1
|
Gao H, Liu H, Jia H, Lin Z, Zou Y, Xu Z, Huang S, Tan H, Wu H, Chen W, Gao A. Multi-axis robotic forceps with decoupled pneumatic actuation and force sensing for cochlear implantation. Nat Commun 2025; 16:1648. [PMID: 39952944 PMCID: PMC11828907 DOI: 10.1038/s41467-025-56958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Delicate manual microsurgeries rely on sufficient hands-on experience for safe manipulations. Automated surgical devices can enhance the effectiveness, but developing high-resolution, multi-axis force-sensing devices for micro operations remains challenging. In this study, a 6-axis force-sensing pneumatic forceps with a serial-parallel robotic platform for cochlear implantation is developed. The forceps features a curved body shape embedded with parallel and inclined fiber Bragg grating sensors for 6-axis force sensing, and a pneumatic gripper with decoupled actuation is located at its end for actively grasping and releasing the electrode array. The robotic platform comprises a customized spherical parallel mechanism and a robotic arm, which can provide independent 3-DOF rotations and 3-DOF translations. The feasibility of the developed robotic forceps is validated through cadaveric studies on a temporal bone and a human cadaveric head. In summary, the robotic forceps provides a decoupled mechanism for pneumatic actuation and force sensing, further demonstrating its potential for force interaction and stable operation during robotic microsurgery.
Collapse
Affiliation(s)
- Hongyan Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, PR China
- Department of Automation, Shanghai Jiao Tong University, and the Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, PR China
| | - Huanghua Liu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, PR China
- Department of Automation, Shanghai Jiao Tong University, and the Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, PR China
| | - Huan Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zecai Lin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, PR China
- Department of Automation, Shanghai Jiao Tong University, and the Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, PR China
| | - Yun Zou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, PR China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zheng Xu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, PR China
- Department of Automation, Shanghai Jiao Tong University, and the Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, PR China
| | - Shaoping Huang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, PR China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Haoyue Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hao Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Weidong Chen
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, PR China.
- Department of Automation, Shanghai Jiao Tong University, and the Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, PR China.
| | - Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, PR China.
- Department of Automation, Shanghai Jiao Tong University, and the Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, PR China.
| |
Collapse
|
2
|
Zagabathuni A, Padi KK, Kameswaran M, Subramani K. Development of Automated Tool for Electrode Array Insertion and its Study on Intracochlear Pressure. Laryngoscope 2024; 134:1388-1395. [PMID: 37584398 DOI: 10.1002/lary.30966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Cochlear implantation is the most successful approach for people with profound sensorineural hearing loss. Manual insertion of the electrode array may result in damaging the soft tissue structures and basilar membrane. An automated electrode array insertion device is reported to be less traumatic in cochlear implant surgery. OBJECTIVES The present work develops a simple, reliable, and compact device for automatically inserting the electrode array during cochlear implantation and test the device to observe intracochlear pressure during simulated electrode insertion. METHODS The device actuates the electrode array by a roller mechanism. For testing the automated device, a straight cochlea having the dimension of the scala tympani and a model electrode is developed using a 3D printer. A pressure sensor is utilized to observe the pressure change at different insertional conditions. RESULTS The electrode is inserted into a prototype cochlea at different speeds without any pause, and it is noticed that the pressure is increased with the depth of insertion of the electrode irrespective of the speed of electrode insertion. The rate of pressure change is observed to be increased exponentially with the speed of insertion. CONCLUSION At an insertion speed of 0.15 mm/s, the peak pressure is observed to be 133 Pa, which can be further evaluated in anatomical models for clinical scenarios. LEVEL OF EVIDENCE N/A Laryngoscope, 134:1388-1395, 2024.
