1
|
Hernández-López P, Cilla M, Martínez MA, Peña E, Malvè M. Impact of geometric and hemodynamic changes on a mechanobiological model of atherosclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108296. [PMID: 38941860 DOI: 10.1016/j.cmpb.2024.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND AND OBJECTIVE In this work, the analysis of the importance of hemodynamic updates on a mechanobiological model of atheroma plaque formation is proposed. METHODS For that, we use an idealized and axisymmetric model of carotid artery. In addition, the behavior of endothelial cells depending on hemodynamical changes is analyzed too. A total of three computational simulations are carried out and their results are compared: an uncoupled model and two models that consider the opposite behavior of endothelial cells caused by hemodynamic changes. The model considers transient blood flow using the Navier-Stokes equation. Plasma flow across the endothelium is determined with Darcy's law and the Kedem-Katchalsky equations, considering the three-pore model, which is also employed for the flow of substances across the endothelium. The behavior of the considered substances in the arterial wall is modeled with convection-diffusion-reaction equations, and the arterial wall is modeled as a hyperelastic Yeoh's material. RESULTS Significant variations are noted in both the morphology and stenosis ratio of the plaques when comparing the uncoupled model to the two models incorporating updates for geometry and hemodynamic stimuli. Besides, the phenomenon of double-stenosis is naturally reproduced in the models that consider both geometric and hemodynamical changes due to plaque growth, whereas it cannot be predicted in the uncoupled model. CONCLUSIONS The findings indicate that integrating the plaque growth model with geometric and hemodynamic settings is essential in determining the ultimate shape and dimensions of the carotid plaque.
Collapse
Affiliation(s)
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50015, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| | - Miguel A Martínez
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50015, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| | - Estefanía Peña
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50015, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| | - Mauro Malvè
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain; Public University of Navarra (UPNA), Pamplona, Spain.
| |
Collapse
|
2
|
Johari NH, Menichini C, Hamady M, Xu XY. Computational modeling of low-density lipoprotein accumulation at the carotid artery bifurcation after stenting. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3772. [PMID: 37730441 DOI: 10.1002/cnm.3772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Restenosis typically occurs in regions of low and oscillating wall shear stress, which also favor the accumulation of atherogenic macromolecules such as low-density lipoprotein (LDL). This study aims to evaluate LDL transport and accumulation at the carotid artery bifurcation following carotid artery stenting (CAS) by means of computational simulation. The computational model consists of coupled blood flow and LDL transport, with the latter being modeled as a dilute substance dissolved in the blood and transported by the flow through a convection-diffusion transport equation. The endothelial layer was assumed to be permeable to LDL, and the hydraulic conductivity of LDL was shear-dependent. Anatomically realistic geometric models of the carotid bifurcation were built based on pre- and post-stent computed tomography (CT) scans. The influence of stent design was investigated by virtually deploying two different types of stents (open- and closed-cell stents) into the same carotid bifurcation model. Predicted LDL concentrations were compared between the post-stent carotid models and the relatively normal contralateral model reconstructed from patient-specific CT images. Our results show elevated LDL concentration in the distal section of the stent in all post-stent models, where LDL concentration is 20 times higher than that in the contralateral carotid. Compared with the open-cell stents, the closed-cell stents have larger areas exposed to high LDL concentration, suggesting an increased risk of stent restenosis. This computational approach is readily applicable to multiple patient studies and, once fully validated against follow-up data, it can help elucidate the role of stent strut design in the development of in-stent restenosis after CAS.
Collapse
Affiliation(s)
- Nasrul H Johari
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- Centre for Advanced Industrial Technology, University Malaysia Pahang, Pekan, Pahang, Malaysia
| | - Claudia Menichini
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Mohamad Hamady
- Department of Surgery & Cancer, Imperial College London, St. Mary's Campus, London, UK
| | - Xiao Y Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
3
|
Siogkas PK, Pleouras DS, Tsakanikas VD, Mantzaris MD, Potsika VT, Sakellarios A, Charalampopoulos G, Galyfos G, Sigala F, Fotiadis DI. Enhancing risk prediction capabilities in patients with carotid artery disease using a 2-level computational approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082959 DOI: 10.1109/embc40787.2023.10340085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
One of the main causes of death worldwide is carotid artery disease, which causes increasing arterial stenosis and may induce a stroke. To address this problem, the scientific community aims to improve our understanding of the underlying atherosclerotic mechanisms, as well as to make it possible to forecast the progression of atherosclerosis. Additionally, over the past several years, developments in the field of cardiovascular modeling have made it possible to create precise three-dimensional models of patient-specific main carotid arteries. The aforementioned 3D models are then implemented by computational models to forecast either the progression of atherosclerotic plaque or several flow-related metrics which are correlated to risk evaluation. A precise representation of both the blood flow and the fundamental atherosclerotic process within the arterial wall is made possible by computational models, therefore, allowing for the prediction of future lumen stenoses, plaque areas and risk prediction. This work presents an attempt to integrate the outcomes of a novel plaque growth model with advanced blood flow dynamics where the deformed luminal shape derived from the plaque growth model is compared to the actual patient-specific luminal model in terms of several hemodynamic metrics, to identify the prediction accuracy of the aforementioned model. Pressure drop ratios had a mean difference of <3%, whereas OSI-derived metrics were identical in 2/3 cases.Clinical Relevance-This establishes the accuracy of our plaque growth model in predicting the arterial geometry after the desired timeline.
