body," sequentially. Subsequently, DBSCAN algorithm is applied to identify anatomical sections. Clustering-based analysis integrates clinical knowledge and context based on the anatomical section within the model. We address challenges posed by colonoscopy images through non-informative removal preprocessing. The image data is labeled by clinicians, and the system deduces section correspondence stochastically. The model categorizes the colon into three sections: right (cecum and ascending colon), middle (transverse colon), and left (descending colon, sigmoid colon, rectum). We estimated the appearance time of anatomical boundaries with an average error of 6.31 s for AO, 9.79 s for HF, 27.69 s for SF, and 3.26 s for outside of the body. The proposed method can facilitate future advancements towards AI-based automatic reporting, offering time-saving efficacy and standardization.
Collapse
Grants
- 1711179421, RS-2021-KD000006 the Korea Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, and the Ministry of Food and Drug Safety)
- 1711179421, RS-2021-KD000006 the Korea Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, and the Ministry of Food and Drug Safety)
- 1711179421, RS-2021-KD000006 the Korea Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, and the Ministry of Food and Drug Safety)
- IITP-2023-2018-0-01833 the Ministry of Science and ICT, Korea under the Information Technology Research Center (ITRC) support program
Collapse
Affiliation(s)
- Byeong Soo Kim
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Korea
| | - Minwoo Cho
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Goh Eun Chung
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, Korea
| | - Jooyoung Lee
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, Korea
| | - Hae Yeon Kang
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, Korea
| | - Dan Yoon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Korea
| | - Woo Sang Cho
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Korea
- Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Korea
| | - Jung Ho Bae
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, Korea.
| | - Hyoun-Joong Kong
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Medical Big Data Research Center, Seoul National University College of Medicine, Seoul, 03087, Korea.
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Artificial Intelligence Institute, Seoul National University, Research Park Building 942, 2 Fl., Seoul, 08826, Korea.
| |
Collapse
|
3
|
Zhang Y, Yuan Q, Muzzammil HM, Gao G, Xu Y. Image-guided prostate biopsy robots: A review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:15135-15166. [PMID: 37679175 DOI: 10.3934/mbe.2023678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
At present, the incidence of prostate cancer (PCa) in men is increasing year by year. So, the early diagnosis of PCa is of great significance. Transrectal ultrasonography (TRUS)-guided biopsy is a common method for diagnosing PCa. The biopsy process is performed manually by urologists but the diagnostic rate is only 20%-30% and its reliability and accuracy can no longer meet clinical needs. The image-guided prostate biopsy robot has the advantages of a high degree of automation, does not rely on the skills and experience of operators, reduces the work intensity and operation time of urologists and so on. Capable of delivering biopsy needles to pre-defined biopsy locations with minimal needle placement errors, it makes up for the shortcomings of traditional free-hand biopsy and improves the reliability and accuracy of biopsy. The integration of medical imaging technology and the robotic system is an important means for accurate tumor location, biopsy puncture path planning and visualization. This paper mainly reviews image-guided prostate biopsy robots. According to the existing literature, guidance modalities are divided into magnetic resonance imaging (MRI), ultrasound (US) and fusion image. First, the robot structure research by different guided methods is the main line and the actuators and material research of these guided modalities is the auxiliary line to introduce and compare. Second, the robot image-guided localization technology is discussed. Finally, the image-guided prostate biopsy robot is summarized and suggestions for future development are provided.
Collapse
Affiliation(s)
- Yongde Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
- Foshan Baikang Robot Technology Co., Ltd, Nanhai District, Foshan City, Guangdong Province 528225, China
| | - Qihang Yuan
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Hafiz Muhammad Muzzammil
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Guoqiang Gao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Yong Xu
- Department of Urology, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| |
Collapse
|
4
|
Liang H, Tse ZTH. MR conditional prostate intervention systems and actuations review. Proc Inst Mech Eng H 2023; 237:18-34. [PMID: 36458323 PMCID: PMC9841823 DOI: 10.1177/09544119221136169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Magnetic resonance imaging (MRI) has the ability to provide high-resolution images of soft tissues without the use of radiation. So much research has been focused on the development of actuators and robotic devices that can be used in the MRI environment so "real-time" images can be obtained during surgeries. With real-time guidance from MRI, robots can perform surgical procedures with high accuracy and through less invasive routes. This technique can also significantly reduce the operation time and simplify pre-surgical procedures. Therefore, research on robot-assisted MRI-guided prostate intervention has attracted a great deal of interest, and several successful clinical trials have been published in recent years, pointing to the great potential of this technology. However, the development of MRI-guided robots is still in the primary stage, and collaboration between researchers and commercial suppliers is still needed to improve such robot systems. This review presents an overview of MRI-guided prostate intervention devices and actuators. Additionally, the expected technical challenges and future advances in this field are discussed.
Collapse
Affiliation(s)
| | - Zion Tsz Ho Tse
- Zion Tsz Ho Tse, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
5
|
Tuna EE, Poirot NL, Franson D, Bayona JB, Huang S, Seiberlich N, Griswold MA, Cavusoglu MC. MRI Distortion Correction and Robot-to-MRI Scanner Registration for an MRI-Guided Robotic System. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:99205-99220. [PMID: 37041984 PMCID: PMC10085576 DOI: 10.1109/access.2022.3207156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Magnetic resonance imaging (MRI) guided robotic procedures require safe robotic instrument navigation and precise target localization. This depends on reliable tracking of the instrument from MR images, which requires accurate registration of the robot to the scanner. A novel differential image based robot-to-MRI scanner registration approach is proposed that utilizes a set of active fiducial coils, where background subtraction method is employed for coil detection. In order to use the presented preoperative registration approach jointly with the real-time high speed MRI image acquisition and reconstruction methods in real-time interventional procedures, the effects of the geometric MRI distortion in robot to scanner registration is analyzed using a custom distortion mapping algorithm. The proposed approach is validated by a set of target coils placed within the workspace, employing multi-planar capabilities of the scanner. Registration and validation errors are respectively 2.05 mm and 2.63 mm after the distortion correction showing an improvement of respectively 1.08 mm and 0.14 mm compared to the results without distortion correction.
Collapse
Affiliation(s)
- E Erdem Tuna
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nate Lombard Poirot
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Juana Barrera Bayona
- School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sherry Huang
- General Electric Healthcare, Royal Oak, MI 48067, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann-Anbor, MI 48109, USA
| | - Mark A Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M Cenk Cavusoglu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Su H, Kwok KW, Cleary K, Iordachita I, Cavusoglu MC, Desai JP, Fischer GS. State of the Art and Future Opportunities in MRI-Guided Robot-Assisted Surgery and Interventions. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:968-992. [PMID: 35756185 PMCID: PMC9231642 DOI: 10.1109/jproc.2022.3169146] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of target anatomy, surrounding tissue, and instrumentation, but there are significant challenges in harnessing it for effectively guiding interventional procedures. Challenges include the strong static magnetic field, rapidly switching magnetic field gradients, high-power radio frequency pulses, sensitivity to electrical noise, and constrained space to operate within the bore of the scanner. MRI has a number of advantages over other medical imaging modalities, including no ionizing radiation, excellent soft-tissue contrast that allows for visualization of tumors and other features that are not readily visible by other modalities, true 3-D imaging capabilities, including the ability to image arbitrary scan plane geometry or perform volumetric imaging, and capability for multimodality sensing, including diffusion, dynamic contrast, blood flow, blood oxygenation, temperature, and tracking of biomarkers. The use of robotic assistants within the MRI bore, alongside the patient during imaging, enables intraoperative MR imaging (iMRI) to guide a surgical intervention in a closed-loop fashion that can include tracking of tissue deformation and target motion, localization of instrumentation, and monitoring of therapy delivery. With the ever-expanding clinical use of MRI, MRI-compatible robotic systems have been heralded as a new approach to assist interventional procedures to allow physicians to treat patients more accurately and effectively. Deploying robotic systems inside the bore synergizes the visual capability of MRI and the manipulation capability of robotic assistance, resulting in a closed-loop surgery architecture. This article details the challenges and history of robotic systems intended to operate in an MRI environment and outlines promising clinical applications and associated state-of-the-art MRI-compatible robotic systems and technology for making this possible.