Collapse
Affiliation(s)
- Aparna Zagabathuni
- School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut, India
| | - Kishore Kumar Padi
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Kanagaraj Subramani
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
3
|
Huang X, Wang P, Chen J, Huang Y, Liao Q, Huang Y, Liu Z, Peng D. An intelligent grasper to provide real-time force feedback to shorten the learning curve in laparoscopic training. BMC MEDICAL EDUCATION 2024; 24:161. [PMID: 38378608 PMCID: PMC10880316 DOI: 10.1186/s12909-024-05155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND A lack of force feedback in laparoscopic surgery often leads to a steep learning curve to the novices and traditional training system equipped with force feedback need a high educational cost. This study aimed to use a laparoscopic grasper providing force feedback in laparoscopic training which can assist in controlling of gripping forces and improve the learning processing of the novices. METHODS Firstly, we conducted a pre-experiment to verify the role of force feedback in gripping operations and establish the safe gripping force threshold for the tasks. Following this, we proceeded with a four-week training program. Unlike the novices without feedback (Group A2), the novices receiving feedback (Group B2) underwent training that included force feedback. Finally, we completed a follow-up period without providing force feedback to assess the training effect under different conditions. Real-time force parameters were recorded and compared. RESULTS In the pre-experiment, we set the gripping force threshold for the tasks based on the experienced surgeons' performance. This is reasonable as the experienced surgeons have obtained adequate skill of handling grasper. The thresholds for task 1, 2, and 3 were set as 0.731 N, 1.203 N and 0.938 N, respectively. With force feedback, the gripping force applied by the novices with feedback (Group B1) was lower than that of the novices without feedback (Group A1) (p < 0.005). During the training period, the Group B2 takes 6 trails to achieve gripping force of 0.635 N, which is lower than the threshold line, whereas the Group A2 needs 11 trails, meaning that the learning curve of Group B2 was significantly shorter than that of Group A2. Additionally, during the follow-up period, there was no significant decline in force learning, and Group B2 demonstrated better control of gripping operations. The training with force feedback received positive evaluations. CONCLUSION Our study shows that using a grasper providing force feedback in laparoscopic training can help to control the gripping force and shorten the learning curve. It is anticipated that the laparoscopic grasper equipped with FBG sensor is promising to provide force feedback during laparoscopic training, which ultimately shows great potential in laparoscopic surgery.
Collapse
Affiliation(s)
- Xuemei Huang
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Pingping Wang
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jie Chen
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxin Huang
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qiongxiu Liao
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuting Huang
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhengyong Liu
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Dongxian Peng
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
4
|
Manrique-Huarte R, Garaycochea O, Troconis DP, Pérez-Fernández N, Manrique M. Histopathological reaction in the vestibule after cochlear implantation in Macaca fascicularis. J Neurol Sci 2023; 450:120672. [PMID: 37210936 DOI: 10.1016/j.jns.2023.120672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Cochlear implantation surgery (CI) is considered a safe procedure and is the standard treatment for the auditory rehabilitation in patients with severe-to-profound sensorineural hearing loss. Although the development of minimally traumatic surgical concepts (MTSC) have enabled the preservation of residual hearing after the implantation, there is scarce literature regarding the vestibular affection following MTCS. The aim of the study is to analyze histopathologic changes in the vestibule after CI in an animal model (Macaca fascicularis). Cochlear implantation was performed successfully in 14 ears following MTCS. They were classified in two groups upon type of electrode array used. Group A (n = 6) with a FLEX 28 electrode array and Group B (n = 8) with HL14 array. A 6-month follow-up was carried out with periodic objective auditory testing. After their sacrifice, histological processing and subsequent analysis was carried out. Intracochlear findings, vestibular presence of fibrosis, obliteration or collapse is analyzed. Saccule and utricle dimensions and neuroepithelium width is measured. Cochlear implantation was performed successfully in all 14 ears through a round window approach. Mean angle of insertion was >270° for group A and 180-270° for group B. In group A auditory deterioration was observed in Mf 1A, Mf2A and Mf5A with histopathological signs of scala tympani ossification, saccule collapse (Mf1A and Mf2A) and cochlear aqueduct obliteration (Mf5A). Besides, signs of endolymphatic sinus dilatation was seen for Mf2B and Mf5A. Regarding group B, no auditory deterioration was observed. Histopathological signs of endolymphatic sinus dilatation were seen in Mf 2B and Mf 8B. In conclusion, the risk of histological damage of the vestibular organs following minimally traumatic surgical concepts and the soft surgery principles is very low. CI surgery is a safe procedure and it can be done preserving the vestibular structures.
