1
|
Zhang L, Zuo J, Wang K, Jiang T, Gu S, Xu L, Zhang Y. An advanced robotic system incorporating haptic feedback for precision cardiac ablation procedures. Sci Rep 2025; 15:6839. [PMID: 40000834 PMCID: PMC11862161 DOI: 10.1038/s41598-025-91342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
This study introduces an innovative master-slave cardiac ablation catheter robot system that employs magnetorheological fluids. The system incorporates magnetorheological fluid to enable collision detection through haptic feedback, thereby enhancing the operator's situational awareness. A modular clamping and propulsion mechanism has been engineered for the ablation catheter, facilitating omnidirectional operation and force feedback within the cardiac cavity. To evaluate the proposed system, an in vitro experiment was performed. Results from the experiment indicate that the system demonstrates high motion transmission accuracy. Furthermore, the system effectively alerts operators to potential collisions, enabling swift catheter position adjustments, minimizing the risk of vascular perforation, and ultimately enhancing the overall safety and efficiency of the procedure.
Collapse
Affiliation(s)
- Linshuai Zhang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Automation, Chengdu University of Information Technology, Chengdu, 610225, China
- International Joint Research Center of Robotics and Intelligence System of Sichuan Province, Chengdu, Sichuan, China
| | - Jinshan Zuo
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Wang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Jiang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shuoxin Gu
- School of Automation, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Lin Xu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yujie Zhang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
2
|
Wang Y, Muthurangu V, Wurdemann HA. Toward Autonomous Pulmonary Artery Catheterization: A Learning-based Robotic Navigation System. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082621 DOI: 10.1109/embc40787.2023.10340140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Providing imaging during interventional treatments of cardiovascular diseases is challenging. Magnetic Resonance Imaging (MRI) has gained popularity as it is radiation-free and returns high resolution of soft tissue. However, the clinician has limited access to the patient, e.g., to their femoral artery, within the MRI scanner to accurately guide and manipulate an MR-compatible catheter. At the same time, communication will need to be maintained with a clinician, located in a separate control room, to provide the most appropriate image to the screen inside the MRI room. Hence, there is scope to explore the feasibility of how autonomous catheterization robots could support the steering of catheters along trajectories inside complex vessel anatomies.In this paper, we present a Learning from Demonstration based Gaussian Mixture Model for a robot trajectory optimisation during pulmonary artery catheterization. The optimisation algorithm is integrated into a 2 Degree-of-Freedom MR-compatible interventional robot allowing for continuous and simultaneous translation and rotation. Our methodology achieves autonomous navigation of the catheter tip from the inferior vena cava, through the right atrium and the right ventricle into the pulmonary artery where an interventions is performed. Our results show that our MR-compatible robot can follow an advancement trajectory generated by our Learning from Demonstration algorithm. Looking at the overall duration of the intervention, it can be concluded that procedures performed by the robot (teleoperated or autonomously) required significantly less time compared to manual hand-held procedures.
Collapse
|
3
|
Najafi G, Kreiser K, Abdelaziz MEMK, Hamady MS. Current State of Robotics in Interventional Radiology. Cardiovasc Intervent Radiol 2023; 46:549-561. [PMID: 37002481 PMCID: PMC10156773 DOI: 10.1007/s00270-023-03421-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/11/2023] [Indexed: 05/04/2023]
Abstract
As a relatively new specialty with a minimally invasive nature, the field of interventional radiology is rapidly growing. Although the application of robotic systems in this field shows great promise, such as with increased precision, accuracy, and safety, as well as reduced radiation dose and potential for teleoperated procedures, the progression of these technologies has been slow. This is partly due to the complex equipment with complicated setup procedures, the disruption to theatre flow, the high costs, as well as some device limitations, such as lack of haptic feedback. To further assess these robotic technologies, more evidence of their performance and cost-effectiveness is needed before their widespread adoption within the field. In this review, we summarise the current progress of robotic systems that have been investigated for use in vascular and non-vascular interventions.