Collapse
Affiliation(s)
- Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Ka-Wai Kwok
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
| | - Kevin Cleary
- Children's National Health System, Washington, DC 20010 USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218 USA
| | - M Cenk Cavusoglu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jaydev P Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Gregory S Fischer
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| |
Collapse
|
7
|
Baker RR, Payne C, Yu Y, Mohseni M, Connell JJ, Lin F, Harrison IF, Southern P, Rudrapatna US, Stuckey DJ, Kalber TL, Siow B, Thorne L, Punwani S, Jones DK, Emberton M, Pankhurst QA, Lythgoe MF. Image-Guided Magnetic Thermoseed Navigation and Tumor Ablation Using a Magnetic Resonance Imaging System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105333. [PMID: 35106965 PMCID: PMC9036015 DOI: 10.1002/advs.202105333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Medical therapies achieve their control at expense to the patient in the form of a range of toxicities, which incur costs and diminish quality of life. Magnetic resonance navigation is an emergent technique that enables image-guided remote-control of magnetically labeled therapies and devices in the body, using a magnetic resonance imaging (MRI) system. Minimally INvasive IMage-guided Ablation (MINIMA), a novel, minimally invasive, MRI-guided ablation technique, which has the potential to avoid traditional toxicities, is presented. It comprises a thermoseed navigated to a target site using magnetic propulsion gradients generated by an MRI scanner, before inducing localized cell death using an MR-compatible thermoablative device. The authors demonstrate precise thermoseed imaging and navigation through brain tissue using an MRI system (0.3 mm), and they perform thermoablation in vitro and in vivo within subcutaneous tumors, with the focal ablation volume finely controlled by heating duration. MINIMA is a novel theranostic platform, combining imaging, navigation, and heating to deliver diagnosis and therapy in a single device.
Collapse
Affiliation(s)
- Rebecca R Baker
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Christopher Payne
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Yichao Yu
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Matin Mohseni
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - John J Connell
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Fangyu Lin
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Paul Southern
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| | - Umesh S Rudrapatna
- Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Bernard Siow
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Lewis Thorne
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7JN, UK
| | - Quentin A Pankhurst
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
- UCL Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London, W1S 4BS, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
8
|
Moerland MA, van Schelven LJ, van Lier A, Boskovic E, Peters M, van Son MJ, van der Voort van Zyp JRN, Lagendijk JJW. MR compatibility, safety and accuracy of the redesigned UMC Utrecht single needle implant device. Phys Med Biol 2021; 66. [PMID: 34010820 DOI: 10.1088/1361-6560/ac02d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/19/2021] [Indexed: 11/11/2022]
Abstract
Purpose. The Utrecht single needle implant device (SNID) was redesigned to increase needle insertion velocity. The purpose of this study is to evaluate the magnetic resonance compatibility, safety and accuracy of the implant device preparing its application in a patient study to investigate the feasibility of inserting a brachytherapy needle into the prostate to a defined tumor target point.Methods. Several experiments were performed to evaluate the mechanical and radiofrequency safety of the needle system, the magnetic field perturbation, the calibration of the implant device in the MR coordinate system, functioning of the implant device during imaging and accuracy of needle insertion.Results. Endurance experiments showed the mechanical safety of the needle system. Magnetic field perturbation was acceptable with induced image distortions smaller than 0.5 mm for clinical MR sequences. Calibration of the implant device in the MR coordinate system was reproducible with average error (mean±standard deviation) of 0.2 ± 0.4 mm, 0.1 ± 0.3 mm and 0.6 ± 0.6 mm in thex,y- andz- direction, respectively. The RF safety measurement showed for clinical MR imaging sequences maximum temperature rises of 0.2 °C at the entry and tip points of the needle. Simultaneous functioning of the implant device and imaging is possible albeit with some intensity band artifacts in the fast field echo images. Finally, phantom measurements showed deviations amounting 2.5-3.6 mm measured as target-to-needle distance at a depth of 12 cm.Conclusions. This preclinical evaluation showed that the MR compatibility, safety and accuracy of the redesigned UMC Utrecht SNID allow its application in a patient study on the feasibility of inserting a brachytherapy needle into the prostate to a defined tumor target point.
Collapse
Affiliation(s)
- M A Moerland
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | - L J van Schelven
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, The Netherlands
| | - A van Lier
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | - E Boskovic
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, The Netherlands
| | - M Peters
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | - M J van Son
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | | | - J J W Lagendijk
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
9
|
Vedaei SS, Wahid KA. A localization method for wireless capsule endoscopy using side wall cameras and IMU sensor. Sci Rep 2021; 11:11204. [PMID: 34045554 PMCID: PMC8160358 DOI: 10.1038/s41598-021-90523-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
Localizing the endoscopy capsule inside gastrointestinal (GI) system provides key information which leads to GI abnormality tracking and precision medical delivery. In this paper, we have proposed a new method to localize the capsule inside human GI track. We propose to equip the capsule with four side wall cameras and an Inertial Measurement Unit (IMU), that consists of 9 Degree-Of-Freedom (DOF) including a gyroscope, an accelerometer and a magnetometer to monitor the capsule’s orientation and direction of travel. The low resolution mono-chromatic cameras, installed along the wide wall, are responsible to measure the actual capsule movement, not the involuntary motion of the small intestine. Finally, a fusion algorithm is used to combine all data to derive the traveled path and plot the trajectory. Compared to other methods, the presented system is resistive to surrounding conditions, such as GI nonhomogeneous structure and involuntary small bowel movements. In addition, it does not require external antenna or arrays. Therefore, GI tracking can be achieved without disturbing patients’ daily activities.
Collapse
Affiliation(s)
- Seyed Shahim Vedaei
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.
| | - Khan A Wahid
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| |
Collapse
|
10
|
Liu PZY, Dong B, Nguyen DT, Ge Y, Hewson EA, Waddington DEJ, O'Brien R, Liney GP, Keall PJ. First experimental investigation of simultaneously tracking two independently moving targets on an MRI‐linac using real‐time MRI and MLC tracking. Med Phys 2020; 47:6440-6449. [DOI: 10.1002/mp.14536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Paul Z. Y. Liu
- ACRF Image X InstituteUniversity of Sydney Central Clinical School Sydney NSW Australia
- Department of Medical Physics Ingham Institute for Applied Medical Research Liverpool NSW Australia
| | - Bing Dong
- Department of Medical Physics Ingham Institute for Applied Medical Research Liverpool NSW Australia
| | - Doan Trang Nguyen
- ACRF Image X InstituteUniversity of Sydney Central Clinical School Sydney NSW Australia
- School of Biomedical Engineering Faculty of Engineering and IT University of Technology Sydney NSW Australia
| | - Yuanyuan Ge
- ACRF Image X InstituteUniversity of Sydney Central Clinical School Sydney NSW Australia
- Nelune Comprehensive Cancer Centre Prince of Wales Hospital Randwick NSW Australia
| | - Emily A. Hewson
- ACRF Image X InstituteUniversity of Sydney Central Clinical School Sydney NSW Australia
| | - David E. J. Waddington
- ACRF Image X InstituteUniversity of Sydney Central Clinical School Sydney NSW Australia
- Department of Medical Physics Ingham Institute for Applied Medical Research Liverpool NSW Australia
| | - Ricky O'Brien
- ACRF Image X InstituteUniversity of Sydney Central Clinical School Sydney NSW Australia
| | - Gary P. Liney
- Department of Medical Physics Ingham Institute for Applied Medical Research Liverpool NSW Australia
- Liverpool Cancer Therapy Centre, Radiation Physics Liverpool NSW Australia
- School of Medicine University of New South Wales Sydney NSW Australia
- Centre for Medical Radiation Physics University of Wollongong Wollongong NSW Australia
| | - Paul J. Keall
- ACRF Image X InstituteUniversity of Sydney Central Clinical School Sydney NSW Australia
- Department of Medical Physics Ingham Institute for Applied Medical Research Liverpool NSW Australia
| |
Collapse
|
11
|
Tuna EE, Poirot NL, Bayona JB, Franson D, Huang S, Narvaez J, Seiberlich N, Griswold M, Çavuşoğlu MC. Differential Image Based Robot to MRI Scanner Registration with Active Fiducial Markers for an MRI-Guided Robotic Catheter System. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2020; 2020:2958-2964. [PMID: 34136309 PMCID: PMC8202025 DOI: 10.1109/iros45743.2020.9341043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In magnetic resonance imaging (MRI) guided robotic catheter ablation procedures, reliable tracking of the catheter within the MRI scanner is needed to safely navigate the catheter. This requires accurate registration of the catheter to the scanner. This paper presents a differential, multi-slice image-based registration approach utilizing active fiducial coils. The proposed method would be used to preoperatively register the MRI image space with the physical catheter space. In the proposed scheme, the registration is performed with the help of a registration frame, which has a set of embedded electromagnetic coils designed to actively create MRI image artifacts. These coils are detected in the MRI scanner's coordinate system by background subtraction. The detected coil locations in each slice are weighted by the artifact size and then registered to known ground truth coil locations in the catheter's coordinate system via least-squares fitting. The proposed approach is validated by using a set of target coils placed withing the workspace, employing multi-planar capabilities of the MRI scanner. The average registration and validation errors are respectively computed as 1.97 mm and 2.49 mm. The multi-slice approach is also compared to the single-slice method and shown to improve registration and validation by respectively 0.45 mm and 0.66 mm.