Collapse
|
4
|
Pleouras DS, Siogkas PK, Tsakanikas VD, Mantzaris MD, Potsika VT, Sakellarios A, Sigala F, Fotiadis DI. Accurate adventitia reconstruction; significant or not in atherosclerotic plaque growth simulationsƒ A comparative study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083292 DOI: 10.1109/embc40787.2023.10340557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
A reform in the diagnosis and treatment process is urgently required as carotid artery disease remains a leading cause of death in the world. To this purpose, all computational techniques are now being applied to enhancing the most cutting-edge diagnosis techniques. Computational modeling of plaque generation and evolution is being refined over the past years to forecast the atherosclerotic progression and the corresponding risk in patient-specific carotid arteries. A prerequisite to their implementation is the reconstruction of the precise three-dimensional models of patient-specific main carotid arteries. Even with the most sophisticated algorithms, accurate reconstruction of the arterial vessel is frequently difficult. Furthermore, there are several works of plaque growth modeling that ignore the reconstruction of the artery's outer layer in favor of a virtual one. In this paper, we investigate the importance of an accurate adventitia layer in plaque growth modeling. This is done as a comparative study by implementing a novel plaque growth model in two reconstructed carotid arterial segments using either their realistic or virtual adventitia layer as input. The results indicate that accurate adventitia reconstruction is of minor importance regarding species distributions and plaque growth in carotid segments, which initially did not contain any plaque regions.Clinical Relevance- The findings of this comparative study emphasize the importance of precise adventitia geometry in plaque growth modeling. As a result, this work sets a higher standard for publishing new plaque growth models.
Collapse
|
5
|
Xenakis A, Ruiz-Soler A, Keshmiri A. Multi-Objective Optimisation of a Novel Bypass Graft with a Spiral Ridge. Bioengineering (Basel) 2023; 10:489. [PMID: 37106676 PMCID: PMC10136357 DOI: 10.3390/bioengineering10040489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The low long-term patency of bypass grafts is a major concern for cardiovascular treatments. Unfavourable haemodynamic conditions in the proximity of distal anastomosis are closely related to thrombus creation and lumen lesions. Modern graft designs address this unfavourable haemodynamic environment with the introduction of a helical component in the flow field, either by means of out-of-plane helicity graft geometry or a spiral ridge. While the latter has been found to lack in performance when compared to the out-of-plane helicity designs, recent findings support the idea that the existing spiral ridge grafts can be further improved in performance through optimising relevant design parameters. In the current study, robust multi-objective optimisation techniques are implemented, covering a wide range of possible designs coupled with proven and well validated computational fluid dynamics (CFD) algorithms. It is shown that the final set of suggested design parameters could significantly improve haemodynamic performance and therefore could be used to enhance the design of spiral ridge bypass grafts.
Collapse
Affiliation(s)
- Antonios Xenakis
- School of Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Andres Ruiz-Soler
- School of Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Amir Keshmiri
- School of Engineering, The University of Manchester, Manchester M13 9PL, UK
- Department of Cardiothoracic Surgery, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
6
|
Pleouras DS, Mantzaris MD, Siogkas PK, Tsakanikas VD, Potsika VT, Sakellarios A, Tsompou P, Sigala F, Fotiadis DI. Prediction of the atherosclerotic plaque development in carotid arteries; the effect of T-cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1590-1593. [PMID: 36085734 DOI: 10.1109/embc48229.2022.9871632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The carotid artery disease is one of the leading causes of mortality worldwide, as it leads to the progressive arterial stenosis that may result to stroke. To address this issue, the scientific community is attempting not only to enrich our knowledge on the underlying atherosclerotic mechanisms, but also to enable the prediction of the atherosclerotic progression. This study investigates the role of T-cells in the atherosclerotic plaque growth process through the implementation of a computational model in realistic geometries of carotid arteries. T-cells mediate in the inflammatory process by secreting interferon-y that enhances the activation of macrophages. In this analysis, we used 5 realistic human carotid arterial segments as input to the model. In particular, magnetic resonance imaging data, as well as, clinical data were collected from the patients at two time points. Using the baseline data, plaque growth was predicted and correlated to the follow-up arterial geometries. The results exhibited a very good agreement between them, presenting a high coefficient of determination R2=0.64.
