1
|
Yedurkar DP, Metkar SP, Stephan T. Multiresolution directed transfer function approach for segment-wise seizure classification of epileptic EEG signal. Cogn Neurodyn 2024; 18:301-315. [PMID: 38699601 PMCID: PMC11061070 DOI: 10.1007/s11571-021-09773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022] Open
Abstract
Currently, with the bloom in artificial intelligence (AI) algorithms, various human-centered smart systems can be utilized, especially in cognitive computing, for the detection of various chronic brain diseases such as epileptic seizure. The primary goal of this research article is to propose a novel human-centered cognitive computing (HCCC) method for segment-wise seizure classification by employing multiresolution extracted data with directed transfer function (DTF) features, termed as the multiresolution directed transfer function (MDTF) approach. Initially, the multiresolution information of the epileptic seizure signal is extracted using a multiresolution adaptive filtering (MRAF) method. These seizure details are passed to the DTF where the information flow of high frequency bands is computed. Thereafter, different measures of complexity such as approximate entropy (AEN) and sample entropy (SAEN) are computed from the extracted high frequency bands. Lastly, a k-nearest neighbor (k-NN) and support vector machine (SVM) are used for classifying the EEG signal into non-seizure and seizure data depending on the multiresolution based information flow characteristics. The MDTF approach is tested on a standard dataset and validated using a dataset from a local hospital. The proposed technique has obtained an average sensitivity of 98.31%, specificity of 96.13% and accuracy of 98.89% using SVM classifier. The average detection rate of the MDTF approach is 97.72% which is greater than the existing approaches. The proposed MDTF method will help neuro-specialists to locate seizure information drift which occurs within the consecutive segments and between two channels. The main advantage of the MDTF approach is its capability to locate the seizure activity contained by the EEG signal with accuracy. This will assist the neurologists with the precise localization of the epileptic seizure automatically and hence will reduce the burden of time-consuming epileptic seizure analysis.
Collapse
Affiliation(s)
- Dhanalekshmi P. Yedurkar
- Department of Electronics and Telecommunication Engineering, College of Engineering Pune, Pune, 411005 India
| | - Shilpa P. Metkar
- Department of Electronics and Telecommunication Engineering, College of Engineering Pune, Pune, 411005 India
| | - Thompson Stephan
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054 India
| |
Collapse
|
2
|
Zhong X, Liu G, Dong X, Li C, Li H, Cui H, Zhou W. Automatic Seizure Detection Based on Stockwell Transform and Transformer. SENSORS (BASEL, SWITZERLAND) 2023; 24:77. [PMID: 38202939 PMCID: PMC10781173 DOI: 10.3390/s24010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Epilepsy is a chronic neurological disease associated with abnormal neuronal activity in the brain. Seizure detection algorithms are essential in reducing the workload of medical staff reviewing electroencephalogram (EEG) records. In this work, we propose a novel automatic epileptic EEG detection method based on Stockwell transform and Transformer. First, the S-transform is applied to the original EEG segments, acquiring accurate time-frequency representations. Subsequently, the obtained time-frequency matrices are grouped into different EEG rhythm blocks and compressed as vectors in these EEG sub-bands. After that, these feature vectors are fed into the Transformer network for feature selection and classification. Moreover, a series of post-processing methods were introduced to enhance the efficiency of the system. When evaluating the public CHB-MIT database, the proposed algorithm achieved an accuracy of 96.15%, a sensitivity of 96.11%, a specificity of 96.38%, a precision of 96.33%, and an area under the curve (AUC) of 0.98 in segment-based experiments, along with a sensitivity of 96.57%, a false detection rate of 0.38/h, and a delay of 20.62 s in event-based experiments. These outstanding results demonstrate the feasibility of implementing this seizure detection method in future clinical applications.