Collapse
Affiliation(s)
- E Erdem Tuna
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nate Lombard Poirot
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Juana Barrera Bayona
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Dominique Franson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Sherry Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Julian Narvaez
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Mark Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - M Cenk Çavuşoğlu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Yan J, Patel N, Li G, Wu D, Cleary K, Iordachita I. Body-Mounted MRI-Conditional Parallel Robot for Percutaneous Interventions Structural Improvement, Calibration, and Accuracy Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1990-1993. [PMID: 31946290 DOI: 10.1109/embc.2019.8857667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To assist in percutaneous interventions in the lower back under magnetic resonance imaging guidance, a 4 degree-of-freedom body-mounted parallel robot is developed. The robot structure is improved comparatively to a previously developed robot, to increase the stability, enhance accuracy, and streamline the assembly and calibration process. The optimized assembly and calibration workflows are carried out, and the system accuracy is evaluated. The results demonstrate that the system positioning and angular accuracy are 2.28±1.1 mm and 1.94±1.01 degrees respectively. The results show that the new system has a promising and consistent behavior.
Collapse
|
13
|
Dalag L, Fergus JK, Zangan SM. Lung and Abdominal Biopsies in the Age of Precision Medicine. Semin Intervent Radiol 2019; 36:255-263. [PMID: 31435134 DOI: 10.1055/s-0039-1693121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Image-guided percutaneous needle biopsies (PNBs) are one of the most common procedures performed in radiology departments today. Rapid developments in precision medicine, which identifies molecular and genomic biomarkers in cancers, have ushered a new paradigm of oncologic workup and treatment. PNB has conventionally been used to establish a benign or malignant nature of a lesion during initial diagnosis or in suspected metastatic or recurrent disease. However, increasing amounts of tissue are being required to meet the demands of molecular pathologic analysis, which are now being sought at multiple time points during the course of the disease to guide targeted therapy. As primary providers of biopsy, radiologists must be proactive in these developments to improve diagnostic yield and tissue acquisition in PNB. Herein, we discuss the important and expanding role of PNB in the age of precision medicine and review the technical considerations of percutaneous lung and intra-abdominal biopsy. Finally, we examine promising state-of-the-art techniques in PNB that may safely increase tissue acquisition for optimal molecular pathologic analysis.
Collapse
Affiliation(s)
- Leonard Dalag
- Department of Radiology, University of Chicago, Chicago, Illinois
| | | | - Steven M Zangan
- Department of Radiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Than TD, Alici G, Zhou H, Harvey S, Li W. Enhanced Localization of Robotic Capsule Endoscopes Using Positron Emission Markers and Rigid-Body Transformation. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 2019; 49:1270-1284. [DOI: 10.1109/tsmc.2017.2719050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
In-bore biopsies of the prostate assisted by a remote-controlled manipulator at 1.5 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:599-605. [DOI: 10.1007/s10334-019-00751-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/25/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023]
|
16
|
Abstract
Purpose: A novel grid-template-mimicking MR-compatible robot was developed for in-gantry MRI-guided focal laser ablation of prostate cancer. Method: A substantially compact robot was designed and prototyped to meet in-gantry lithotomy ergonomics and allow for accommodation in the perineum. The controller software was reconfigured and integrated with the custom-designed navigation and multi-focal ablation software. Three experiments were conducted: (1) free space accuracy test; (2) phantom study under computed tomography (CT) guidance for image-guided accuracy test and overall workflow; and (3) magnetic resonance imaging (MRI)-guided focal laser ablation of an ex vivo prostate. The free space accuracy study included five targets that were selected across the workspace. The robot was then commanded five times to each target. The phantom study used a gel phantom made with color changing thermos-chromic ink, and four spherical metal fiducials were deployed with the robot. Then, laser ablation was applied, and the phantom was sliced for gross observation. For an MR-guided ex vivo test, a prostate from a donor who died of prostate cancer was obtained and multi-focally ablated using the system within the MRI gantry. The tissue was sliced after ablation for validation. Results: free-space accuracy was 0.38 ± 0.27 mm. The overall system targeting accuracy under CT guidance (including robot, registration, and insertion error) was 2.17 ± 0.47 mm. The planned ablation zone was successfully covered in both acrylamide gel phantom and in human prostate tissue. Conclusions: The new robot can accurately facilitate fiber targeting for MR-guided focal laser ablation of targetable prostate cancer.
Collapse
|
17
|
Lim S, Sharma K, Li P, Petrisor D, Fricke S, Stoianovici D, Cleary K. Robotically assisted long bone biopsy under MRI: cadaver study results. Int J Comput Assist Radiol Surg 2018; 14:147-156. [PMID: 30456451 DOI: 10.1007/s11548-018-1889-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/06/2018] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES We have designed and constructed an MR-safe robot made entirely of nonmetallic components with pneumatic actuators and optical encoders. The robot was developed to enable bone biopsies to be performed under magnetic resonance imaging (MRI) guidance in pediatric patients. The purpose of this study was to show the feasibility of using the robot for biopsy of the femur and tibia in a cadaver leg. Our long-term goal is to eliminate radiation exposure during bone biopsy procedures and provide more timely and accurate diagnosis for children with bone cancers and bone infections. METHODS The MR-safe robot was mounted on the MRI table. A cadaver leg was procured from an anatomy supply house and placed on the MRI table. All required hospital precautions for infection control were taken. A total of 10 biopsy targets were sampled using MRI guidance: five from the femur and five from the tibia. A handheld, commercially available battery-powered bone drill was used to facilitate drilling through the cortex. After the study, the leg was scanned with CT to better visualize and document the bone biopsy sites. Both the MRI and CT images were used to analyze the results. RESULTS All of the targets were successfully reached with an average targeting accuracy of 1.43 mm. A workflow analysis showed the average time for the first biopsy was 41 min including robot setup time and 22 min for each additional biopsy including the time for the repeat MRI scan used to confirm accurate targeting. The robot was shown to be MRI transparent, as no image quality degradation due to the use of the robot was detected. CONCLUSION The results showed the feasibility of using an MR-safe robotic system to assist the interventional radiologist in performing precision bone biopsy under MRI guidance. Future work will include developing an MR-safe drill, improving the mounting of the robot and fixation of the leg, and moving toward first in child clinical trials.
Collapse
Affiliation(s)
- Sunghwan Lim
- Robotics Laboratory, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Karun Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Avenue, Washington, DC, USA
| | - Pan Li
- Robotics Laboratory, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Doru Petrisor
- Robotics Laboratory, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Stanley Fricke
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Avenue, Washington, DC, USA
| | - Dan Stoianovici
- Robotics Laboratory, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Cleary
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Avenue, Washington, DC, USA.
| |
Collapse
|
18
|
Squires A, Oshinski JN, Boulis NM, Tse ZTH. SpinoBot: An MRI-Guided Needle Positioning System for Spinal Cellular Therapeutics. Ann Biomed Eng 2018; 46:475-487. [PMID: 29150766 PMCID: PMC7215142 DOI: 10.1007/s10439-017-1960-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
Abstract
The neurodegenerative disease amyotrophic lateral sclerosis (ALS) results in the death of motor neurons in voluntary muscles. There are no cures for ALS and few available treatments. In studies with small animal models, injection of cellular therapeutics into the anterior horn of the spinal cord has been shown to inhibit the progression of ALS. It was hypothesized that spinal injection could be made faster and less invasive with the aid of a robot. The robotic system presented-SpinoBot-uses MRI guidance to position a needle for percutaneous injection into the spinal cord. With four degrees of freedom (DOF) provided by two translation stages and two rotational axes, SpinoBot proved capable of advanced targeting with a mean error of 1.12 mm and standard deviation of 0.97 mm in bench tests, and a mean error of 2.2 mm and standard deviation of 0.85 mm in swine cadaver tests. SpinoBot has shown less than 3% signal-to-noise ratio reduction in 3T MR imaging quality, demonstrating its compliance to the MRI environment. With the aid of SpinoBot, the length of the percutaneous injection procedure is reduced to less than 60 min with 10 min for each additional insertion. Although SpinoBot is designed for ALS treatment, it could potentially be used for other procedures that require precise access to the spine.