Collapse
Affiliation(s)
- Ghazal Najafi
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
| | - Kornelia Kreiser
- Department of Neuroradiology, Rehabilitations - und Universitätskliniken Ulm, 89081, Ulm, Germany
| | - Mohamed E M K Abdelaziz
- The Hamlyn Centre, Imperial College London, London, SW7 2AZ, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mohamad S Hamady
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- The Hamlyn Centre, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
4
|
He Y, Yao Z, Xu H. A Multi-Point Contact Model Considering Rough Surface for Linear Ultrasonic Motors: Validation and Simulation. MICROMACHINES 2022; 13:1988. [PMID: 36422417 PMCID: PMC9699350 DOI: 10.3390/mi13111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The performance and wear life of linear ultrasonic motors are directly determined by the stator-mover frictional contact behaviors. A complete contact model is important to clearly understand the stator-mover contact mechanism and accurately estimate the motor performance. In this paper, a multi-point frictional contact model considering the roughness of contact interfaces is presented based on a finite model of the stator and an analytical model of the mover. The static/dynamic contact behaviors and output performance of the motor can be simulated efficiently. A quantitative measuring methodology for the dynamic contact forces between the stator and mover is developed. The effectiveness of the contact model for simulating the stator-mover contact forces is first evaluated by experiment. Based on the developed model, several dynamic characteristics of a linear ultrasonic motor are discussed: (a) the static force transferred between contact interfaces under pre-pressure; (b) the transient forces and energy exchange between contact interfaces; (c) the steady-state output performance of motor under different electric excitation parameters; (d) the effects of micro-topography parameters on the output performance of the motor and the force transmission of the contact interface.
Collapse
|
5
|
Zhao Y, Mei Z, Luo X, Mao J, Zhao Q, Liu G, Wu D. Remote vascular interventional surgery robotics: a literature review. Quant Imaging Med Surg 2022; 12:2552-2574. [PMID: 35371939 PMCID: PMC8923856 DOI: 10.21037/qims-21-792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/22/2021] [Indexed: 07/25/2023]
Abstract
Vascular interventional doctors are exposed to radiation hazards during surgery and endure high work intensity. Remote vascular interventional surgery robotics is a hot research field, in which researchers aim to not only protect the health of interventional doctors, but to also improve surgical accuracy and efficiency. However, the current vascular interventional robots have numerous shortcomings, such as poor haptic feedback, few compatible surgeries and instruments, and cumbersome maintenance and operational procedures. Nevertheless, vascular interventional surgery combined with robotics provides more cutting-edge directions, such as Internet remote surgery combined with 5G network technology and the application of artificial intelligence in surgical procedures. To summarize the developmental status and key technical points of intravascular interventional surgical robotics research, we performed a systematic literature search to retrieve original articles related to remote vascular interventional surgery robotics published up to December 2020. This review, which includes 113 articles published in English, introduces the mechanical and structural characteristics of various aspects of vascular interventional surgical robotics, discusses the current key features of vascular interventional surgical robotics in force sensing, haptic feedback, and control methods, and summarizes current frontiers in autonomous surgery, long-distance robotic telesurgery, and magnetic resonance imaging (MRI)-compatible structures. On the basis of summarizing the current research status of remote vascular interventional surgery robotics, we aim to propose a variety of prospects for future robotic systems.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
| | - Ziyang Mei
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
| | - Xiaoxiao Luo
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
| | - Jingsong Mao
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Dezhi Wu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Phelan MF, Tiryaki ME, Lazovic J, Gilbert H, Sitti M. Heat-Mitigated Design and Lorentz Force-Based Steering of an MRI-Driven Microcatheter toward Minimally Invasive Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105352. [PMID: 35112810 PMCID: PMC8981448 DOI: 10.1002/advs.202105352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Catheters integrated with microcoils for electromagnetic steering under the high, uniform magnetic field within magnetic resonance (MR) scanners (3-7 Tesla) have enabled an alternative approach for active catheter operations. Achieving larger ranges of tip motion for Lorentz force-based steering have previously been dependent on using high power coupled with active cooling, bulkier catheter designs, or introducing additional microcoil sets along the catheter. This work proposes an alternative approach using a heat-mitigated design and actuation strategy for a magnetic resonance imaging (MRI)-driven microcatheter. A quad-configuration microcoil (QCM) design is introduced, allowing miniaturization of existing MRI-driven, Lorentz force-based catheters down to 1-mm diameters with minimal power consumption (0.44 W). Heating concerns are experimentally validated using noninvasive MRI thermometry. The Cosserat model is implemented within an MR scanner and results demonstrate a desired tip range up to 110° with 4° error. The QCM is used to validate the proposed model and power-optimized steering algorithm using an MRI-compatible neurovascular phantom and ex vivo kidney tissue. The power-optimized tip orientation controller conserves as much as 25% power regardless of the catheter's initial orientation. These results demonstrate the implementation of an MRI-driven, electromagnetic catheter steering platform for minimally invasive surgical applications without the need for camera feedback or manual advancement via guidewires. The incorporation of such system in clinics using the proposed design and actuation strategy can further improve the safety and reliability of future MRI-driven active catheter operations.