Collapse
Affiliation(s)
- Xiangwen Zhong
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Guoyang Liu
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Chuanyu Li
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Haotian Li
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Haozhou Cui
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 260100, China
- Shenzhen Institute, Shandong University, Shenzhen 518057, China
| |
Collapse
|
3
|
Abdellatef E, Emara HM, Shoaib MR, Ibrahim FE, Elwekeil M, El-Shafai W, Taha TE, El-Fishawy AS, El-Rabaie ESM, Eldokany IM, Abd El-Samie FE. Automated diagnosis of EEG abnormalities with different classification techniques. Med Biol Eng Comput 2023; 61:3363-3385. [PMID: 37672143 DOI: 10.1007/s11517-023-02843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/23/2023] [Indexed: 09/07/2023]
Abstract
Automatic seizure detection and prediction using clinical Electroencephalograms (EEGs) are challenging tasks due to factors such as low Signal-to-Noise Ratios (SNRs), high variance in epileptic seizures among patients, and limited clinical data constraints. To overcome these challenges, this paper presents two approaches for EEG signal classification. One of these approaches depends on Machine Learning (ML) tools. The used features are different types of entropy, higher-order statistics, and sub-band energies in the Hilbert Marginal Spectrum (HMS) domain. The classification is performed using Support Vector Machine (SVM), Logistic Regression (LR), and K-Nearest Neighbor (KNN) classifiers. Both seizure detection and prediction scenarios are considered. The second approach depends on spectrograms of EEG signal segments and a Convolutional Neural Network (CNN)-based residual learning model. We use 10000 spectrogram images for each class. In this approach, it is possible to perform both seizure detection and prediction in addition to a 3-state classification scenario. Both approaches are evaluated on the Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) dataset, which contains 24 EEG recordings for 6 males and 18 females. The results obtained for the HMS-based model showed an accuracy of 100%. The CNN-based model achieved accuracies of 97.66%, 95.59%, and 94.51% for Seizure (S) versus Pre-Seizure (PS), Non-Seizure (NS) versus S, and NS versus S versus PS classes, respectively. These results demonstrate that the proposed approaches can be effectively used for seizure detection and prediction. They outperform the state-of-the-art techniques for automatic seizure detection and prediction. Block diagram of proposed epileptic seizure detection method using HMS with different classifiers.
Collapse
Affiliation(s)
- Essam Abdellatef
- Department of Electronics and Communications, Delta Higher Institute for Engineering and Technology (DHIET), 35511, Mansoura, Egypt
| | - Heba M Emara
- Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohamed R Shoaib
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Fatma E Ibrahim
- Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohamed Elwekeil
- Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Walid El-Shafai
- Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt.
- Security Engineering Laboratory, Department of Computer Science College of Engineering, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
| | - Taha E Taha
- Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Adel S El-Fishawy
- Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | | | - Ibrahim M Eldokany
- Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Fathi E Abd El-Samie
- Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zhou J, Liu L, Leng Y, Yang Y, Gao B, Jiang Z, Nie W, Yuan Q. Both Cross-Patient and Patient-Specific Seizure Detection Based on Self-Organizing Fuzzy Logic. Int J Neural Syst 2022; 32:2250017. [DOI: 10.1142/s0129065722500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Automatic epilepsy detection is of great significance for the diagnosis and treatment of patients. Most detection methods are based on patient-specific models and have achieved good results. However, in practice, new patients do not have their own previous EEG data and therefore cannot be initially diagnosed. If the EEG data of other patients can be used to achieve cross-patient detection, and cross-patient and patient-specific experiments can be combined at the same time, this method will be more widely used. In this work, an EEG classification model based on a self-organizing fuzzy logic (SOF) classifier is proposed for both cross-patient and patient-specific seizure detection. After preprocessing, the features of the original EEG signal are extracted and sent to the SOF classifier. This classification model is free from predefined parameters or a prior assumption regarding the EEG data generation model and only stores the key meta-parameters in memory. Therefore, it is very suitable for large-scale EEG signals in cross-patient detection. Selecting different granularity and classification distance in two different experiments after post-processing will achieve the best results. Experiments were conducted using a long-term continuous scalp EEG database and the [Formula: see text]-mean of cross-patient and patient-specific detection reached 83.35% and 92.04%, respectively. A comparison with other methods shows that there is greater performance and generalizability with this method.