Collapse
Affiliation(s)
| | - John N Oshinski
- Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Nicholas M Boulis
- Neurosurgery, Emory University Hospital, Emory University School of Medicine, Atlanta, GA, USA
| | - Zion Tsz Ho Tse
- Engineering, The University of Georgia, Athens, GA, USA.
- Driftmier Engineering Center, 597 D.W. Brooks Dr, Annex Room 111, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Precisely positioning the tip of an instrument inserted through an orifice with a free wrist robot: application to prostate biopsies. Int J Comput Assist Radiol Surg 2018; 13:611-618. [PMID: 29488147 DOI: 10.1007/s11548-018-1718-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Robots with a spherical unactuated wrist can be used for minimally invasive surgery. With such a robot, positioning the wrist center controls the instrument tip position when assuming that the insertion site behaves like a lever with a fixed and known fulcrum. In practice, this assumption is not always respected. In this paper we first study the practical consequences of this problem in terms of tip precision positioning. We then propose a robotic control scheme that improves the precision compared to the fixed point assumption approach. METHODS In the first part of the paper, data recorded during robot-assisted transrectal needle positioning for prostate biopsies (nine patients) are exploited to quantify the positioning error induced by the use of a fixed point hypothesis in the positioning process. In the second part of the paper advanced control techniques allow for the online identification of a locally linear system that describes a model characterized by anisotropy and center displacement. A laboratory apparatus is used to demonstrate the resulting improvement on tip positioning precision. RESULTS Errors obtained by processing the clinical data reach 7.5 mm at the tip in average. Errors obtained with the laboratory apparatus drop from 2.4 mm in average to 0.8 mm when using real-time model update.
Collapse
|
20
|
Abstract
Robots have been found to be a useful tool in magnetic resonance imaging (MRI)-guided intervention. The utility of robots in MRI-guided therapy ranges from aid for precision targeting to high-dexterity surgical tools to improve or even enable new MRI-guided therapy options. The objective of this article is to review the technical aspects of robotics in MRI-guided interventions, highlight the role of MRI robots in prostate interventions, and finally discuss the future contribution of emerging robotics technology useful in MRI-guided intervention.
Collapse
|
21
|
Busse H, Kahn T, Moche M. Techniques for Interventional MRI Guidance in Closed-Bore Systems. Top Magn Reson Imaging 2018; 27:9-18. [PMID: 29406410 DOI: 10.1097/rmr.0000000000000150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Efficient image guidance is the basis for minimally invasive interventions. In comparison with X-ray, computed tomography (CT), or ultrasound imaging, magnetic resonance imaging (MRI) provides the best soft tissue contrast without ionizing radiation and is therefore predestined for procedural control. But MRI is also characterized by spatial constraints, electromagnetic interactions, long imaging times, and resulting workflow issues. Although many technical requirements have been met over the years-most notably magnetic resonance (MR) compatibility of tools, interventional pulse sequences, and powerful processing hardware and software-there is still a large variety of stand-alone devices and systems for specific procedures only.Stereotactic guidance with the table outside the magnet is common and relies on proper registration of the guiding grids or manipulators to the MR images. Instrument tracking, often by optical sensing, can be added to provide the physicians with proper eye-hand coordination during their navigated approach. Only in very short wide-bore systems, needles can be advanced at the extended arm under near real-time imaging. In standard magnets, control and workflow may be improved by remote operation using robotic or manual driving elements.This work highlights a number of devices and techniques for different interventional settings with a focus on percutaneous, interstitial procedures in different organ regions. The goal is to identify technical and procedural elements that might be relevant for interventional guidance in a broader context, independent of the clinical application given here. Key challenges remain the seamless integration into the interventional workflow, safe clinical translation, and proper cost effectiveness.
Collapse
Affiliation(s)
- Harald Busse
- Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Leipzig, Germany
| | | | | |
Collapse
|
22
|
Modelling and solving the position tracking problem of remote-controlled gastrointestinal drug-delivery capsules. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Levi D, Monfaredi R, Cleary K, Iordachita I. A new 4-DOF parallel robot for MRI-guided percutaneous interventions: Kinematic analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:4251-4255. [PMID: 29060836 DOI: 10.1109/embc.2017.8037795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we present the concept of a novel 4-DOF parallel robot for MRI-guided percutaneous interventions. This system belongs to the class of patient-mounted robots, with two parallel circular stages along which two actuating joints move. As a first step, we present the concept of the robot and its kinematic analysis. This robot has the potential of increased rigidity and reduced inertial effect compared to its predecessor. It also minimizes the number of moving components, which enhances safety during the robot's operation.
Collapse
|
24
|
Chen Y, Xu S, Squires A, Seifabadi R, Turkbey IB, Pinto PA, Choyke P, Wood B, Tse ZTH. MRI-Guided Robotically Assisted Focal Laser Ablation of the Prostate Using Canine Cadavers. IEEE Trans Biomed Eng 2017; 65:1434-1442. [PMID: 28961099 DOI: 10.1109/tbme.2017.2756907] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE a magnetic resonance imaging (MRI)-conditional needle guidance robot is developed to enhance MRI-guided focal laser ablation (FLA) therapy in patients with focal prostate cancer. METHODS inspired by the workflow of the manual FLA therapy, we developed an MRI-conditional robot with two degrees of freedom to provide the guidance for laser ablation catheter. This robot is powered by pneumatic turbine motors and encoded with the custom-designed optical encoder. The needle could be inserted manually through the designed robotic system, which keeps the patients inside MRI bore throughout the procedure. The robot hardware is integrated with the custom ablation planning and monitoring software (OncoNav) to provide an iterative treatment plan to cover the whole ablation zone. Virtual tumors were selected in three canine cadavers as targets to validate the performance of the proposed hardware and software system. RESULTS phantom studies show that the average targeting error is less than 2 mm and the workflow of the entire procedure lasts for 100 minutes. Canine cadaver experiment results show that all the targets were successfully ablated in no more than three administrations. SIGNIFICANCE MRI-guided prostate FLA is feasible using the proposed hardware and software system, indicating potential utility in future human trials.
Collapse
|
25
|
Localization of microscale devices in vivo using addressable transmitters operated as magnetic spins. Nat Biomed Eng 2017; 1:736-744. [DOI: 10.1038/s41551-017-0129-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022]
|
26
|
An J, Webb AG, Shah DJ, Chin K, Tsekos NV. Manipulator-driven selection of semi-active MR-visible markers. Int J Med Robot 2017; 14. [PMID: 28660676 DOI: 10.1002/rcs.1846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 11/12/2022]
Abstract
BACKGROUND A method for the identification of semi-active fiducial magnetic resonance (MR) markers is presented based on selectively optically tuning and detuning them. METHODS Four inductively coupled solenoid coils with photoresistors were connected to light sources. A microcontroller timed the optical tuning/detuning of coils and image collection. The markers were tested on an MR manipulator linking the microcontroller to the manipulator control to visibly select the marker subset according to the actuated joint. RESULTS In closed-loop control, the average and maximum were 0.76° ± 0.41° and 1.18° errors for a rotational joint, and 0.87 mm ± 0.26 mm and 1.13 mm for the prismatic joint. CONCLUSIONS This technique is suitable for MR-compatible actuated devices that use semi-active MR-compatible markers.