Collapse
Affiliation(s)
- Martin Francis Phelan
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Mehmet Efe Tiryaki
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
| | - Jelena Lazovic
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Hunter Gilbert
- Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeLA70803USA
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
- College of Engineering and School of MedicineKoç UniversityIstanbul34450Turkey
| |
Collapse
|
7
|
Wang B, Zhou Y, Wang Y, Li X, He L, Wen Z, Cao T, Sun L, Wu D. Three-Dimensional Intravascular Ultrasound Imaging Using a Miniature Helical Ultrasonic Motor. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:681-690. [PMID: 34860650 DOI: 10.1109/tuffc.2021.3132607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Existing 3-D intravascular ultrasound (IVUS) systems that combine two electromagnetic (EM) motors to drive catheters are bulky and require considerable efforts to eliminate EM interference (EMI). Here, we propose a new scanning method to realize 3-D IVUS imaging using a helical ultrasonic motor to overcome the aforementioned issues. The ultrasonic motor with compact dimensions (7-mm outer diameter and 30-mm longitudinal length), lightweight (20.5 g), and free of EMI exhibits a great application potential in mobile imaging devices. In particular, it can simultaneously perform rotary and linear motions, facilitating precise 3-D scanning of an imaging catheter. Experimental results show that the signal-to-noise ratio (SNR) of raw images obtained using the ultrasonic motor is 5.3 dB better than that of an EM motor. Moreover, the proposed imaging device exhibits the maximum rotary speed of 12.3 r/s and the positioning accuracy of 2.6 [Formula: see text] at a driving voltage of 240 Vp-p. The 3-D wire phantom imaging and 3-D tube phantom imaging are performed to evaluate the performance of the imaging device. Finally, the in vitro imaging of a porcine coronary artery demonstrates that the layered architecture of the vessel can be precisely identified while significantly increasing the SNR of the raw images.
Collapse
|
8
|
Zhang L, Gu S, Guo S, Tamiya T. A Magnetorheological Fluids-Based Robot-Assisted Catheter/Guidewire Surgery System for Endovascular Catheterization. MICROMACHINES 2021; 12:mi12060640. [PMID: 34070909 PMCID: PMC8226888 DOI: 10.3390/mi12060640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022]
Abstract
A teleoperated robotic catheter operating system is a solution to avoid occupational hazards caused by repeated exposure radiation of the surgeon to X-ray during the endovascular procedures. However, inadequate force feedback and collision detection while teleoperating surgical tools elevate the risk of endovascular procedures. Moreover, surgeons cannot control the force of the catheter/guidewire within a proper range, and thus the risk of blood vessel damage will increase. In this paper, a magnetorheological fluid (MR)-based robot-assisted catheter/guidewire surgery system has been developed, which uses the surgeon’s natural manipulation skills acquired through experience and uses haptic cues to generate collision detection to ensure surgical safety. We present tests for the performance evaluation regarding the teleoperation, the force measurement, and the collision detection with haptic cues. Results show that the system can track the desired position of the surgical tool and detect the relevant force event at the catheter. In addition, this method can more readily enable surgeons to distinguish whether the proximal force exceeds or meets the safety threshold of blood vessels.