Collapse
|
7
|
Sakellarios AI, Tsompou P, Kigka V, Karanasiou G, Tsarapatsani K, Kyriakidis S, Karanasiou G, Siogkas P, Nikopoulos S, Rocchiccioli S, Pelosi G, Michalis LK, Fotiadis DI. A proof-of-concept study for the prediction of the de-novo atherosclerotic plaque development using finite elements . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4354-4357. [PMID: 34892184 DOI: 10.1109/embc46164.2021.9629792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The type of the atherosclerotic plaque has significant clinical meaning since plaque vulnerability depends on its type. In this work, we present a computational approach which predicts the development of new plaques in coronary arteries. More specifically, we employ a multi-level model which simulates the blood fluid dynamics, the lipoprotein transport and their accumulation in the arterial wall and the triggering of inflammation using convection-diffusion-reaction equations and in the final level, we estimate the plaque volume which causes the arterial wall thickening. The novelty of this work relies on the conceptual approach that using the information from 94 patients with computed tomography coronary angiography (CTCA) imaging at two time points we identify the correlation of the computational results with the real plaque components detected in CTCA. In the next step, we use these correlations to generate two types of de-novo plaques: calcified and non-calcified. Evaluation of the model's performance is achieved using eleven patients, who present de-novo plaques at the follow-up imaging. The results demonstrate that the computationally generated plaques are associated significantly with the real plaques indicating that the proposed approach could be used for the prediction of specific plaque type formation.
Collapse
|
8
|
Hernández-López P, Cilla M, Martínez M, Peña E. Effects of the Haemodynamic Stimulus on the Location of Carotid Plaques Based on a Patient-Specific Mechanobiological Plaque Atheroma Formation Model. Front Bioeng Biotechnol 2021; 9:690685. [PMID: 34195181 PMCID: PMC8236601 DOI: 10.3389/fbioe.2021.690685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, we propose a mechanobiological atheroma growth model modulated by a new haemodynamic stimulus. To test this model, we analyse the development of atheroma plaques in patient-specific bifurcations of carotid arteries for a total time of 30 years. In particular, eight geometries (left or right carotid arteries) were segmented from clinical images and compared with the solutions obtained computationally to validate the model. The influence of some haemodynamical stimuli on the location and size of plaques is also studied. Plaques predicted by the mechanobiological models using the time average wall shear stress (TAWSS), the oscillatory shear index (OSI) and a new index proposed in this work are compared. The new index predicts the shape index of the endothelial cells as a combination of TAWSS and OSI values and was fitted using data from the literature. The mechanobiological model represents an evolution of the one previously proposed by the authors. This model uses Navier-Stokes equations to simulate blood flow along the lumen in the transient mode. It also employs Darcy's law and Kedem-Katchalsky equations for plasma and substance flow across the endothelium using the three-pore model. The mass balances of all the substances that have been considered in the model are implemented by convection-diffusion-reaction equations, and finally the growth of the plaques has been computed. The results show that by using the new mechanical stimulus proposed in this study, prediction of plaques is, in most cases, better than only using TAWSS or OSI with a minimal and maximal errors on stenosis ratio of 2.77 and 32.89 %, respectively. However, there are a few geometries in which haemodynamics cannot predict the location of plaques, and other biological or genetic factors would be more relevant than haemodynamics. In particular, the model predicts correctly eleven of the fourteen plaques presented in all the geometries considered. Additionally, a healthy geometry has been computed to check that plaque is not developed with the model in this case.
Collapse
Affiliation(s)
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Miguel Martínez
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Estefanía Peña
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
9
|
Onwuzu SWI, Ugwu AC, Mbah GCE, Elo IS. Measuring wall shear stress distribution in the carotid artery in an African population: Computational fluid dynamics versus ultrasound doppler velocimetry. Radiography (Lond) 2020; 27:581-588. [PMID: 33323312 DOI: 10.1016/j.radi.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Computational fluid dynamics (CFD) and ultrasound Doppler velocimetry are diagnostic tools useful for determining carotid artery segments susceptible to atheromatous plaque development. This study computes and compares the difference in Wall Shear Stress (WSS) measurements between these two methods. METHODS The carotid artery of 204 volunteers selected using simple random sampling were scanned using standard carotid doppler protocols. Four segments of the carotid artery - the common, internal, external carotid, and the carotid bulb were sonographically assessed. The intima-media thickness, diameter, peak systolic velocity, and end-diastolic velocity were measured at a point 2 cm away from the carotid bifurcation for the three segments, while the carotid bulb was measured at the bifurcation. A 2D incompressible Navier-Stokes Equation for modelling Newtonian, pulsatile, and laminar flow in a viscoelastic pipe was applied to model velocity flow across the carotid artery using COMSOL software. WSS values were computed for experimental and CFD measurements and the results were compared. RESULTS The WSS values generated by the model had respectively peak and average values of 19.81 N/cm2 and 15.76 ± 1.81 N/cm2 for the common carotid, 10.77 N/cm2 and 7.57 ± 1.66 N/cm2 for the internal carotid, 11.51 N/cm2 and 8.05 ± 1.65 N/cm2 for the external carotid, 37.55 N/cm2 and 26.55 ± 6.62 N/cm2 for the carotid bifurcation, 1.39 N/cm2 and 3.13 ± 1.34 N/cm2 for the carotid bulb. The model measurements matched doppler velocimetry measurements with <15% variation. CONCLUSION Model based WSS values were higher but comparable with doppler velocimetry measurements. The carotid bulb had low WSS and is therefore the segment highly disposed to atheromatous plaque formation. IMPLICATIONS FOR PRACTICE Subject-specific mathematical models could be incorporated during cardiovascular scan work up for accurate WSS distribution and early prediction of possible atherosclerotic sites.