Collapse
Affiliation(s)
- Jiazheng Zhou
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Li Liu
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Yan Leng
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Yuying Yang
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Bin Gao
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| | - Zonghong Jiang
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Weiwei Nie
- The First Affiliated Hospital of Shandong, First Medical University, Jinan 250014, P. R. China
| | - Qi Yuan
- Shandong Province Key Laboratory of Medical, Physics and Image Processing Technology, School of Physics and Electronics, Shandong, Normal University, Jinan 250358, P. R. China
| |
Collapse
|
5
|
Natu M, Bachute M, Gite S, Kotecha K, Vidyarthi A. Review on Epileptic Seizure Prediction: Machine Learning and Deep Learning Approaches. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7751263. [PMID: 35096136 PMCID: PMC8794701 DOI: 10.1155/2022/7751263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
Epileptic seizures occur due to brain abnormalities that can indirectly affect patient's health. It occurs abruptly without any symptoms and thus increases the mortality rate of humans. Almost 1% of world's population suffers from epileptic seizures. Prediction of seizures before the beginning of onset is beneficial for preventing seizures by medication. Nowadays, modern computational tools, machine learning, and deep learning methods have been used to predict seizures using EEG. However, EEG signals may get corrupted with background noise, and artifacts such as eye blinks and physical movements of muscles may lead to "pops" in the signal, resulting in electrical interference, which is cumbersome to detect through visual inspection for longer duration recordings. These limitations in automatic detection of interictal spikes and epileptic seizures are preferred, which is an essential tool for examining and scrutinizing the EEG recording more precisely. These restrictions bring our attention to present a review of automated schemes that will help neurologists categorize epileptic and nonepileptic signals. While preparing this review paper, it is observed that feature selection and classification are the main challenges in epilepsy prediction algorithms. This paper presents various techniques depending on various features and classifiers over the last few years. The methods presented will give a detailed understanding and ideas about seizure prediction and future research directions.
Collapse
Affiliation(s)
- Milind Natu
- Department of Electronics and Telecommunication, Symbiosis Institute of Technology, Symbiosis International (Deemed University), SIU, Lavale, Pune, Maharashtra, India
| | - Mrinal Bachute
- Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), SIU, Lavale, Pune, Maharashtra, India
| | - Shilpa Gite
- Computer Science and Information Technology Department, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India
- Symbiosis Centre of Applied AI (SCAAI), Symbiosis International (Deemed) University, Pune 412115, India
| | - Ketan Kotecha
- Computer Science and Information Technology Department, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India
- Symbiosis Centre of Applied AI (SCAAI), Symbiosis International (Deemed) University, Pune 412115, India
| | - Ankit Vidyarthi
- Department of CSE&IT, Jaypee Institute of Information Technology Noida, India
| |
Collapse
|
6
|
Jaglan S, Dhull SK, Singh KK. Tertiary wavelet model based automatic epilepsy classification system. INTERNATIONAL JOURNAL OF INTELLIGENT UNMANNED SYSTEMS 2021. [DOI: 10.1108/ijius-10-2021-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThis work proposes a tertiary wavelet model based automatic epilepsy classification system using electroencephalogram (EEG) signals.Design/methodology/approachIn this paper, a three-stage system has been proposed for automated classification of epilepsy signals. In the first stage, a tertiary wavelet model uses the orthonormal M-band wavelet transform. This model decomposes EEG signals into three bands of different frequencies. In the second stage, the decomposed EEG signals are analyzed to find novel statistical features. The statistical values of the features are demonstrated using multi-parameters graph comparing normal and epileptic signals. In the last stage, the features are inputted to different conventional classifiers that classify pre-ictal, inter-ictal (epileptic with seizure-free interval) and ictal (seizure) EEG segments.FindingsFor the proposed system the performance of five different classifiers, namely, KNN, DT, XGBoost, SVM and RF is evaluated for the University of BONN data set using different performance parameters. It is observed that RF classifier gives the best performance among the above said classifiers, with an average accuracy of 99.47%.Originality/valueEpilepsy is a neurological condition in which two or more spontaneous seizures occur repeatedly. EEG signals are widely used and it is an important method for detecting epilepsy. EEG signals contain information about the brain's electrical activity. Clinicians manually examine the EEG waveforms to detect epileptic anomalies, which is a time-consuming and error-prone process. An automated epilepsy classification system is proposed in this paper based on combination of signal processing (tertiary wavelet model) and novel features-based classification using the EEG signals.