Collapse
Affiliation(s)
- Linshuai Zhang
- School of Control Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
| | - Shuoxin Gu
- School of Control Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
- Correspondence: (S.G.); (S.G.); Tel.: +86-180-8684-8801 (Shuoxin Gu)
| | - Shuxiang Guo
- Faculty of Engineering and Design, Kagawa University, Takamatsu 761-0396, Japan
- Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, the Ministry of Industry Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (S.G.); (S.G.); Tel.: +86-180-8684-8801 (Shuoxin Gu)
| | - Takashi Tamiya
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Takamatsu 761-0396, Japan;
| |
Collapse
|
9
|
Monfaredi R, Cleary K, Sharma K. MRI Robots for Needle-Based Interventions: Systems and Technology. Ann Biomed Eng 2018; 46:1479-1497. [PMID: 29922958 DOI: 10.1007/s10439-018-2075-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/11/2018] [Indexed: 01/13/2023]
Abstract
Magnetic resonance imaging (MRI) provides high-quality soft-tissue images of anatomical structures and radiation free imaging. The research community has focused on establishing new workflows, developing new technology, and creating robotic devices to change an MRI room from a solely diagnostic room to an interventional suite, where diagnosis and intervention can both be done in the same room. Closed bore MRI scanners provide limited access for interventional procedures using intraoperative imaging. MRI robots could improve access and procedure accuracy. Different research groups have focused on different technology aspects and anatomical structures. This paper presents the results of a systematic search of MRI robots for needle-based interventions. We report the most recent advances in the field, present relevant technologies, and discuss possible future advances. This survey shows that robotic-assisted MRI-guided prostate biopsy has received the most interest from the research community to date. Multiple successful clinical experiments have been reported in recent years that show great promise. However, in general the field of MRI robotic systems is still in the early stage. The continued development of these systems, along with partnerships with commercial vendors to bring this technology to market, is encouraged to create new and improved treatment opportunities for future patients.
Collapse
Affiliation(s)
- Reza Monfaredi
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan ave. NW, Washington, DC, 20010, USA.
| | - Kevin Cleary
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan ave. NW, Washington, DC, 20010, USA
| | - Karun Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan ave. NW, Washington, DC, 20010, USA.,Diagnostic Imaging and Radiology Department, Children's National Health System, 111 Michigan ave. NW, Washington, DC, 20010, USA
| |
Collapse
|
10
|
Cha HJ, Yi BJ, Won JY. An assembly-type master-slave catheter and guidewire driving system for vascular intervention. Proc Inst Mech Eng H 2016; 231:69-79. [PMID: 28097937 DOI: 10.1177/0954411916679328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current vascular intervention inevitably exposes a large amount of X-ray to both an operator and a patient during the procedure. The purpose of this study is to propose a new catheter driving system which assists the operator in aspects of less X-ray exposure and convenient user interface. For this, an assembly-type 4-degree-of-freedom master-slave system was designed and tested to verify the efficiency. First, current vascular intervention procedures are analyzed to develop a new robotic procedure that enables us to use conventional vascular intervention devices such as catheter and guidewire which are commercially available in the market. Some parts of the slave robot which contact the devices were designed to be easily assembled and dissembled from the main body of the slave robot for sterilization. A master robot is compactly designed to conduct insertion and rotational motion and is able to switch from the guidewire driving mode to the catheter driving mode or vice versa. A phantom resembling the human arteries was developed, and the master-slave robotic system is tested using the phantom. The contact force of the guidewire tip according to the shape of the arteries is measured and reflected to the user through the master robot during the phantom experiment. This system can drastically reduce radiation exposure by replacing human effort by a robotic system for high radiation exposure procedures. Also, benefits of the proposed robot system are low cost by employing currently available devices and easy human interface.