Collapse
Affiliation(s)
- S W I Onwuzu
- Department of Medical Radiography and Radiological Sciences, University of Nigeria Enugu Campus, Nigeria.
| | - A C Ugwu
- Department of Radiography and Radiation Sciences, Nnamdi Azikiwe University, Awka, Nigeria.
| | - G C E Mbah
- Department of Mathematics, University of Nigeria Nsukka, Nigeria.
| | - I S Elo
- Department of Medical Radiography and Radiological Sciences, University of Nigeria Enugu Campus, Nigeria.
| |
Collapse
|
10
|
Pleouras DS, Sakellarios AI, Tsompou P, Kigka V, Kyriakidis S, Rocchiccioli S, Neglia D, Knuuti J, Pelosi G, Michalis LK, Fotiadis DI. Simulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data. Sci Rep 2020; 10:17409. [PMID: 33060746 PMCID: PMC7562914 DOI: 10.1038/s41598-020-74583-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/24/2020] [Indexed: 11/08/2022] Open
Abstract
Atherosclerosis is the one of the major causes of mortality worldwide, urging the need for prevention strategies. In this work, a novel computational model is developed, which is used for simulation of plaque growth to 94 realistic 3D reconstructed coronary arteries. This model considers several factors of the atherosclerotic process even mechanical factors such as the effect of endothelial shear stress, responsible for the initiation of atherosclerosis, and biological factors such as the accumulation of low and high density lipoproteins (LDL and HDL), monocytes, macrophages, cytokines, nitric oxide and formation of foams cells or proliferation of contractile and synthetic smooth muscle cells (SMCs). The model is validated using the serial imaging of CTCA comparing the simulated geometries with the real follow-up arteries. Additionally, we examine the predictive capability of the model to identify regions prone of disease progression. The results presented good correlation between the simulated lumen area (P < 0.0001), plaque area (P < 0.0001) and plaque burden (P < 0.0001) with the realistic ones. Finally, disease progression is achieved with 80% accuracy with many of the computational results being independent predictors.
Collapse
Affiliation(s)
- Dimitrios S Pleouras
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, University Campus of Ioannina, 45110, Ioannina, Greece
| | - Antonis I Sakellarios
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, University Campus of Ioannina, 45110, Ioannina, Greece
| | - Panagiota Tsompou
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, University Campus of Ioannina, 45110, Ioannina, Greece
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, PO BOX 1186, 45110, Ioannina, Greece
| | - Vassiliki Kigka
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, University Campus of Ioannina, 45110, Ioannina, Greece
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, PO BOX 1186, 45110, Ioannina, Greece
| | - Savvas Kyriakidis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, University Campus of Ioannina, 45110, Ioannina, Greece
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
| | - Danilo Neglia
- Fondazione Toscana G. Monasterio, 56124, Pisa, Italy
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, and Turku University Hospital, Turku, Finland
| | - Gualtiero Pelosi
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
| | - Lampros K Michalis
- Department of Cardiology, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - Dimitrios I Fotiadis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, University Campus of Ioannina, 45110, Ioannina, Greece.
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, PO BOX 1186, 45110, Ioannina, Greece.
| |
Collapse
|
11
|
Pleouras DS, Sakellarios AI, Loukas VS, Kyriakidis S, Fotiadis DI. Prediction of the development of coronary atherosclerotic plaques using computational modeling in 3D reconstructed coronary arteries. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2808-2811. [PMID: 33018590 DOI: 10.1109/embc44109.2020.9176219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this work we present a novel method for the prediction and generation of atherosclerotic plaques. This is performed in a two-step approach, by employing first a multilevel computational plaque growth model and second a correlation between the model's results and the 3D reconstructed follow-up plaques. In particular, computer tomography coronary angiography (CTCA) data and blood tests were collected from patients at two time points. Using the baseline data, the plaque growth is simulated using a multi-level computational model which includes: i) modeling of the blood flow dynamics, ii) modeling of low and high density lipoproteins and monocytes' infiltration in the arterial wall, and the species reactions during the atherosclerotic process, and iii) modeling of the arterial wall thickening. The correlation between the followup plaques and the simulated plaque density distribution resulted to the extraction of a threshold of the plaque density, that can be used to identify plaque areas.Clinical Relevance- The methodology presented in this work is a first step to the prediction of the plaque shape and location of patients with atherosclerosis and could be used as an additional tool for patient-specific risk stratification.