Collapse
|
7
|
Obukhov YV, Kershner IA, Tolmacheva RA, Sinkin MV, Zhavoronkova LA. Wavelet Ridges in EEG Diagnostic Features Extraction: Epilepsy Long-Time Monitoring and Rehabilitation after Traumatic Brain Injury. SENSORS (BASEL, SWITZERLAND) 2021; 21:5989. [PMID: 34577198 PMCID: PMC8468146 DOI: 10.3390/s21185989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 01/06/2023]
Abstract
Interchannel EEG synchronization, as well as its violation, is an important diagnostic sign of a number of diseases. In particular, during an epileptic seizure, such synchronization occurs starting from some pairs of channels up to many pairs in a generalized seizure. Additionally, for example, after traumatic brain injury, the destruction of interneuronal connections occurs, which leads to a violation of interchannel synchronization when performing motor or cognitive tests. Within the framework of a unified approach to the analysis of interchannel EEG synchronization using the ridges of wavelet spectra, two problems were solved. First, the segmentation of the initial data of long-term monitoring of scalp EEG with various artifacts into fragments suspicious of epileptic seizures in order to reduce the total duration of the fragments analyzed by the doctor. Second, assessments of recovery after rehabilitation of cognitive functions in patients with moderate traumatic brain injury. In the first task, the initial EEG was segmented into fragments in which at least two channels were synchronized, and by the adaptive threshold method into fragments with a high value of the EEG power spectral density. Overlapping in time synchronized fragments with fragments of high spectral power density was determined. As a result, the total duration of the fragments for analysis by the doctor was reduced by more than 60 times. In the second task, the network of phase-related EEG channels was determined during the cognitive test before and after rehabilitation. Calculation-logical and spatial-pattern cognitive tests were used. The positive dynamics of rehabilitation was determined during the initialization of interhemispheric connections and connections in the frontal cortex of the brain.
Collapse
Affiliation(s)
- Yury Vladimirovich Obukhov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya St. 11-7, 125009 Moscow, Russia; (Y.V.O.); (R.A.T.)
| | - Ivan Andreevich Kershner
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya St. 11-7, 125009 Moscow, Russia; (Y.V.O.); (R.A.T.)
| | - Renata Alekseevna Tolmacheva
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya St. 11-7, 125009 Moscow, Russia; (Y.V.O.); (R.A.T.)
| | - Mikhail Vladimirovich Sinkin
- Department of Neurosurgery of the Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department, Bolshaya Sukharevskaya Square 3, 129090 Moscow, Russia; or
- Laboratory of Invasive Neurointerfaces of the Research Institute TechnoBioMed, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St. 20 p.1, 127473 Moscow, Russia
| | - Ludmila Alekseevna Zhavoronkova
- Laboratory of General and Clinical Neurophysiology of the Institute of Higher Nervous Activity and Neurophysiology of RAS, Butlerova St. 5a, 117485 Moscow, Russia; or
| |
Collapse
|
8
|
Real-time Inference and Detection of Disruptive EEG Networks for Epileptic Seizures. Sci Rep 2020; 10:8653. [PMID: 32457378 PMCID: PMC7251100 DOI: 10.1038/s41598-020-65401-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies in brain science and neurological medicine paid a particular attention to develop machine learning-based techniques for the detection and prediction of epileptic seizures with electroencephalogram (EEG). As a noninvasive monitoring method to record brain electrical activities, EEG has been widely used for capturing the underlying dynamics of disruptive neuronal responses across the brain in real-time to provide clinical guidance in support of epileptic seizure treatments in practice. In this study, we introduce a novel dynamic learning method that first infers a time-varying network constituted by multivariate EEG signals, which represents the overall dynamics of the brain network, and subsequently quantifies its topological property using graph theory. We demonstrate the efficacy of our learning method to detect relatively strong synchronization (characterized by the algebraic connectivity metric) caused by abnormal neuronal firing during a seizure onset. The computational results for a realistic scalp EEG database show a detection rate of 93.6% and a false positive rate of 0.16 per hour (FP/h); furthermore, our method observes potential pre-seizure phenomena in some cases.
