1
|
An Y, An L, Zhao J, Li Z, Wang J, Wu Y, Gong G, Li J, Ding C, Liu Q. Effect of photobiological regulation of green laser on orthodontic tooth retention in rats. Lasers Med Sci 2025; 40:24. [PMID: 39833493 PMCID: PMC11753330 DOI: 10.1007/s10103-025-04298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Green lasers have a stronger effect on promoting osteoblast differentiation, which is critical for orthodontic tooth retention. This study investigated the impact of green laser photobiomodulation on orthodontic tooth retention in rats. A total of 100 male Sprague-Dawley rats were divided into two groups: Group A (control) and Group B (green laser irradiation). The left upper first molar was moved using a 0.20-mm nickel-titanium coil spring applying a force of 50 g for 3 weeks. The coil spring was then replaced with a 0.25-mm ligature wire to establish an orthodontic tooth retention model. Group B received green laser irradiation on the periodontium surrounding the molars. Retention devices were removed on days 1, 4, 10, 13, and 21. After 3 days of recurrence, the rats were sacrificed on days 4, 7, 13, 16, and 24. The left maxillary molar region was scanned using 3Shape to assess recurrence, and micro-computed tomography was used to evaluate alveolar bone density. Tissue staining was performed to observe periodontal remodeling and bone morphogenetic protein-2 (BMP-2) expression. Over time, the recurrence rate of the molar decreased significantly in both groups (P < 0.01), while alveolar bone density and BMP-2 expression increased (P < 0.01). Group B showed a lower recurrence rate and higher bone density, BMP-2 expression, and osteoblast counts than Group A. Green laser photobiomodulation promoted periodontal tissue remodeling, increased osteoblast numbers, stimulated new bone formation, and reduced the recurrence rate during orthodontic tooth retention in rats.
Collapse
Affiliation(s)
- Yang An
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China.
| | - Li An
- Shanxi Cancer Hospital, Taiyuan, China
| | - Jianmei Zhao
- JiangduPeople's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | | | - Jun Wang
- Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Yang Wu
- Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | | | - Juan Li
- Jincheng People's Hospital, Jincheng, Shanxi, China
| | | | - Qingmei Liu
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Horne DA, Jones PD, Adams MS, Lotz JC, Diederich CJ. LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro: development and validation with bovine intervertebral disc cells. Biomed Phys Eng Express 2020; 6:035033. [PMID: 33438678 DOI: 10.1088/2057-1976/ab8b26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125-350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 μs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm-2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.
Collapse
Affiliation(s)
- Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, United States of America. The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, United States of America. Thermal Therapy Research Group, Radiation Oncology Department, University of California, San Francisco, United States of America
| | | | | | | | | |
Collapse
|
3
|
Bui L, Aleid A, Alassaf A, Wilson OC, Raub CB, Frenkel V. Development of a custom biological scaffold for investigating ultrasound-mediated intracellular delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:461-470. [DOI: 10.1016/j.msec.2016.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/08/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023]
|
4
|
Puts R, Rikeit P, Ruschke K, Kadow-Romacker A, Hwang S, Jenderka KV, Knaus P, Raum K. Activation of Mechanosensitive Transcription Factors in Murine C2C12 Mesenchymal Precursors by Focused Low-Intensity Pulsed Ultrasound (FLIPUS). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1505-1513. [PMID: 27392348 DOI: 10.1109/tuffc.2016.2586972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we investigated the mechanoresponse of C2C12 mesenchymal precursor cells to focused low-intensity pulsed ultrasound (FLIPUS). The setup has been developed for in vitro stimulation of adherent cells in the defocused far field of the ultrasound propagating through the bottom of the well plate. Twenty-four-well tissue culture plates, carrying the cell monolayers, were incubated in a temperature-controlled water tank. The ultrasound was applied at 3.6-MHz frequency, pulsed at 100-Hz repetition frequency with a 27.8% duty cycle, and calibrated at an output intensity of ISATA = 44.5 ±7.1 mW/cm2. Numerical sound propagation simulations showed no generation of standing waves in the well plate. The response of murine C2C12 cells to FLIPUS was evaluated by measuring activation of mechanosensitive transcription factors, i.e., activator protein-1 (AP-1), specificity protein 1 (Sp1), and transcriptional enhancer factor (TEAD), and expression of mechanosensitive genes, i.e., c-fos, c-jun, heparin binding growth associated molecule (HB-GAM), and Cyr-61. FLIPUS induced 50% ( p ≤ 0.05 ) and 70% ( p ≤ 0.05 ) increases in AP-1 and TEAD promoter activities, respectively, when stimulated for 5 min. The Sp1 activity was enhanced by about 20% ( p ≤ 0.05 ) after 5-min FLIPUS exposure and the trend persisted for 30-min ( p ≤ 0.05 ) and 1-h ( p ≤ 0.05 ) stimulation times. Expressions of mechanosensitive genes c-fos ( p ≤ 0.05 ), c-jun ( p ≤ 0.05 ), HB-GAM ( p ≤ 0.05 ), and cystein-rich protein 61 ( p ≤ 0.05 ) were enhanced in response to 5-min FLIPUS stimulation. The increase in proliferation of C2C12s occurred after the FLIPUS stimulation ( p ≤ 0.05 ), with AP-1, Sp1, and TEAD possibly regulating the observed cellular activities.