Collapse
|
12
|
Mathematical Modelling and Simulation of Atherosclerosis Formation and Progress: A Review. Ann Biomed Eng 2019; 47:1764-1785. [PMID: 31020444 DOI: 10.1007/s10439-019-02268-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is a major threat to human health since it is the leading cause of death in western countries. Atherosclerosis is a type of CVD related to hypertension, diabetes, high levels of cholesterol, smoking, oxidative stress, and age. Atherosclerosis primarily occurs in medium and large arteries, such as coronary and the carotid artery and, in particular, at bifurcations and curvatures. Atherosclerosis is compared to an inflammatory disease where a thick, porous material comprising cholesterol fat, saturated sterols, proteins, fatty acids, calcium etc., is covered by an endothelial membrane and a fragile fibrous tissue which makes atheromatic plaque prone to rupture that could lead to the blockage of the artery due to the released plaque material. Despite the great progress achieved, the nature of the disease is not fully understood. This paper reviews the current state of modelling of all levels of atherosclerosis formation and progress and discusses further challenges in atherosclerosis modelling. The objective is to pave a way towards more precise computational tools to predict and eventually reengineer the fate of atherosclerosis.
Collapse
|
13
|
Abstract
Computational cardiology is the scientific field devoted to the development of methodologies that enhance our mechanistic understanding, diagnosis and treatment of cardiovascular disease. In this regard, the field embraces the extraordinary pace of discovery in imaging, computational modeling, and cardiovascular informatics at the intersection of atherogenesis and vascular biology. This paper highlights existing methods, practices, and computational models and proposes new strategies to support a multidisciplinary effort in this space. We focus on the means by that to leverage and coalesce these multiple disciplines to advance translational science and computational cardiology. Analyzing the scientific trends and understanding the current needs we present our perspective for the future of cardiovascular treatment.
Collapse
|
14
|
Papafaklis MI, Mavrogiannis MC, Siogkas PK, Lakkas LS, Katsouras CS, Fotiadis DI, Michalis LK. Functional assessment of lesion severity without using the pressure wire: coronary imaging and blood flow simulation. Expert Rev Cardiovasc Ther 2017; 15:863-877. [PMID: 28902523 DOI: 10.1080/14779072.2017.1379899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/24/2017] [Indexed: 01/10/2023]
Abstract
Hemodynamic indices derived from measurements with the pressure wire (primarily fractional flow reserve [FFR]) have been established as a reliable tool for assessing coronary stenoses and improving clinical decision making. However, the use of the pressure wire constitutes a hurdle for the universal adoption of physiology-guided patient management. Technological advancements have enabled the large-scale application of blood flow simulation (computational fluid dynamics [CFD]) to medical imaging, thereby enabling the virtual assessment of coronary physiology. Areas covered: This review summarizes the stand-alone non-invasive (coronary computed tomographic imaging) and invasive (coronary angiography) imaging approaches which were initially used for predicting FFR, and focuses on the use of blood flow modeling for functional assessment of coronary lesions in clinical practice. Expert commentary: Validation studies of CFD-derived methodologies for functional assessment have shown that virtual indices correlate well and have good diagnostic accuracy compared to pressure wire-FFR despite inherent limitations of spatial resolution and assumptions regarding boundary conditions in flow modeling. Beyond point-to-point agreement with FFR, further studies are needed to demonstrate the clinical safety/efficacy of these computational tools regarding patient outcomes. Such evidence base could support the incorporation of these methodologies into routine patient management for decision making and reliable risk stratification.