Collapse
Affiliation(s)
- Raquel Manrique-Huarte
- Department of Otorhinolaryngology, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain.
| | - Octavio Garaycochea
- Department of Otorhinolaryngology, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain.
| | - Daniella Parillis Troconis
- Department of Otorhinolaryngology, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain.
| | - Nicolás Pérez-Fernández
- Department of Otorhinolaryngology, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain.
| | - Manuel Manrique
- Department of Otorhinolaryngology, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain.
| |
Collapse
|
5
|
Ren LJ, Yu Y, Zhang YH, Liu XD, Sun ZJ, Yao WJ, Zhang TY, Wang C, Li CL. Three-dimensional finite element analysis on cochlear implantation electrode insertion. Biomech Model Mechanobiol 2022; 22:467-478. [PMID: 36513945 DOI: 10.1007/s10237-022-01657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
Studying the insertion process of cochlear implant (CI) electrode array (EA) is important to ensure successful, sufficient, and safe implantation. A three-dimensional finite element (FE) model was developed to simulate the insertion process. The cochlear structures were reconstructed from an average statistical shape model (SSM) of human cochlea. The electrode is simplified as a long and tapered beam of homogeneous elastic materials, contacting and interacting with the stiff cochlear structures. A quasi-static insertion simulation was conducted, the insertion force and the contact pressure between the electrode and the cochlear wall, were calculated to evaluate the smoothness of insertion and the risk of potential cochlear trauma. Based on this model, different EA designs were analyzed, including the Young's modulus, the straight or bended shape, the normal or a more tapped section size. The influence of the insertion angle was also discussed. Our simulations indicate that reducing the EA Young's modulus, tapering and pre-bending are effective ways to ensure safe and successful EA implantation. This model is beneficial for optimizing EA designs and is potentially useful for designing patient-specific CI surgery.
Collapse
Affiliation(s)
- Liu-Jie Ren
- Department of Facial Plastic Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Yi Yu
- School of Medical Instrumentation, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yu-Heng Zhang
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, 201318, China
| | - Xin-Dong Liu
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, 201318, China
| | - Zeng-Jun Sun
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, 201318, China
| | - Wen-Juan Yao
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200444, China
| | - Tian-Yu Zhang
- Department of Facial Plastic Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Cheng Wang
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, 201318, China.
| | - Chen-Long Li
- Department of Facial Plastic Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
6
|
Starovoyt A, Quirk BC, Putzeys T, Kerckhofs G, Nuyts J, Wouters J, McLaughlin RA, Verhaert N. An optically-guided cochlear implant sheath for real-time monitoring of electrode insertion into the human cochlea. Sci Rep 2022; 12:19234. [PMID: 36357503 PMCID: PMC9649659 DOI: 10.1038/s41598-022-23653-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
In cochlear implant surgery, insertion of perimodiolar electrode arrays into the scala tympani can be complicated by trauma or even accidental translocation of the electrode array within the cochlea. In patients with partial hearing loss, cochlear trauma can not only negatively affect implant performance, but also reduce residual hearing function. These events have been related to suboptimal positioning of the cochlear implant electrode array with respect to critical cochlear walls of the scala tympani (modiolar wall, osseous spiral lamina and basilar membrane). Currently, the position of the electrode array in relation to these walls cannot be assessed during the insertion and the surgeon depends on tactile feedback, which is unreliable and often comes too late. This study presents an image-guided cochlear implant device with an integrated, fiber-optic imaging probe that provides real-time feedback using optical coherence tomography during insertion into the human cochlea. This novel device enables the surgeon to accurately detect and identify the cochlear walls ahead and to adjust the insertion trajectory, avoiding collision and trauma. The functionality of this prototype has been demonstrated in a series of insertion experiments, conducted by experienced cochlear implant surgeons on fresh-frozen human cadaveric cochleae.