Collapse
Affiliation(s)
- Junmo An
- Medical Robotics Laboratory, University of Houston, Houston, TX, USA
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Dipan J Shah
- Methodist DeBakey Cardiology Associates, Houston Methodist, Houston, TX, USA
| | - Karen Chin
- Methodist DeBakey Cardiology Associates, Houston Methodist, Houston, TX, USA
| | - Nikolaos V Tsekos
- Medical Robotics Laboratory, University of Houston, Houston, TX, USA
| |
Collapse
|
27
|
Park SB, Kim JG, Lim KW, Yoon CH, Kim DJ, Kang HS, Jo YH. A magnetic resonance image-guided breast needle intervention robot system: overview and design considerations. Int J Comput Assist Radiol Surg 2017; 12:1319-1331. [PMID: 28168682 DOI: 10.1007/s11548-017-1528-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE We developed an image-guided intervention robot system that can be operated in a magnetic resonance (MR) imaging gantry. The system incorporates a bendable needle intervention robot for breast cancer patients that overcomes the space limitations of the MR gantry. METHODS Most breast coil designs for breast MR imaging have side openings to allow manual localization. However, for many intervention procedures, the patient must be removed from the gantry. A robotic manipulation system with integrated image guidance software was developed. Our robotic manipulator was designed to be slim, so as to fit between the patient's side and the MR gantry wall. Only non-magnetic materials were used, and an electromagnetic shield was employed for cables and circuits. The image guidance software was built using open source libraries. In situ feasibility tests were performed in a 3-T MR system. One target point in the breast phantom was chosen by the clinician for each experiment, and our robot moved the needle close to the target point. RESULTS Without image-guided feedback control, the needle end could not hit the target point (distance = 5 mm) in the first experiment. Using our robotic system, the needle hits the target lesion of the breast phantom at a distance of 2.3 mm from the same target point using image-guided feedback. The second experiment was performed using other target points, and the distance between the final needle end point and the target point was 0.8 mm. CONCLUSIONS We successfully developed an MR-guided needle intervention robot for breast cancer patients. Further research will allow the expansion of these interventions.
Collapse
Affiliation(s)
- Samuel Byeongjun Park
- Department of Biomedical Engineering, National Cancer Center, 323 Ilsanro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, Republic of Korea
| | - Jung-Gun Kim
- Department of Biomedical Engineering, National Cancer Center, 323 Ilsanro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, Republic of Korea
| | - Ki-Woong Lim
- Department of Biomedical Engineering, National Cancer Center, 323 Ilsanro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, Republic of Korea
| | - Chae-Hyun Yoon
- Department of Biomedical Engineering, National Cancer Center, 323 Ilsanro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, Republic of Korea
| | - Dong-Jun Kim
- Department of Biomedical Engineering, National Cancer Center, 323 Ilsanro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, Republic of Korea
| | - Han-Sung Kang
- Center for Breast Cancer, National Cancer Center, 323 Ilsanro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, Republic of Korea
| | - Yung-Ho Jo
- Department of Biomedical Engineering, National Cancer Center, 323 Ilsanro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
28
|
Chen Y, Squires A, Seifabadi R, Xu S, Agrawal H, Bernardo M, Pinto P, Choyke P, Wood B, Tse ZTH. Robotic System for MRI-guided Focal Laser Ablation in the Prostate. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2017; 22:107-114. [PMID: 31080341 PMCID: PMC6506217 DOI: 10.1109/tmech.2016.2611570] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
MRI-conditional robotic platforms have proved to be an effective approach for image guided interventions. In this study, a computer-assisted, pneumatically-actuated robot was designed, built, and tested for MRI-guided prostate cancer focal laser ablation (FLA). The robotic manipulator provides two active planar degrees of freedom (DoFs) by using a customized CoreXY frame, and one passive rotational DoF. A remote insertion mechanism improves the surgical workflow by keeping the patients inside the scanner during needle insertion. The robotic manipulator was tested in a 3T MR scanner to evaluate its MR compliance, and the results demonstrated that the signal-to-noise ratio (SNR) variation was less than 8%. The in-scanner template positioning accuracy test demonstrated that the manipulator achieves high targeting accuracy with a mean error of 0.46 mm and a standard deviation of 0.25mm. Phantom studies have shown that the needle insertion accuracy of the manipulator is within 2mm (Mean = 1.7mm, StD = 0.2mm).
Collapse
Affiliation(s)
- Yue Chen
- College of Engineering, The University of Georgia, Athens, GA, 30605, USA
| | - Alexander Squires
- College of Engineering, The University of Georgia, Athens, GA, 30605, USA
| | - Reza Seifabadi
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sheng Xu
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harsh Agrawal
- Philips Research North America, Briarcliff, NY, 10510, USA
| | - Marcelino Bernardo
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter Pinto
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter Choyke
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bradford Wood
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zion Tsz Ho Tse
- College of Engineering, The University of Georgia, Athens, GA, 30605, USA
| |
Collapse
|
29
|
Ménard C, Pambrun JF, Kadoury S. The utilization of magnetic resonance imaging in the operating room. Brachytherapy 2017; 16:754-760. [PMID: 28139421 DOI: 10.1016/j.brachy.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/26/2022]
Abstract
Online image guidance in the operating room using ultrasound imaging led to the resurgence of prostate brachytherapy in the 1980s. Here we describe the evolution of integrating MRI technology in the brachytherapy suite or operating room. Given the complexity, cost, and inherent safety issues associated with MRI system integration, first steps focused on the computational integration of images rather than systems. This approach has broad appeal given minimal infrastructure costs and efficiencies comparable with standard care workflows. However, many concerns remain regarding accuracy of registration through the course of a brachytherapy procedure. In selected academic institutions, MRI systems have been integrated in or near the brachytherapy suite in varied configurations to improve the precision and quality of treatments. Navigation toolsets specifically adapted to prostate brachytherapy are in development and are reviewed.
Collapse
Affiliation(s)
- C Ménard
- University of Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada; TECHNA Institute, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, Toronto, ON, Canada.
| | - J-F Pambrun
- University of Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada; École polytechnique de Montréal, Montréal, QC, Canada
| | - S Kadoury
- University of Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada; École polytechnique de Montréal, Montréal, QC, Canada
| |
Collapse
|
30
|
Chan JL, Mazilu D, Miller JG, Hunt T, Horvath KA, Li M. Robotic-assisted real-time MRI-guided TAVR: from system deployment to in vivo experiment in swine model. Int J Comput Assist Radiol Surg 2016; 11:1905-18. [PMID: 27246950 DOI: 10.1007/s11548-016-1421-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/10/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE Real-time magnetic resonance imaging (rtMRI) guidance provides significant advantages during transcatheter aortic valve replacement (TAVR) as it provides superior real-time visualization and accurate device delivery tracking. However, performing a TAVR within an MRI scanner remains difficult due to a constrained procedural environment. To address these concerns, a magnetic resonance (MR)-compatible robotic system to assist in TAVR deployments was developed. This study evaluates the technical design and interface considerations of an MR-compatible robotic-assisted TAVR system with the purpose of demonstrating that such a system can be developed and executed safely and precisely in a preclinical model. METHODS An MR-compatible robotic surgical assistant system was built for TAVR deployment. This system integrates a 5-degrees of freedom (DoF) robotic arm with a 3-DoF robotic valve delivery module. A user interface system was designed for procedural planning and real-time intraoperative manipulation of the robot. The robotic device was constructed of plastic materials, pneumatic actuators, and fiber-optical encoders. RESULTS The mechanical profile and MR compatibility of the robotic system were evaluated. The system-level error based on a phantom model was 1.14 ± 0.33 mm. A self-expanding prosthesis was successfully deployed in eight Yorkshire swine under rtMRI guidance. Post-deployment imaging and necropsy confirmed placement of the stent within 3 mm of the aortic valve annulus. CONCLUSIONS These phantom and in vivo studies demonstrate the feasibility and advantages of robotic-assisted TAVR under rtMRI guidance. This robotic system increases the precision of valve deployments, diminishes environmental constraints, and improves the overall success of TAVR.
Collapse
Affiliation(s)
- Joshua L Chan
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room B1D47, MSC 1550, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Dumitru Mazilu
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room B1D47, MSC 1550, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Justin G Miller
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room B1D47, MSC 1550, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Timothy Hunt
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room B1D47, MSC 1550, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Keith A Horvath
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room B1D47, MSC 1550, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Ming Li
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room B1D47, MSC 1550, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
31
|
Prostate biopsies assisted by comanipulated probe-holder: first in man. Int J Comput Assist Radiol Surg 2016; 11:1153-61. [PMID: 27072834 DOI: 10.1007/s11548-016-1399-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE A comanipulator for assisting endorectal prostate biopsies is evaluated through a first-in-man clinical trial. This lightweight system, based on conventional robotic components, possesses six degrees of freedom. It uses three electric motors and three brakes. It features a free mode, where its low friction and inertia allow for natural manipulation of the probe and a locked mode, exhibiting both a very low stiffness and a high steady-state precision. METHODS Clinical trials focusing on the free mode and the locked mode of the robot are presented. The objective was to evaluate the practical usability and performance of the robot during clinical procedures. A research protocol for a prospective randomized clinical trial has been designed. Its specific goal was to compare the accuracy of biopsies performed with and without the assistance of the comanipulator. RESULTS The accuracy is compared between biopsies performed with and without the assistance of the comanipulator, across the 10 first patients included in the trial. Results show a statistically significant increase in the precision.