Collapse
Affiliation(s)
- Michail I Papafaklis
- a Second Department of Cardiology , University Hospital of Ioannina , Ioannina , Greece
- b Michailideion Cardiac Center, Medical School , University of Ioannina , Ioannina , Greece
| | - Michail C Mavrogiannis
- b Michailideion Cardiac Center, Medical School , University of Ioannina , Ioannina , Greece
| | - Panagiotis K Siogkas
- c Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science , University of Ioannina , Ioannina , Greece
| | - Lampros S Lakkas
- a Second Department of Cardiology , University Hospital of Ioannina , Ioannina , Greece
| | - Christos S Katsouras
- a Second Department of Cardiology , University Hospital of Ioannina , Ioannina , Greece
| | - Dimitrios I Fotiadis
- b Michailideion Cardiac Center, Medical School , University of Ioannina , Ioannina , Greece
- c Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science , University of Ioannina , Ioannina , Greece
| | - Lampros K Michalis
- a Second Department of Cardiology , University Hospital of Ioannina , Ioannina , Greece
- b Michailideion Cardiac Center, Medical School , University of Ioannina , Ioannina , Greece
| |
Collapse
|
15
|
Ruiz-Soler A, Kabinejadian F, Slevin MA, Bartolo PJ, Keshmiri A. Optimisation of a Novel Spiral-Inducing Bypass Graft Using Computational Fluid Dynamics. Sci Rep 2017; 7:1865. [PMID: 28500311 PMCID: PMC5431846 DOI: 10.1038/s41598-017-01930-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Graft failure is currently a major concern for medical practitioners in treating Peripheral Vascular Disease (PVD) and Coronary Artery Disease (CAD). It is now widely accepted that unfavourable haemodynamic conditions play an essential role in the formation and development of intimal hyperplasia, which is the main cause of graft failure. This paper uses Computational Fluid Dynamics (CFD) to conduct a parametric study to enhance the design and performance of a novel prosthetic graft, which utilises internal ridge(s) to induce spiral flow. This design is primarily based on the identification of the blood flow as spiral in the whole arterial system and is believed to improve the graft longevity and patency rates at distal graft anastomoses. Four different design parameters were assessed in this work and the trailing edge orientation of the ridge was identified as the most important parameter to induce physiological swirling flow, while the height of the ridge also significantly contributed to the enhanced performance of this type of graft. Building on these conclusions, an enhanced configuration of spiral graft is proposed and compared against conventional and spiral grafts to reaffirm its potential benefits.
Collapse
Affiliation(s)
- Andres Ruiz-Soler
- Engineering and Materials Research Centre, Manchester Metropolitan University, Manchester, M1 5GD, UK.,School of Mechanical, Aerospace and Civil Engineering (MACE), The University of Manchester, Manchester, M13 9PL, UK
| | - Foad Kabinejadian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, 48109-2110, USA
| | - Mark A Slevin
- Healthcare Science Research Centre, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Paulo J Bartolo
- School of Mechanical, Aerospace and Civil Engineering (MACE), The University of Manchester, Manchester, M13 9PL, UK
| | - Amir Keshmiri
- School of Mechanical, Aerospace and Civil Engineering (MACE), The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
16
|
Yan F, Jiang WT, Dong RQ, Wang QY, Fan YB, Zhang M. Blood Flow and Oxygen Transport in Descending Branch of Lateral Femoral Circumflex Arteries After Transfemoral Amputation: A Numerical Study. J Med Biol Eng 2017. [DOI: 10.1007/s40846-016-0202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Sakellarios AI, Raber L, Bourantas CV, Exarchos TP, Athanasiou LS, Pelosi G, Koskinas KC, Parodi O, Naka KK, Michalis LK, Serruys PW, Garcia-Garcia HM, Windecker S, Fotiadis DI. Prediction of Atherosclerotic Plaque Development in an In Vivo Coronary Arterial Segment Based on a Multilevel Modeling Approach. IEEE Trans Biomed Eng 2016; 64:1721-1730. [PMID: 28113248 DOI: 10.1109/tbme.2016.2619489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study is to explore major mechanisms of atherosclerotic plaque growth, presenting a proof-of-concept numerical model. METHODS To this aim, a human reconstructed left circumflex coronary artery is utilized for a multilevel modeling approach. More specifically, the first level consists of the modeling of blood flow and endothelial shear stress (ESS) computation. The second level includes the modeling of low-density lipoprotein (LDL) and high-density lipoprotein and monocytes transport through the endothelial membrane to vessel wall. The third level comprises of the modeling of LDL oxidation, macrophages differentiation, and foam cells formation. All modeling levels integrate experimental findings to describe the major mechanisms that occur in the arterial physiology. In order to validate the proposed approach, we utilize a patient specific scenario by comparing the baseline computational results with the changes in arterial wall thickness, lumen diameter, and plaque components using follow-up data. RESULTS The results of this model show that ESS and LDL concentration have a good correlation with the changes in plaque area [R2 = 0.365 (P = 0.029, adjusted R2 = 0.307) and R2 = 0.368 (P = 0.015, adjusted R2 = 0.342), respectively], whereas the introduction of the variables of oxidized LDL, macrophages, and foam cells as independent predictors improves the accuracy in predicting regions potential for atherosclerotic plaque development [R2 = 0.847 (P = 0.009, adjusted R2 = 0.738)]. CONCLUSION Advanced computational models can be used to increase the accuracy to predict regions which are prone to plaque development. SIGNIFICANCE Atherosclerosis is one of leading causes of death worldwide. For this purpose computational models have to be implemented to predict disease progression.