Collapse
|
5
|
Puts R, Ruschke K, Ambrosi TH, Kadow-Romacker A, Knaus P, Jenderka KV, Raum K. A Focused Low-Intensity Pulsed Ultrasound (FLIPUS) System for Cell Stimulation: Physical and Biological Proof of Principle. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:91-100. [PMID: 26552085 DOI: 10.1109/tuffc.2015.2498042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantitative ultrasound (QUS) is a promising technique for bone tissue evaluation. Highly focused transducers used for QUS also have the capability to be applied for tissue-regenerative purposes and can provide spatially limited deposition of acoustic energy. We describe a focused low-intensity pulsed ultrasound (FLIPUS) system, which has been developed for the stimulation of cell monolayers in the defocused far field of the transducer through the bottom of the well plate. Tissue culture well plates, carrying the cells, were incubated in a special chamber, immersed in a temperature-controlled water tank. A stimulation frequency of 3.6 MHz provided an optimal sound transmission through the polystyrene well plate. The ultrasound was pulsed for 20 min daily at 100-Hz repetition frequency with 27.8% duty cycle. The calibrated output intensity corresponded to I(SATA) = 44.5 ± 7.1 mW/cm2, which is comparable to the most frequently reported nominal output levels in LIPUS studies. No temperature change by the ultrasound exposure was observed in the well plate. The system was used to stimulate rat mesenchymal stem cells (rMSCs). The applied intensity had no apoptotic effect and enhanced the expression of osteogenic markers, i.e., osteopontin (OPN), collagen 1 (Col-1), the osteoblast-specific transcription factor-Runx-2 and E11 protein, an early osteocyte marker, in stimulated cells on day 5. The proposed FLIPUS setup opens new perspectives for the evaluation of the mechanistic effects of LIPUS.
Collapse
|
6
|
Patel US, Ghorayeb SR, Yamashita Y, Atanda F, Walmsley AD, Scheven BA. Ultrasound field characterization and bioeffects in multiwell culture plates. J Ther Ultrasound 2015; 3:8. [PMID: 26146556 PMCID: PMC4490766 DOI: 10.1186/s40349-015-0028-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ultrasound with frequencies in the kilohertz range has been demonstrated to promote biological effects and has been suggested as a non-invasive tool for tissue healing and repair. However, many challenges exist to characterize and develop kilohertz ultrasound for therapy. In particular there is a limited evidence-based guidance and standard procedure in the literature concerning the methodology of exposing biological cells to ultrasound in vitro. Methods This study characterized a 45-kHz low-frequency ultrasound at three different preset intensity levels (10, 25, and 75 mW/cm2) and compared this with the thermal and biological effects seen in a 6-well culture setup using murine odontoblast-like cells (MDPC-23). Ultrasound was produced from a commercially available ultrasound-therapy system, and measurements were recorded using a needle hydrophone in a water tank. The transducer was displaced horizontally and vertically from the hydrophone to plot the lateral spread of ultrasound energy. Calculations were performed using Fourier transform and average intensity plotted against distance from the transducer. During ultrasound treatment, cell cultures were directly exposed to ultrasound by submerging the ultrasound transducer into the culture media. Four groups of cell culture samples were treated with ultrasound. Three with ultrasound at an intensity level of 10, 25, and 75 mW/cm2, respectively, and the final group underwent a sham treatment with no ultrasound. Cell proliferation and viability were analyzed from each group 8 days after three ultrasound treatments, each separated by 48 h. Results The ultrasonic output demonstrated considerable lateral spread of the ultrasound field from the exposed well toward the adjacent culture wells in the multiwell culture plate; this correlated well with the dose-dependent increase in the number of cultured cells where significant biological effects were also seen in adjacent untreated wells. Significant thermal variations were not detected in adjacent untreated wells. Conclusions This study highlights the pitfalls of using multiwell plates when investigating the biological effect of kilohertz low-frequency ultrasound on adherent cell cultures.
Collapse
Affiliation(s)
- Upen S Patel
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| | - Sleiman R Ghorayeb
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA ; Immunology and Inflammation-FIMR, North Shore Hospital, Manhasset, NY USA
| | - Yuki Yamashita
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA
| | - Folorunsho Atanda
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA
| | - A Damien Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| | - Ben A Scheven
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| |
Collapse
|