Collapse
|
32
|
Tam AL, Lim HJ, Wistuba II, Tamrazi A, Kuo MD, Ziv E, Wong S, Shih AJ, Webster RJ, Fischer GS, Nagrath S, Davis SE, White SB, Ahrar K. Image-Guided Biopsy in the Era of Personalized Cancer Care: Proceedings from the Society of Interventional Radiology Research Consensus Panel. J Vasc Interv Radiol 2015; 27:8-19. [PMID: 26626860 DOI: 10.1016/j.jvir.2015.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Affiliation(s)
- Alda L Tam
- Departments of Interventional Radiology, Houston, Texas.
| | - Howard J Lim
- Division of Medical Oncology, University of British Columbia, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Anobel Tamrazi
- Division of Vascular and Interventional Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael D Kuo
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Etay Ziv
- Departments of Interventional Radiology and Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Stephen Wong
- Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, Texas
| | - Albert J Shih
- Departments of Mechanical and Biomechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Robert J Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Gregory S Fischer
- Automation and Interventional Medicine Robotics Lab, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Sunitha Nagrath
- Chemical and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Suzanne E Davis
- Division of Cancer Medicine, Research Planning and Development, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Sarah B White
- Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, Texas; Departments of Radiology, Neuroscience, Pathology & Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, New York; Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kamran Ahrar
- Departments of Interventional Radiology, Houston, Texas
| |
Collapse
|
33
|
Eslami S, Shang W, Li G, Patel N, Fischer GS, Tokuda J, Hata N, Tempany CM, Iordachita I. In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation. Int J Med Robot 2015; 12:199-213. [PMID: 26111458 DOI: 10.1002/rcs.1671] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Robot-assisted minimally-invasive surgery is well recognized as a feasible solution for diagnosis and treatment of prostate cancer in humans. METHODS This paper discusses the kinematics of a parallel 4 Degrees-of-Freedom (DOF) surgical manipulator designed for minimally invasive in-bore prostate percutaneous interventions through the patient's perineum. The proposed manipulator takes advantage of four sliders actuated by MRI-compatible piezoelectric motors and incremental rotary encoders. Errors, mostly originating from the design and manufacturing process, need to be identified and reduced before the robot is deployed in clinical trials. RESULTS The manipulator has undergone several experiments to evaluate the repeatability and accuracy (about 1 mm in air (in x or y direction) at the needle's reference point) of needle placement, which is an essential concern in percutaneous prostate interventions. CONCLUSION The acquired results endorse the sustainability, precision and reliability of the manipulator. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sohrab Eslami
- Laboratory for Computational Sensing and Robotics (LCSR) at the Johns Hopkins University, Baltimore, MD, USA
| | - Weijian Shang
- Automation and Interventional Medicine (AIM) Laboratory in the Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Gang Li
- Automation and Interventional Medicine (AIM) Laboratory in the Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Nirav Patel
- Automation and Interventional Medicine (AIM) Laboratory in the Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Gregory S Fischer
- Automation and Interventional Medicine (AIM) Laboratory in the Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Junichi Tokuda
- Surgical Navigation and Robotics Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nobuhiko Hata
- Surgical Navigation and Robotics Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Clare M Tempany
- Surgical Navigation and Robotics Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR) at the Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
34
|
Podder TK, Beaulieu L, Caldwell B, Cormack RA, Crass JB, Dicker AP, Fenster A, Fichtinger G, Meltsner MA, Moerland MA, Nath R, Rivard MJ, Salcudean T, Song DY, Thomadsen BR, Yu Y. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192. Med Phys 2015; 41:101501. [PMID: 25281939 DOI: 10.1118/1.4895013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3-6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests should mimic the real operating procedure as closely as possible. Additional recommendations on robotic brachytherapy systems include display of the operational state; capability of manual override; documented policies for independent check and data verification; intuitive interface displaying the implantation plan and visualization of needle positions and seed locations relative to the target anatomy; needle insertion in a sequential order; robot-clinician and robot-patient interactions robustness, reliability, and safety while delivering the correct dose at the correct site for the correct patient; avoidance of excessive force on radioactive sources; delivery confirmation of the required number or position of seeds; incorporation of a collision avoidance system; system cleaning, decontamination, and sterilization procedures. These recommendations are applicable to end users and manufacturers of robotic brachytherapy systems.
Collapse
Affiliation(s)
- Tarun K Podder
- Department of Radiation Oncology, University Hospitals, Case Western Reserve University, Cleveland, Ohio 44122
| | - Luc Beaulieu
- Department of Radiation Oncology, Centre Hospitalier Univ de Quebec, Quebec G1R 2J6, Canada
| | - Barrett Caldwell
- Schools of Industrial Engineering and Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907
| | - Robert A Cormack
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jostin B Crass
- Department of Radiation Oncology, Vanderbilt University, Nashville, Tennessee 37232
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Aaron Fenster
- Department of Imaging Research, Robarts Research Institute, London, Ontario N6A 5K8, Canada
| | - Gabor Fichtinger
- School of Computer Science, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | - Marinus A Moerland
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Ravinder Nath
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Mark J Rivard
- Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Tim Salcudean
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Danny Y Song
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Bruce R Thomadsen
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705
| | - Yan Yu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | |
Collapse
|
35
|
Trung Duc Than, Alici G, Harvey S, O'Keefe G, Hao Zhou, Weihua Li, Cook T, Alam-Fotias S. An Effective Localization Method for Robotic Endoscopic Capsules Using Multiple Positron Emission Markers. IEEE T ROBOT 2014. [DOI: 10.1109/tro.2014.2333111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Penzkofer T, Tuncali K, Fedorov A, Song SE, Tokuda J, Fennessy FM, Vangel MG, Kibel AS, Mulkern RV, Wells WM, Hata N, Tempany CMC. Transperineal in-bore 3-T MR imaging-guided prostate biopsy: a prospective clinical observational study. Radiology 2014; 274:170-80. [PMID: 25222067 DOI: 10.1148/radiol.14140221] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To determine the detection rate, clinical relevance, Gleason grade, and location of prostate cancer ( PCa prostate cancer ) diagnosed with and the safety of an in-bore transperineal 3-T magnetic resonance (MR) imaging-guided prostate biopsy in a clinically heterogeneous patient population. MATERIALS AND METHODS This prospective retrospectively analyzed study was HIPAA compliant and institutional review board approved, and informed consent was obtained. Eighty-seven men (mean age, 66.2 years ± 6.9) underwent multiparametric endorectal prostate MR imaging at 3 T and transperineal MR imaging-guided biopsy. Three subgroups of patients with at least one lesion suspicious for cancer were included: men with no prior PCa prostate cancer diagnosis, men with PCa prostate cancer who were undergoing active surveillance, and men with treated PCa prostate cancer and suspected recurrence. Exclusion criteria were prior prostatectomy and/or contraindication to 3-T MR imaging. The transperineal MR imaging-guided biopsy was performed in a 70-cm wide-bore 3-T device. Overall patient biopsy outcomes, cancer detection rates, Gleason grade, and location for each subgroup were evaluated and statistically compared by using χ(2) and one-way analysis of variance followed by Tukey honestly significant difference post hoc comparisons. RESULTS Ninety biopsy procedures were performed with no serious adverse events, with a mean of 3.7 targets sampled per gland. Cancer was detected in 51 (56.7%) men: 48.1% (25 of 52) with no prior PCa prostate cancer , 61.5% (eight of 13) under active surveillance, and 72.0% (18 of 25) in whom recurrence was suspected. Gleason pattern 4 or higher was diagnosed in 78.1% (25 of 32) in the no prior PCa prostate cancer and active surveillance groups. Gleason scores were not assigned in the suspected recurrence group. MR targets located in the anterior prostate had the highest cancer yield (40 of 64, 62.5%) compared with those for the other parts of the prostate (P < .001). CONCLUSION In-bore 3-T transperineal MR imaging-guided biopsy, with a mean of 3.7 targets per gland, allowed detection of many clinically relevant cancers, many of which were located anteriorly.