Collapse
|
9
|
A framework for seizure detection using effective connectivity, graph theory, and multi-level modular network. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101878] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Li Y, Yu Z, Chen Y, Yang C, Li Y, Allen Li X, Li B. Automatic Seizure Detection using Fully Convolutional Nested LSTM. Int J Neural Syst 2020; 30:2050019. [DOI: 10.1142/s0129065720500197] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The automatic seizure detection system can effectively help doctors to monitor and diagnose epilepsy thus reducing their workload. Many outstanding studies have given good results in the two-class seizure detection problems, but most of them are based on hand-wrought feature extraction. This study proposes an end-to-end automatic seizure detection system based on deep learning, which does not require heavy preprocessing on the EEG data or feature engineering. The fully convolutional network with three convolution blocks is first used to learn the expressive seizure characteristics from EEG data. Then these robust EEG features pertinent to seizures are presented as an input to the Nested Long Short-Term Memory (NLSTM) model to explore the inherent temporal dependencies in EEG signals. Lastly, the high-level features obtained from the NLSTM model are fed into the softmax layer to output predicted labels. The proposed method yields an accuracy range of 98.44–100% in 10 different experiments based on the Bonn University database. A larger EEG database is then used to evaluate the performance of the proposed method in real-life situations. The average sensitivity of 97.47%, specificity of 96.17%, and false detection rate of 0.487 per hour are yielded. For CHB–MIT Scalp EEG database, the proposed model also achieves a segment-level sensitivity of 94.07% with a false detection rate of 0.66 per hour. The excellent results obtained on three different EEG databases demonstrate that the proposed method has good robustness and generalization power under ideal and real-life conditions.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Zuyi Yu
- School of Information Science and Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yang Chen
- Laboratory of Image Science and Technology, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Chunfeng Yang
- Laboratory of Image Science and Technology, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Yue Li
- School of Clinical Medicine, Dali University, Dali, Yunnan 671000, P. R. China
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baosheng Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| |
Collapse
|
11
|
Geng M, Zhou W, Liu G, Li C, Zhang Y. Epileptic Seizure Detection Based on Stockwell Transform and Bidirectional Long Short-Term Memory. IEEE Trans Neural Syst Rehabil Eng 2020; 28:573-580. [PMID: 31940545 DOI: 10.1109/tnsre.2020.2966290] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Automatic seizure detection plays a significant role in monitoring and diagnosis of epilepsy. This paper presents an efficient automatic seizure detection method based on Stockwell transform (S-transform) and bidirectional long short-term memory (BiLSTM) neural networks for intracranial EEG recordings. First, S-transform is applied to raw EEG segments, and the obtained matrix is grouped into time-frequency blocks as the inputs fed into BiLSTM for feature selecting and classification. Afterwards, postprocessing is adopted to improve detection performance, which includes moving average filter, threshold judgment, multichannel fusion, and collar technique. A total of 689 h intracranial EEG recordings from 20 patients are used for evaluation of the proposed system. Segment-based assessment results show that our system achieves a sensitivity of 98.09% and specificity of 98.69%. For the event-based evaluation, a sensitivity of 96.3% and a false detection rate of 0.24/h are yielded. The satisfactory results indicate that this seizure detection approach possess promising potential for clinical practice.
Collapse
|
12
|
Abstract
Automatic seizure detection is extremely important in the monitoring and diagnosis of epilepsy. The paper presents a novel method based on dictionary pair learning (DPL) for seizure detection in the long-term intracranial electroencephalogram (EEG) recordings. First, for the EEG data, wavelet filtering and differential filtering are applied, and the kernel function is performed to make the signal linearly separable. In DPL, the synthesis dictionary and analysis dictionary are learned jointly from original training samples with alternating minimization method, and sparse coefficients are obtained by using of linear projection instead of costly [Formula: see text]-norm or [Formula: see text]-norm optimization. At last, the reconstructed residuals associated with seizure and nonseizure sub-dictionary pairs are calculated as the decision values, and the postprocessing is performed for improving the recognition rate and reducing the false detection rate of the system. A total of 530[Formula: see text]h from 20 patients with 81 seizures were used to evaluate the system. Our proposed method has achieved an average segment-based sensitivity of 93.39%, specificity of 98.51%, and event-based sensitivity of 96.36% with false detection rate of 0.236/h.
Collapse
Affiliation(s)
- Xin Ma
- School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Nana Yu
- School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
13
|
Dümpelmann M. Early seizure detection for closed loop direct neurostimulation devices in epilepsy. J Neural Eng 2019; 16:041001. [DOI: 10.1088/1741-2552/ab094a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
|
15
|
Paul Y. Various epileptic seizure detection techniques using biomedical signals: a review. Brain Inform 2018; 5:6. [PMID: 29987692 PMCID: PMC6170938 DOI: 10.1186/s40708-018-0084-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/27/2018] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is a chronic chaos of the central nervous system that influences individual’s daily life by putting it at risk due to repeated seizures. Epilepsy affects more than 2% people worldwide of which developing countries are affected worse. A seizure is a transient irregularity in the brain’s electrical activity that produces disturbing physical symptoms such as a lapse in attention and memory, a sensory illusion, etc. Approximately one out of every three patients have frequent seizures, despite treatment with multiple anti-epileptic drugs. According to a survey, population aged 65 or above in European Union is predicted to rise from 16.4% (2004) to 29.9% (2050) and also this tremendous increase in aged population is also predicted for other countries by 2050. In this paper, seizure detection techniques are classified as time, frequency, wavelet (time–frequency), empirical mode decomposition and rational function techniques. The aim of this review paper is to present state-of-the-art methods and ideas that will lead to valid future research direction in the field of seizure detection.