Collapse
|
18
|
Effect of Transmural Transport Properties on Atheroma Plaque Formation and Development. Ann Biomed Eng 2015; 43:1516-30. [PMID: 25814436 DOI: 10.1007/s10439-015-1299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
We propose a mathematical model of atheroma plaque initiation and early development in coronary arteries using anisotropic transmural diffusion properties. Our current approach is on the process on plaque initiation and intimal thickening rather than in severe plaque progression and rupture phenomena. The effect of transport properties, in particular the anisotropy of diffusion properties of the artery, on plaque formation and development is investigated using the proposed mathematical model. There is not a strong influence of the anisotropic transmural properties on LDL, SMCs and collagen distribution and concentrations along the artery. On the contrary, foam cells distribution strongly depends on the value of the radial diffusion coefficient of the substances [Formula: see text] and the ratio [Formula: see text]. Decreasing [Formula: see text] or diffusion coefficients ratio means a higher concentration of the foam cells close to the intima. Due to the fact that foam cells concentration is associated to the necrotic core formation, the final distribution of foam cells is critical to evolve into a vulnerable or fibrotic plaque.
Collapse
|
19
|
Pichardo-Almarza C, Metcalf L, Finkelstein A, Diaz-Zuccarini V. Using a Systems Pharmacology Approach to Study the Effect of Statins on the Early Stage of Atherosclerosis in Humans. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014. [PMID: 26225221 PMCID: PMC4337252 DOI: 10.1002/psp4.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than 100,000 people have participated in controlled trials of statins (lowering cholesterol drugs) since the introduction of lovastatin in the 1980s. Meta-analyses of this data have shown that statins have a beneficial effect on treated groups compared to control groups, reducing cardiovascular risk. Inhibiting the HMG-CoA reductase in the liver, statins can reduce cholesterol levels, thus reducing LDL levels in circulation. Published data from intravascular ultrasound studies (IVUS) was used in this work to develop and validate a unique integrative system model; this consisted of analyzing control groups from two randomized controlled statins trials (24/97 subjects respectively), one treated group (40 subjects, simvastatin trial), and 27 male subjects (simvastatin, pharmacokinetic study). The model allows to simulate the pharmacokinetics of statins and its effect on the dynamics of lipoproteins (e.g., LDL) and the inflammatory pathway while simultaneously exploring the effect of flow-related variables (e.g., wall shear stress) on atherosclerosis progression.
Collapse
Affiliation(s)
- C Pichardo-Almarza
- Department of Mechanical Engineering, University College London London, WC1E 7JE, UK ; Xenologiq Ltd Canterbury, UK
| | - L Metcalf
- Department of Mechanical Engineering, University College London London, WC1E 7JE, UK
| | - A Finkelstein
- Department of Computer Science, University College London London, UK
| | - V Diaz-Zuccarini
- Department of Mechanical Engineering, University College London London, WC1E 7JE, UK
| |
Collapse
|
20
|
Sun Z, Xu L. Computational fluid dynamics in coronary artery disease. Comput Med Imaging Graph 2014; 38:651-63. [PMID: 25262321 DOI: 10.1016/j.compmedimag.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/22/2014] [Accepted: 09/03/2014] [Indexed: 01/01/2023]
Abstract
Computational fluid dynamics (CFD) is a widely used method in mechanical engineering to solve complex problems by analysing fluid flow, heat transfer, and associated phenomena by using computer simulations. In recent years, CFD has been increasingly used in biomedical research of coronary artery disease because of its high performance hardware and software. CFD techniques have been applied to study cardiovascular haemodynamics through simulation tools to predict the behaviour of circulatory blood flow in the human body. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of coronary artery geometry, thus, identifying risk factors for development and progression of coronary artery disease. This review aims to provide an overview of the CFD applications in coronary artery disease, including biomechanics of atherosclerotic plaques, plaque progression and rupture; regional haemodynamics relative to plaque location and composition. A critical appraisal is given to a more recently developed application, fractional flow reserve based on CFD computation with regard to its diagnostic accuracy in the detection of haemodynamically significant coronary artery disease.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, Perth, Western Australia 6845, Australia.
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Computer methods for follow-up study of hemodynamic and disease progression in the stented coronary artery by fusing IVUS and X-ray angiography. Med Biol Eng Comput 2014; 52:539-56. [DOI: 10.1007/s11517-014-1155-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
22
|
Cilla M, Peña E, Martínez MA. Mathematical modelling of atheroma plaque formation and development in coronary arteries. J R Soc Interface 2013; 11:20130866. [PMID: 24196695 DOI: 10.1098/rsif.2013.0866] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis is a vascular disease caused by inflammation of the arterial wall, which results in the accumulation of low-density lipoprotein (LDL) cholesterol, monocytes, macrophages and fat-laden foam cells at the place of the inflammation. This process is commonly referred to as plaque formation. The evolution of the atherosclerosis disease, and in particular the influence of wall shear stress on the growth of atherosclerotic plaques, is still a poorly understood phenomenon. This work presents a mathematical model to reproduce atheroma plaque growth in coronary arteries. This model uses the Navier-Stokes equations and Darcy's law for fluid dynamics, convection-diffusion-reaction equations for modelling the mass balance in the lumen and intima, and the Kedem-Katchalsky equations for the interfacial coupling at membranes, i.e. endothelium. The volume flux and the solute flux across the interface between the fluid and the porous domains are governed by a three-pore model. The main species and substances which play a role in early atherosclerosis development have been considered in the model, i.e. LDL, oxidized LDL, monocytes, macrophages, foam cells, smooth muscle cells, cytokines and collagen. Furthermore, experimental data taken from the literature have been used in order to physiologically determine model parameters. The mathematical model has been implemented in a representative axisymmetric geometrical coronary artery model. The results show that the mathematical model is able to qualitatively capture the atheroma plaque development observed in the intima layer.