Collapse
Affiliation(s)
- Hyo-Jeong Cha
- 1 Department of Electronic, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan, South Korea
| | - Byung-Ju Yi
- 2 Department of Electronic Systems Engineering, Hanyang University, Ansan, South Korea
| | - Jong Yun Won
- 3 Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Gelman D, Skanes AC, Tavallaei MA, Drangova M. Design and Evaluation of a Catheter Contact-Force Controller for Cardiac Ablation Therapy. IEEE Trans Biomed Eng 2016; 63:2301-2307. [DOI: 10.1109/tbme.2016.2525929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom. Int J Comput Assist Radiol Surg 2015; 11:1537-45. [PMID: 26704372 DOI: 10.1007/s11548-015-1337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/08/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE To facilitate MRI-guided catheterization procedures, we present an MRI-compatible remote catheter navigation system that allows remote navigation of steerable catheters with 3 degrees of freedom. METHODS The system consists of a user interface (master), a robot (slave), and an ultrasonic motor control servomechanism. The interventionalist applies conventional motions (axial, radial and plunger manipulations) on an input catheter in the master unit; this user input is measured and used by the servomechanism to control a compact catheter manipulating robot, such that it replicates the interventionalist's input motion on the patient catheter. The performance of the system was evaluated in terms of MRI compatibility (SNR and artifact), feasibility of remote navigation under real-time MRI guidance, and motion replication accuracy. RESULTS Real-time MRI experiments demonstrated that catheter was successfully navigated remotely to desired target references in all 3 degrees of freedom. The system had an absolute value error of [Formula: see text]1 mm in axial catheter motion replication over 30 mm of travel and [Formula: see text] for radial catheter motion replication over [Formula: see text]. The worst case SNR drop was observed to be [Formula: see text]3 %; the robot did not introduce any artifacts in the MR images. CONCLUSION An MRI-compatible compact remote catheter navigation system has been developed that allows remote navigation of steerable catheters with 3 degrees of freedom. The proposed system allows for safe and accurate remote catheter navigation, within conventional closed-bore scanners, without degrading MR image quality.
Collapse
|
13
|
Tavallaei MA, Gelman D, Lavdas MK, Skanes AC, Jones DL, Bax JS, Drangova M. Design, development and evaluation of a compact telerobotic catheter navigation system. Int J Med Robot 2015; 12:442-52. [PMID: 26525639 DOI: 10.1002/rcs.1711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/26/2015] [Accepted: 09/27/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Remote catheter navigation systems protect interventionalists from scattered ionizing radiation. However, these systems typically require specialized catheters and extensive operator training. METHODS A new compact and sterilizable telerobotic system is described, which allows remote navigation of conventional tip-steerable catheters, with three degrees of freedom, using an interface that takes advantage of the interventionalist's existing dexterity skills. The performance of the system is evaluated ex vivo and in vivo for remote catheter navigation and ablation delivery. RESULTS The system has absolute errors of 0.1 ± 0.1 mm and 7 ± 6° over 100 mm of axial motion and 360° of catheter rotation, respectively. In vivo experiments proved the safety of the proposed telerobotic system and demonstrated the feasibility of remote navigation and delivery of ablation. CONCLUSION The proposed telerobotic system allows the interventionalist to use conventional steerable catheters; while maintaining a safe distance from the radiation source, he/she can remotely navigate the catheter and deliver ablation lesions. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohammad Ali Tavallaei
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Biomedical Engineering Graduate Programme, University of Western Ontario, London, ON, Canada
| | - Daniel Gelman
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Biomedical Engineering Graduate Programme, University of Western Ontario, London, ON, Canada
| | - Michael Konstantine Lavdas
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Mechatronics Engineering Programme, University of Western Ontario, London, ON, Canada
| | - Allan C Skanes
- Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Douglas L Jones
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Canadian Surgical Technologies and Advanced Robotics, London Health Sciences Centre, University Hospital, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jeffrey S Bax
- Centre of Imaging Technology Commercialization (CIMTEC), London, ON, Canada
| | - Maria Drangova