Collapse
Affiliation(s)
- Yash Paul
- School of Informatics, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
16
|
Hosseini SA. A Hybrid Approach Based on Higher Order Spectra for Clinical Recognition of Seizure and Epilepsy Using Brain Activity. Basic Clin Neurosci 2018; 8:479-492. [PMID: 29942431 PMCID: PMC6010651 DOI: 10.29252/nirp.bcn.8.6.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Introduction This paper proposes a reliable and efficient technique to recognize different epilepsy states, including healthy, interictal, and ictal states, using Electroencephalogram (EEG) signals. Methods The proposed approach consists of pre-processing, feature extraction by higher order spectra, feature normalization, feature selection by genetic algorithm and ranking method, and classification by support vector machine with Gaussian and polynomial radial basis function kernels. The proposed approach is validated on a public benchmark dataset to compare it with previous studies. Results The results indicate that the combined use of above elements can effectively decipher the cognitive process of epilepsy and seizure recognition. There are several bispectrum and bicoherence peaks at every bi-frequency plane, which reveal the location of the quadratic phase coupling. The proposed approach can reach, in almost all of the experiments, up to 100% performance in terms of sensitivity, specificity, and accuracy. Conclusion Comparing between the obtained results and previous approaches approves the effectiveness of the proposed approach for seizure and epilepsy recognition.
Collapse
Affiliation(s)
- Seyyed Abed Hosseini
- Research Center of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
17
|
Wang D, Ren D, Li K, Feng Y, Ma D, Yan X, Wang G. Epileptic Seizure Detection in Long-Term EEG Recordings by Using Wavelet-Based Directed Transfer Function. IEEE Trans Biomed Eng 2018; 65:2591-2599. [PMID: 29993489 DOI: 10.1109/tbme.2018.2809798] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
GOAL The accurate automatic detection of epileptic seizures is very important in long-term electroencephalogram (EEG) recordings. In this study, the wavelet decomposition and the directed transfer function (DTF) algorithm were combined to present a novel wavelet-based directed transfer function (WDTF) method for the patient-specific seizure detection. METHODS First, five subbands were extracted from 19-channel EEG signals by using wavelet decomposition in a sliding window. Second, the information flow characteristics of five subbands and full frequency band of EEG signals were calculated by the DTF method. The intensity of the outflow information was then used to reduce the feature dimensionality. Finally, all features were combined to identify interictal and ictal EEG segments by the support vector machine classifier. RESULTS By using fivefold cross validation, the proposed method had achieved excellent performance with the average accuracy of 99.4%, the average selectivity of 91.1%, the average sensitivity of 92.1%, the average specificity of 99.5%, and the average detection rate of 95.8%. CONCLUSION The WDTF method is able to enhance seizure detection results in long-term EEG recordings of focal epilepsy patients. SIGNIFICANCE This study may lead to the development of seizure detection system with high performance, thus reducing the workload of epileptologists and facilitating to take corresponding steps promptly after the seizure onset. The high-frequency activity in the epilepsy brain may be of great importance for investigating the pathological mechanism and treatment of seizure.
Collapse
|
18
|
Random ensemble learning for EEG classification. Artif Intell Med 2018; 84:146-158. [DOI: 10.1016/j.artmed.2017.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/21/2023]
|
19
|
Pavei J, Heinzen RG, Novakova B, Walz R, Serra AJ, Reuber M, Ponnusamy A, Marques JLB. Early Seizure Detection Based on Cardiac Autonomic Regulation Dynamics. Front Physiol 2017; 8:765. [PMID: 29051738 PMCID: PMC5633833 DOI: 10.3389/fphys.2017.00765] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Epilepsy is a neurological disorder that causes changes in the autonomic nervous system. Heart rate variability (HRV) reflects the regulation of cardiac activity and autonomic nervous system tone. The early detection of epileptic seizures could foster the use of new treatment approaches. This study presents a new methodology for the prediction of epileptic seizures using HRV signals. Eigendecomposition of HRV parameter covariance matrices was used to create an input for a support vector machine (SVM)-based classifier. We analyzed clinical data from 12 patients (9 female; 3 male; age 34.5 ± 7.5 years), involving 34 seizures and a total of 55.2 h of interictal electrocardiogram (ECG) recordings. Data from 123.6 h of ECG recordings from healthy subjects were used to test false positive rate per hour (FP/h) in a completely independent data set. Our methodological approach allowed the detection of impending seizures from 5 min to just before the onset of a clinical/electrical seizure with a sensitivity of 94.1%. The FP rate was 0.49 h−1 in the recordings from patients with epilepsy and 0.19 h−1 in the recordings from healthy subjects. Our results suggest that it is feasible to use the dynamics of HRV parameters for the early detection and, potentially, the prediction of epileptic seizures.