Collapse
Affiliation(s)
- Tobias Penzkofer
- From the Division of MRI in the Department of Radiology (T.P., K.T., A.F., S.S., J.T., F.M.F., R.V.M., W.M.W., N.H., C.M.C.T.) and the Division of Urology (A.S.K.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115; Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany (T.P.). Department of Radiology, Massachusetts General Hospital, Boston, Mass (M.G.V.); Department of Radiology, Dana-Farber Cancer Institute, Boston, Mass (F.M.F.); and Department of Radiology, Children's Hospital, Boston, Mass (R.V.M.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abdullah BJJ, Yeong CH, Goh KL, Yoong BK, Ho GF, Yim CCW, Kulkarni A. Robotic-assisted thermal ablation of liver tumours. Eur Radiol 2014; 25:246-57. [PMID: 25189152 DOI: 10.1007/s00330-014-3391-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/20/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. METHODS Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. RESULTS Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. CONCLUSION This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. KEY POINTS • Clinical experience on liver thermal ablation using CT-guided robotic system is reported. • The technical success, radiation dose, safety and performance level were assessed. • Thermal ablations were successfully performed, with an average performance score of 4.4/5.0. • Robotic-assisted ablation can potentially increase capabilities of less skilled interventional radiologists. • Cost-effectiveness needs to be proven in further studies.
Collapse
Affiliation(s)
- Basri Johan Jeet Abdullah
- Department of Biomedical Imaging and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia,
| | | | | | | | | | | | | |
Collapse
|
38
|
De Silva T, Cool DW, Romagnoli C, Fenster A, Ward AD. Evaluating the utility of intraprocedural 3D TRUS image information in guiding registration for displacement compensation during prostate biopsy. Med Phys 2014; 41:082901. [DOI: 10.1118/1.4885959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
39
|
Cepek J, Chronik BA, Fenster A. The effects of magnetic field distortion on the accuracy of passive device localization frames in MR imaging. Med Phys 2014; 41:052301. [PMID: 24784394 DOI: 10.1118/1.4870961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The interventional magnetic resonance (MR) imaging environment presents many challenges for the accurate localization of interventional devices. In particular, geometric distortion of the static magnetic field may be both appreciable and unpredictable. This paper aims to quantify the sensitivity of localization error of various passive device localization frames to static magnetic field distortion in MR. METHODS Three localization frames were considered based on having distinctly different methods of encoding position and orientation in MR images. For each frame, the effects of static field distortion were modeled, allowing rotational and translational errors to be computed as functions of the level of distortion, which was modeled using a first order approximation. Validation of the model was performed by imaging the localization frames in a 3T clinical MR scanner, and simulating the effects of static field distortion by varying the scanner's center frequency and gradient shim values. RESULTS Plots of the rotational and translational components of error in localization frame position and orientation estimates are provided for ranges of uniform static field distortions of 1-100 μT and static field distortion gradients of 0.01-1 mT/m in all three directions. The theoretical estimates are in good agreement with the results obtained by imaging. CONCLUSIONS The error in position and orientation estimation of passive localization frames in MR can be sensitive to static magnetic field distortions. The level of sensitivity, the type of error (i.e., rotational or translational), and the direction of error are dependent on the frame's design and the method used to image it. If 2D gradient echo imaging is employed, frames with position and orientation estimate sensitivity to slice-select error (such as the z-frame) should be avoided, since this source of error is not easily correctable. Accurate frame position and orientation estimates that are insensitive to static field distortion can be achieved using 2D gradient echo imaging if: (a) the method of determining position and orientation only uses in-plane measurements of marker positions, (b) the in-plane marker positions in images are not sensitive to slice-select error, and (c) methods of correcting in-plane error in the frequency-encoded direction are employed.
Collapse
Affiliation(s)
- Jeremy Cepek
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Blaine A Chronik
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Aaron Fenster
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
40
|
Tokuda J, Song SE, Tuncali K, Tempany C, Hata N. Configurable automatic detection and registration of fiducial frames for device-to-image registration in MRI-guided prostate interventions. ACTA ACUST UNITED AC 2014; 16:355-62. [PMID: 24505781 DOI: 10.1007/978-3-642-40760-4_45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
We propose a novel automatic fiducial frame detection and registration method for device-to-image registration in MRI-guided prostate interventions. The proposed method does not require any manual selection of markers, and can be applied to a variety of fiducial frames, which consist of multiple cylindrical MR-visible markers placed in different orientations. The key idea is that automatic extraction of linear features using a line filter is more robust than that of bright spots by thresholding; by applying a line set registration algorithm to the detected markers, the frame can be registered to the MRI. The method was capable of registering the fiducial frame to the MRI with an accuracy of 1.00 +/- 0.73 mm and 1.41 +/- 1.06 degrees in a phantom study, and was sufficiently robust to detect the fiducial frame in 98% of images acquired in clinical cases despite the existence of anatomical structures in the field of view.
Collapse
Affiliation(s)
- Junichi Tokuda
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Sang-Eun Song
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kemal Tuncali
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clare Tempany
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nobuhiko Hata
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Xu H, Lasso A, Guion P, Krieger A, Kaushal A, Singh AK, Pinto PA, Coleman J, Grubb RL, Lattouf JB, Menard C, Whitcomb LL, Fichtinger G. Accuracy analysis in MRI-guided robotic prostate biopsy. Int J Comput Assist Radiol Surg 2013; 8:937-944. [PMID: 23532560 PMCID: PMC4139961 DOI: 10.1007/s11548-013-0831-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE To assess retrospectively the clinical accuracy of an magnetic resonance imaging-guided robotic prostate biopsy system that has been used in the US National Cancer Institute for over 6 years. METHODS Series of 2D transverse volumetric MR image slices of the prostate both pre (high-resolution T2-weighted)- and post (low-resolution)- needle insertions were used to evaluate biopsy accuracy. A three-stage registration algorithm consisting of an initial two-step rigid registration followed by a B-spline deformable alignment was developed to capture prostate motion during biopsy. The target displacement (distance between planned and actual biopsy target), needle placement error (distance from planned biopsy target to needle trajectory), and biopsy error (distance from actual biopsy target to needle trajectory) were calculated as accuracy assessment. RESULTS A total of 90 biopsies from 24 patients were studied. The registrations were validated by checking prostate contour alignment using image overlay, and the results were accurate to within 2 mm. The mean target displacement, needle placement error, and clinical biopsy error were 5.2, 2.5, and 4.3 mm, respectively. CONCLUSION The biopsy error reported suggests that quantitative imaging techniques for prostate registration and motion compensation may improve prostate biopsy targeting accuracy.
Collapse
Affiliation(s)
- Helen Xu
- Queen's University, Kingston, ON, Canada,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ahn B, Lee H, Kim Y, Kim J. Robotic system with sweeping palpation and needle biopsy for prostate cancer diagnosis. Int J Med Robot 2013; 10:356-67. [DOI: 10.1002/rcs.1543] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 08/29/2013] [Accepted: 09/07/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Bummo Ahn
- Wellness Technology R&D Group; Korea Institute of Industrial Technology; 143 Hanggaul-ro, Sangnok-gu Ansan-si Gyeonggi-do 426-910 Korea
| | - Hyosang Lee
- School of Mechanical, Aerospace & Systems Engineering, Department of Mechanical Engineering; Korea Advanced Institute of Science and Technology; 373-1 Guseong-dong Daejeon 305-701 Korea
| | - Yeongjin Kim
- The Robotics, Automation, and Medical Systems (RAMS) laboratory; University of Maryland; College Park MD 20742 USA
| | - Jung Kim
- School of Mechanical, Aerospace & Systems Engineering, Department of Mechanical Engineering; Korea Advanced Institute of Science and Technology; 373-1 Guseong-dong Daejeon 305-701 Korea
| |
Collapse
|
43
|
Abstract
Robotic prostatectomy is a common surgical treatment for men with prostate cancer, with some studies estimating that 80% of prostatectomies now performed in the USA are done so robotically. Despite the technical advantages offered by robotic systems, functional and oncological outcomes of prostatectomy can still be improved further. Alternative minimally invasive treatments that have also adopted robotic platforms include brachytherapy and high-intensity focused ultrasonography (HIFU). These techniques require real-time image guidance--such as ultrasonography or MRI--to be truly effective; issues with software compatibility as well as image registration and tracking currently limit such technologies. However, image-guided robotics is a fast-growing area of research that combines the improved ergonomics of robotic systems with the improved visualization of modern imaging modalities. Although the benefits of a real-time image-guided robotic system to improve the precision of surgical interventions are being realized, the clinical usefulness of many of these systems remains to be seen.