Collapse
Affiliation(s)
- Anastasiya Starovoyt
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Bryden C. Quirk
- grid.1010.00000 0004 1936 7304Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Tristan Putzeys
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3000 Leuven, Belgium
| | - Greet Kerckhofs
- grid.7942.80000 0001 2294 713XBiomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-La-Neuve, Belgium ,grid.5596.f0000 0001 0668 7884Department of Materials Science and Engineering, KU Leuven, 3000 Leuven, Belgium ,grid.7942.80000 0001 2294 713XInstitute of Experimental and Clinical Research, UCLouvain, 1200 Woluwé-Saint-Lambert, Belgium ,grid.5596.f0000 0001 0668 7884Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Johan Nuyts
- grid.5596.f0000 0001 0668 7884Department of Imaging and Pathology, Division of Nuclear Medicine, KU Leuven, 3000 Leuven, Belgium ,Nuclear Medicine and Molecular Imaging, Medical Imaging Research Center, 3000 Leuven, Belgium
| | - Jan Wouters
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Robert A. McLaughlin
- grid.1010.00000 0004 1936 7304Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.1012.20000 0004 1936 7910School of Engineering, University of Western Australia, Perth, WA 6009 Australia
| | - Nicolas Verhaert
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Robotics, automation, active electrode arrays, and new devices for cochlear implantation: A contemporary review. Hear Res 2022; 414:108425. [PMID: 34979455 DOI: 10.1016/j.heares.2021.108425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023]
Abstract
In the last two decades, cochlear implant surgery has evolved into a minimally invasive, hearing preservation surgical technique. The devices used during surgery have benefited from technological advances that have allowed modification and possible improvement of the surgical technique. Robotics has recently gained popularity in otology as an effective tool to overcome the surgeon's limitations such as tremor, drift and accurate force control feedback in laboratory testing. Cochlear implantation benefits from robotic assistance in several steps during the surgical procedure: (i) during the approach to the middle ear by automated mastoidectomy and posterior tympanotomy or through a tunnel from the postauricular skin to the middle ear (i.e. direct cochlear access); (ii) a minimally invasive cochleostomy by a robot-assisted drilling tool; (iii) alignment of the correct insertion axis on the basal cochlear turn; (iv) insertion of the electrode array with a motorized insertion tool. In recent years, the development of bone-attached parallel robots and image-guided surgical robotic systems has allowed the first successful cochlear implantation procedures in patients via a single hole drilled tunnel. Several other robotic systems, new materials, sensing technologies applied to the electrodes, and smart devices have been developed, tested in experimental models and finally some have been used in patients with the aim of reducing trauma in cochleostomy, and permitting slow and more accurate insertion of the electrodes. Despite the promising results in laboratory tests in terms of minimal invasiveness, reduced trauma and better hearing preservation, so far, no clinical benefits on residual hearing preservation or better speech performance have been demonstrated. Before these devices can become the standard approach for cochlear implantation, several points still need to be addressed, primarily cost and duration of the procedure. One can hope that improvement in the cost/benefit ratio will expand the technology to every cochlear implantation procedure. Laboratory research and clinical studies on patients should continue with the aim of making intracochlear implant insertion an atraumatic and reversible gesture for total preservation of the inner ear structure and physiology.