Collapse
Affiliation(s)
- Jonatas Pavei
- Department of Electrical and Electronic Engineering, Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Renan G Heinzen
- Department of Electrical and Electronic Engineering, Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Barbora Novakova
- Department of Neurology and Clinical Neurophysiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield, Sheffield, United Kingdom
| | - Roger Walz
- Neurology Unit, Department of Clinical Medicine, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Andrey J Serra
- Biophotonic Laboratory, Nove de Julho University, São Paulo, Brazil
| | - Markus Reuber
- Department of Neurology and Clinical Neurophysiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield, Sheffield, United Kingdom
| | - Athi Ponnusamy
- Department of Neurology and Clinical Neurophysiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield, Sheffield, United Kingdom
| | - Jefferson L B Marques
- Department of Electrical and Electronic Engineering, Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
20
|
Vahabi Z, Amirfattahi R, Shayegh F, Ghassemi F. Online Epileptic Seizure Prediction Using Wavelet-Based Bi-Phase Correlation of Electrical Signals Tomography. Int J Neural Syst 2015; 25:1550028. [DOI: 10.1142/s0129065715500288] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Considerable efforts have been made in order to predict seizures. Among these methods, the ones that quantify synchronization between brain areas, are the most important methods. However, to date, a practically acceptable result has not been reported. In this paper, we use a synchronization measurement method that is derived according to the ability of bi-spectrum in determining the nonlinear properties of a system. In this method, first, temporal variation of the bi-spectrum of different channels of electro cardiography (ECoG) signals are obtained via an extended wavelet-based time-frequency analysis method; then, to compare different channels, the bi-phase correlation measure is introduced. Since, in this way, the temporal variation of the amount of nonlinear coupling between brain regions, which have not been considered yet, are taken into account, results are more reliable than the conventional phase-synchronization measures. It is shown that, for 21 patients of FSPEEG database, bi-phase correlation can discriminate the pre-ictal and ictal states, with very low false positive rates (FPRs) (average: 0.078/h) and high sensitivity (100%). However, the proposed seizure predictor still cannot significantly overcome the random predictor for all patients.
Collapse
Affiliation(s)
- Zahra Vahabi
- Digital Signal Processing Research Lab, Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rasoul Amirfattahi
- Digital Signal Processing Research Lab, Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farzaneh Shayegh
- Department of Electrical Engineering, Payame Noor University (PNU), Isfahan, Iran
- Medical Image and Signal Processing Research Center, Medical University of Isfahan, Isfahan, Iran
| | - Fahimeh Ghassemi
- Department of Advanced Medical Technologies, Medical University of Isfahan, Isfahan, Iran
- Medical Image and Signal Processing Research Center, Medical University of Isfahan, Isfahan, Iran
| |
Collapse
|
21
|
Alotaiby TN, Abd El-Samie FE, Alshebeili SA, Aljibreen KH, Alkhanen E. Seizure detection with common spatial pattern and Support Vector Machines. 2015 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY RESEARCH (ICTRC) 2015. [DOI: 10.1109/ictrc.2015.7156444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Abstract
Epilepsy afflicts approximately 1-2% of the world's population. The mainstay therapy for treating the chronic recurrent seizures that are emblematic of epilepsy are drugs that manipulate levels of neuronal excitability in the brain. However, approximately one-third of all epilepsy patients get little to no clinical relief from this therapeutic regimen. The use of electrical stimulation in many forms to treat drug-refractory epilepsy has grown markedly over the past few decades, with some devices and protocols being increasingly used as standard clinical treatment. This article seeks to review the fundamental modes of applying electrical stimulation-from the noninvasive to the nominally invasive to deep brain stimulation-for the control of seizures in epileptic patients. Therapeutic practices from the commonly deployed clinically to the experimental are discussed to provide an overview of the innovative neural engineering approaches being explored to treat this difficult disease.