Collapse
Affiliation(s)
- Myriam Cilla
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, , Zaragoza, Spain
| | | | | |
Collapse
|
23
|
Doulaverakis C, Tsampoulatidis I, Antoniadis AP, Chatzizisis YS, Giannopoulos A, Kompatsiaris I, Giannoglou GD. IVUSAngio tool: a publicly available software for fast and accurate 3D reconstruction of coronary arteries. Comput Biol Med 2013; 43:1793-803. [PMID: 24209925 DOI: 10.1016/j.compbiomed.2013.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/30/2013] [Accepted: 08/18/2013] [Indexed: 11/25/2022]
Abstract
There is an ongoing research and clinical interest in the development of reliable and easily accessible software for the 3D reconstruction of coronary arteries. In this work, we present the architecture and validation of IVUSAngio Tool, an application which performs fast and accurate 3D reconstruction of the coronary arteries by using intravascular ultrasound (IVUS) and biplane angiography data. The 3D reconstruction is based on the fusion of the detected arterial boundaries in IVUS images with the 3D IVUS catheter path derived from the biplane angiography. The IVUSAngio Tool suite integrates all the intermediate processing and computational steps and provides a user-friendly interface. It also offers additional functionality, such as automatic selection of the end-diastolic IVUS images, semi-automatic and automatic IVUS segmentation, vascular morphometric measurements, graphical visualization of the 3D model and export in a format compatible with other computer-aided design applications. Our software was applied and validated in 31 human coronary arteries yielding quite promising results. Collectively, the use of IVUSAngio Tool significantly reduces the total processing time for 3D coronary reconstruction. IVUSAngio Tool is distributed as free software, publicly available to download and use.
Collapse
Affiliation(s)
- Charalampos Doulaverakis
- Information Technologies Institute, Center for Research and Technology Hellas, 6th km Charilaou-Thermi road, 57001, Thermi, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
24
|
Peiffer V, Sherwin SJ, Weinberg PD. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc Res 2013; 99:242-50. [PMID: 23459102 PMCID: PMC3695746 DOI: 10.1093/cvr/cvt044] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/12/2013] [Accepted: 02/19/2013] [Indexed: 01/19/2023] Open
Abstract
Low and oscillatory wall shear stress is widely assumed to play a key role in the initiation and development of atherosclerosis. Indeed, some studies have relied on the low shear theory when developing diagnostic and treatment strategies for cardiovascular disease. We wished to ascertain if this consensus is justified by published data. We performed a systematic review of papers that compare the localization of atherosclerotic lesions with the distribution of haemodynamic indicators calculated using computational fluid dynamics. The review showed that although many articles claim their results conform to the theory, it has been interpreted in different ways: a range of metrics has been used to characterize the distribution of disease, and they have been compared with a range of haemodynamic factors. Several studies, including all of those making systematic point-by-point comparisons of shear and disease, failed to find the expected relation. The various pre- and post-processing techniques used by different groups have reduced the range of shears over which correlations were sought, and in some cases are mutually incompatible. Finally, only a subset of the known patterns of disease has been investigated. The evidence for the low/oscillatory shear theory is less robust than commonly assumed. Longitudinal studies starting from the healthy state, or the collection of average flow metrics derived from large numbers of healthy vessels, both in conjunction with point-by-point comparisons using appropriate statistical techniques, will be necessary to improve our understanding of the relation between blood flow and atherogenesis.
Collapse
Affiliation(s)
- Veronique Peiffer
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
| | | | - Peter D. Weinberg
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
25
|
Bourantas CV, Garcia-Garcia HM, Naka KK, Sakellarios A, Athanasiou L, Fotiadis DI, Michalis LK, Serruys PW. Hybrid Intravascular Imaging. J Am Coll Cardiol 2013; 61:1369-78. [DOI: 10.1016/j.jacc.2012.10.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/06/2012] [Accepted: 10/09/2012] [Indexed: 02/02/2023]
|
26
|
Balocco S, Gatta C, Alberti M, Carrillo X, Rigla J, Radeva P. Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray Angiography and Intravascular Ultrasound. Med Phys 2012; 39:7430-45. [DOI: 10.1118/1.4760993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|