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Biomedical Engineering Graduate Programme, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Yoshimitsu K, Kato T, Song SE, Hata N. A novel four-wire-driven robotic catheter for radio-frequency ablation treatment. Int J Comput Assist Radiol Surg 2014; 9:867-74. [PMID: 24510205 DOI: 10.1007/s11548-014-0982-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/24/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE Robotic catheters have been proposed to increase the efficacy and safety of the radio-frequency ablation treatment. The robotized motion of current robotic catheters mimics the motion of manual ones-namely, deflection in one direction and rotation around the catheter. With the expectation that the higher dexterity may achieve further efficacy and safety of the robotically driven treatment, we prototyped a four-wire-driven robotic catheter with the ability to deflect in two- degree-of-freedom motions in addition to rotation. METHODS A novel quad-directional structure with two wires was designed and developed to attain yaw and pitch motion in the robotic catheter. We performed a mechanical evaluation of the bendability and maneuverability of the robotic catheter and compared it with current manual catheters. RESULTS We found that the four-wire-driven robotic catheter can achieve a pitching angle of 184.7[Formula: see text] at a pulling distance of wire for 11 mm, while the yawing angle was 170.4[Formula: see text] at 11 mm. The robotic catheter could attain the simultaneous two- degree-of-freedom motions in a simulated cardiac chamber. CONCLUSION The results indicate that the four-wire-driven robotic catheter may offer physicians the opportunity to intuitively control a catheter and smoothly approach the focus position that they aim to ablate.
Collapse
Affiliation(s)
- Kitaro Yoshimitsu
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, SPL L1-050 ASB1, Boston, MA, USA,
| | | | | | | |
Collapse
|
15
|
Bergeles C, Yang GZ. From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. IEEE Trans Biomed Eng 2013; 61:1565-76. [PMID: 24723622 DOI: 10.1109/tbme.2013.2293815] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Within only a few decades from its initial introduction, the field of surgical robotics has evolved into a dynamic and rapidly growing research area with increasing clinical uptake worldwide. Initially introduced for stereotaxic neurosurgery, surgical robots are now involved in an increasing number of procedures, demonstrating their practical clinical potential while propelling further advances in surgical innovations. Emerging platforms are also able to perform complex interventions through only a single-entry incision, and navigate through natural anatomical pathways in a tethered or wireless fashion. New devices facilitate superhuman dexterity and enable the performance of surgical steps that are otherwise impossible. They also allow seamless integration of microimaging techniques at the cellular level, significantly expanding the capabilities of surgeons. This paper provides an overview of the significant achievements in surgical robotics and identifies the current trends and future research directions of the field in making surgical robots safer, smaller, and smarter.
Collapse
|
16
|
Rafii-Tari H, Payne CJ, Yang GZ. Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng 2013; 42:697-715. [PMID: 24281653 DOI: 10.1007/s10439-013-0946-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
Endovascular techniques have been embraced as a minimally-invasive treatment approach within different disciplines of interventional radiology and cardiology. The current practice of endovascular procedures, however, is limited by a number of factors including exposure to high doses of X-ray radiation, limited 3D imaging, and lack of contact force sensing from the endovascular tools and the vascular anatomy. More recently, advances in steerable catheters and development of master/slave robots have aimed to improve these practices by removing the operator from the radiation source and increasing the precision and stability of catheter motion with added degrees-of-freedom. Despite their increased application and a growing research interest in this area, many such systems have been designed without considering the natural manipulation skills and ergonomic preferences of the operators. Existing studies on tool interactions and natural manipulation skills of the operators are limited. In this manuscript, new technical developments in different aspects of robotic endovascular intervention including catheter instrumentation, intra-operative imaging and navigation techniques, as well as master/slave based robotic catheterization platforms are reviewed. We further address emerging trends and new research opportunities towards more widespread clinical acceptance of robotically assisted endovascular technologies.
Collapse
Affiliation(s)
- Hedyeh Rafii-Tari
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London, SW7 2AZ, UK,
| | | | | |
Collapse
|