Collapse
Affiliation(s)
- David J Mogul
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616;
| | | |
Collapse
|
23
|
van Straaten E, den Haan J, de Waal H, van der Flier W, Barkhof F, Prins N, Stam C. Disturbed phase relations in white matter hyperintensity based vascular dementia: An EEG directed connectivity study. Clin Neurophysiol 2015; 126:497-504. [DOI: 10.1016/j.clinph.2014.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
|
24
|
Lu Y, Worrell GA, Zhang HC, Yang L, Brinkmann B, Nelson C, He B. Noninvasive imaging of the high frequency brain activity in focal epilepsy patients. IEEE Trans Biomed Eng 2014; 61:1660-7. [PMID: 24845275 PMCID: PMC4123538 DOI: 10.1109/tbme.2013.2297332] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-frequency (HF) activity represents a potential biomarker of the epileptogenic zone in epilepsy patients, the removal of which is considered to be crucial for seizure-free surgical outcome. We proposed a high frequency source imaging (HFSI) approach to noninvasively image the brain sources of the scalp-recorded HF EEG activity. Both computer simulation and clinical patient data analysis were performed to investigate the feasibility of using the HFSI approach to image the sources of HF activity from noninvasive scalp EEG recordings. The HF activity was identified from high-density scalp recordings after high-pass filtering the EEG data and the EEG segments with HF activity were concatenated together to form repetitive HF activity. Independent component analysis was utilized to extract the components corresponding to the HF activity. Noninvasive EEG source imaging using realistic geometric boundary element head modeling was then applied to image the sources of the pathological HF brain activity. Five medically intractable focal epilepsy patients were studied and the estimated sources were found to be concordant with the surgical resection or intracranial recordings of the patients. The present study demonstrates, for the first time, that source imaging from the scalp HF activity could help to localize the seizure onset zone and provide a novel noninvasive way of studying the epileptic brain in humans. This study also indicates the potential application of studying HF activity in the presurgical planning of medically intractable epilepsy patients.
Collapse
Affiliation(s)
- Yunfeng Lu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | | | - Huishi Clara Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | | | - Cindy Nelson
- Department of Neurology, Mayo Clinic, Rochester, MN 55901 USA
| | - Bin He
- Department of Biomedical Engineering and the Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455 USA ()
| |
Collapse
|
25
|
Jin SH, Jeong W, Chung CK. Information source in multiple MEG spike clusters can be identified by effective connectivity in focal cortical dysplasia. Epilepsy Res 2013; 105:118-24. [DOI: 10.1016/j.eplepsyres.2013.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/07/2012] [Accepted: 01/22/2013] [Indexed: 11/28/2022]
|
26
|
Milekovic T, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C. Detection of error related neuronal responses recorded by electrocorticography in humans during continuous movements. PLoS One 2013; 8:e55235. [PMID: 23383315 PMCID: PMC3562340 DOI: 10.1371/journal.pone.0055235] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 12/21/2012] [Indexed: 12/01/2022] Open
Abstract
Background Brain-machine interfaces (BMIs) can translate the neuronal activity underlying a user’s movement intention into movements of an artificial effector. In spite of continuous improvements, errors in movement decoding are still a major problem of current BMI systems. If the difference between the decoded and intended movements becomes noticeable, it may lead to an execution error. Outcome errors, where subjects fail to reach a certain movement goal, are also present during online BMI operation. Detecting such errors can be beneficial for BMI operation: (i) errors can be corrected online after being detected and (ii) adaptive BMI decoding algorithm can be updated to make fewer errors in the future. Methodology/Principal Findings Here, we show that error events can be detected from human electrocorticography (ECoG) during a continuous task with high precision, given a temporal tolerance of 300–400 milliseconds. We quantified the error detection accuracy and showed that, using only a small subset of 2×2 ECoG electrodes, 82% of detection information for outcome error and 74% of detection information for execution error available from all ECoG electrodes could be retained. Conclusions/Significance The error detection method presented here could be used to correct errors made during BMI operation or to adapt a BMI algorithm to make fewer errors in the future. Furthermore, our results indicate that smaller ECoG implant could be used for error detection. Reducing the size of an ECoG electrode implant used for BMI decoding and error detection could significantly reduce the medical risk of implantation.
Collapse
|