Collapse
|
44
|
Dianat SS, Carter HB, Macura KJ. Performance of multiparametric magnetic resonance imaging in the evaluation and management of clinically low-risk prostate cancer. Urol Oncol 2013; 32:39.e1-10. [PMID: 23787297 DOI: 10.1016/j.urolonc.2013.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The purpose of this article is to review the multiparametric magnetic resonance imaging (mMRI) of the prostate and MR-guided prostate biopsy, and their role in the evaluation and management of men with low-risk prostate cancer. METHODS We performed a literature review based on the MEDLINE database search for publications on the role of mMRI (a) in detection and localization of prostate cancer, prediction of tumor aggressiveness and progression and (b) in guiding targeted prostate biopsy. RESULTS The mMRI, particularly diffusion-weighted imaging with T2-weighted imaging, is a useful tool for tumor localization in low-risk prostate cancer as it can detect lesions that are more likely missed on extended biopsy schemes and can identify clinically significant disease requiring definitive treatment. The MR-guided biopsy of the most suspicious lesions enables more accurate and safer approach to guide enrollment into the active surveillance program. However, the MR-guided biopsy is complex. The fusion of MRI data with transrectal ultrasound for the purpose of biopsy provides a more feasible technique with documented accurate sampling. CONCLUSION Although the mMRI is not routinely used for risk stratification and prognostic assessment in prostate cancer, it can provide valuable information to guide management of men with low-risk disease. Incorporation of mMRI into the workup and monitoring of patients with low-risk prostate cancer can help discriminate clinically significant disease from indolent disease. Targeted biopsy of MR-suspicious lesions enables accurate sampling of potentially aggressive tumors that may affect outcomes.
Collapse
Affiliation(s)
- Seyed Saeid Dianat
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD
| | - H Ballentine Carter
- The James Buchanan Brady Urological Institute, The Johns Hopkins University, Baltimore, MD
| | - Katarzyna J Macura
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD; The James Buchanan Brady Urological Institute, The Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
45
|
Christoforou EG, Seimenis I, Andreou E, Eracleous E, Tsekos NV. A novel, general-purpose, MR-compatible, manually actuated robotic manipulation system for minimally invasive interventions under direct MRI guidance. Int J Med Robot 2013; 10:22-34. [DOI: 10.1002/rcs.1504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/05/2022]
Affiliation(s)
| | - Ioannis Seimenis
- Laboratory of Medical Physics, Department of Medicine; Democritus University of Thrace; Alexandroupolis Greece
- Medical Diagnostic Centre ‘Ayios Therissos’; Nicosia Cyprus
| | - Eleni Andreou
- Department of Mechanical and Manufacturing Engineering; University of Cyprus; Nicosia Cyprus
| | | | - Nikolaos V. Tsekos
- Medical Robotics Laboratory, Department of Computer Science; University of Houston; TX USA
| |
Collapse
|
46
|
Li G, Su H, Shang W, Tokuda J, Hata N, Tempany CM, Fischer GS. A Fully Actuated Robotic Assistant for MRI-Guided Prostate Biopsy and Brachytherapy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8671:867117. [PMID: 25076821 DOI: 10.1117/12.2007669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm.
Collapse
Affiliation(s)
- Gang Li
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Hao Su
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Weijian Shang
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Junichi Tokuda
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nobuhiko Hata
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Gregory S Fischer
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
47
|
Song SE, Tokuda J, Tuncali K, Tempany CM, Zhang E, Hata N. Development and preliminary evaluation of a motorized needle guide template for MRI-guided targeted prostate biopsy. IEEE Trans Biomed Eng 2013; 60:3019-27. [PMID: 23335658 DOI: 10.1109/tbme.2013.2240301] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To overcome the problems of limited needle insertion accuracy and human error in the use of a conventional needle guide template in magnetic resonance imaging (MRI)-guided prostate intervention, we developed a motorized MRI-compatible needle guide template that resembles a transrectal ultrasound-guided prostate template. The motorized template allows automated, gapless needle guidance in a 3T MRI scanner with minimal changes in the current clinical procedure. To evaluate the impact of the motorized template on MRI, signal-to-noise ratio and distortion were measured under various system configurations. A maximum of 44% signal-to-noise ratio decrease was found when the ultrasonic motors were running, and a maximum of 0.4% image distortion was observed due to the presence of the motorized template. To measure needle insertion accuracy, we performed four sets of five random target needle insertions mimicking four biopsy procedures, which resulted in an average in-plane targeting error of 0.94 mm with a standard deviation of 0.34 mm. The evaluation studies indicated that the presence and operation of the motorized template in the MRI bore create insignificant image degradation, and provide submillimeter targeting accuracy. The automated needle guide that is directly controlled by navigation software eliminates human error so that the safety of the procedure can be improved.
Collapse
|
48
|
Hungr N, Baumann M, Long JA, Troccaz J. A 3-D Ultrasound Robotic Prostate Brachytherapy System With Prostate Motion Tracking. IEEE T ROBOT 2012. [DOI: 10.1109/tro.2012.2203051] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Than TD, Alici G, Zhou H, Li W. A review of localization systems for robotic endoscopic capsules. IEEE Trans Biomed Eng 2012; 59:2387-99. [PMID: 22736628 DOI: 10.1109/tbme.2012.2201715] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obscure gastrointestinal (GI) bleeding, Crohn disease, Celiac disease, small bower tumors, and other disorders that occur in the GI tract have always been challenging to be diagnosed and treated due to the inevitable difficulty in accessing such a complex environment within the human body. With the invention of wireless capsule endoscope, the next generation of the traditional cabled endoscope, not only a dream has come true for the patients who have experienced a great discomfort and unpleasantness caused by the conventional endoscopic method, but also a new research field has been opened to develop a complete miniature robotic device that is swallowable and has full functions of diagnosis and treatment of the GI diseases. However, such an ideal device needs to be equipped with a highly accurate localization system to be able to exactly determine the location of lesions in the GI tract and provide essential feedback to an actuation mechanism controlling the device's movement. This paper presents a comprehensive overview of the localization systems for robotic endoscopic capsules, for which the motivation, challenges, and possible solutions of the proposed localization methods are also discussed.
Collapse
Affiliation(s)
- Trung Duc Than
- School of Mechanical, Material and Mechatronic Engineering, University ofWollongong, Wollongong, NSW 2522, Australia.
| | | | | | | |
Collapse
|
50
|
Tokuda J, Song SE, Fischer GS, Iordachita II, Seifabadi R, Cho NB, Tuncali K, Fichtinger G, Tempany CM, Hata N. Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions. Int J Comput Assist Radiol Surg 2012; 7:949-57. [PMID: 22678723 DOI: 10.1007/s11548-012-0750-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/09/2012] [Indexed: 12/26/2022]
Abstract
PURPOSE To evaluate the targeting accuracy of a small profile MRI-compatible pneumatic robot for needle placement that can angulate a needle insertion path into a large accessible target volume. METHODS We extended our MRI-compatible pneumatic robot for needle placement to utilize its four degrees-of-freedom (4-DOF) mechanism with two parallel triangular structures and support transperineal prostate biopsies in a closed-bore magnetic resonance imaging (MRI) scanner. The robot is designed to guide a needle toward a lesion so that a radiologist can manually insert it in the bore. The robot is integrated with navigation software that allows an operator to plan angulated needle insertion by selecting a target and an entry point. The targeting error was evaluated while the angle between the needle insertion path and the static magnetic field was between -5.7° and 5.7° horizontally and between -5.7° and 4.3° vertically in the MRI scanner after sterilizing and draping the device. RESULTS The robot positioned the needle for angulated insertion as specified on the navigation software with overall targeting error of 0.8 ± 0.5mm along the horizontal axis and 0.8 ± 0.8mm along the vertical axis. The two-dimensional root-mean-square targeting error on the axial slices as containing the targets was 1.4mm. CONCLUSIONS Our preclinical evaluation demonstrated that the MRI-compatible pneumatic robot for needle placement with the capability to angulate the needle insertion path provides targeting accuracy feasible for clinical MRI-guided prostate interventions. The clinical feasibility has to be established in a clinical study.
Collapse
Affiliation(s)
- Junichi Tokuda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|