Collapse
|
8
|
Aebischer P, Mantokoudis G, Weder S, Anschuetz L, Caversaccio M, Wimmer W. In-Vitro Study of Speed and Alignment Angle in Cochlear Implant Electrode Array Insertions. IEEE Trans Biomed Eng 2021; 69:129-137. [PMID: 34110987 DOI: 10.1109/tbme.2021.3088232] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The insertion of the electrode array is a critical step in cochlear implantation. Herein we comprehensively investigate the impact of the alignment angle and feed-forward speed on deep insertions in artificial scala tympani models with accurate macro-anatomy and controlled frictional properties. METHODS Motorized insertions (n=1033) were performed in six scala tympani models with varying speeds and alignment angles. We evaluated reaction forces and micrographs of the insertion process and developed a mathematical model to estimate the normal force distribution along the electrode arrays. RESULTS Insertions parallel to the cochlear base significantly reduce insertion energies and lead to smoother array movement. Non-constant insertion speeds allow to reduce insertion forces for a fixed total insertion time compared to a constant feed rate. CONCLUSION In cochlear implantation, smoothness and peak forces can be reduced with alignment angles parallel to the scala tympani centerline and with non-constant feed-forward speed profiles. SIGNIFICANCE Our results may help to provide clinical guidelines and improve surgical tools for manual and automated cochlear implantation.
Collapse
|
9
|
Abstract
HYPOTHESIS Animals with cochlear implantation-induced hearing loss will have a lower endocochlear potential (EP) and decreased strial vascular density. BACKGROUND The cause of residual hearing loss following cochlear implantation remains poorly understood. Recent work from our lab has shown a correlation between vascular changes in the cochlear lateral wall and postimplantation hearing loss, suggesting a role of the stria vascularis and EP. METHODS Fourteen young, normal-hearing male albino guinea pigs underwent cochlear implantation using either a cochleostomy (CI-c, n = 9) or an extended round window (CI-eRW, n = 5) approach. Hearing sensitivity was assessed pre- and postoperatively using auditory brainstem response thresholds. Three weeks after implantation, EP measurements were obtained from the first and second turns. Hair cell counts and stria vascularis capillary density measurements were also obtained. RESULTS The implanted group experienced significant threshold elevations at 8 to 24 kHz (mean threshold shift 9.1 ± 1.1 dB), with a more robust threshold shift observed in the CI-eRW group compared to the CI-c group. Implanted animals had a significantly lower first turn EP (81.4 ± 5.1 mV) compared with controls (87.9 ± 6.1 mV). No differences were observed in the second turn (75.8 ± 12.0 mV for implanted animals compared to 76.5 ± 7.0 mV for controls). There were no significant correlations between turn-specific threshold shifts, EP measurements, or strial blood vessel density. CONCLUSIONS Reliable EP measurements can be obtained in chronically implanted guinea pigs. Hearing loss after implantation is not explained by changes in strial vascular density or reductions in EP.
Collapse
|
10
|
Finite Element Modelling of Cochlear Electrode Arrays. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.49.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The implant of cochlear electrode arrays is standard nowadays as a result of the improvement of medical surgery, equipment, and material properties. In this paper, the finite element modeling FEM will be utilized to characterize the mechanical properties of the electrode arrays. The results show that a good agreement between the finite element results and the experimental. Besides, it shows that no significant difference between the tapered and uniform correctional electrodes.
Collapse
|
11
|
Vadivelu AN, Liu Z, Gunawardena DS, Chen B, Tam HY, O'Leary S, Oetomo D. Integrated Force Sensor in a Cochlear Implant for Hearing Preservation Surgery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3819-3822s. [PMID: 31946706 DOI: 10.1109/embc.2019.8856549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cochlear Implant is used for patients with severe hearing loss. It is a neural-prosthesis that stimulates the nerve endings within the cochlea, which is the organ of hearing. The surgical technique involves inserting the electrode array of the implant into a very small "snail-like" spiral structure. During this insertion process, the surgeon's finger tip is not able to perceive the resistance from the contact of the implant and the cochlea's internal structure, below the internal rupture threshold. This can potentially damage vital structures and result in the worsening of residual hearing and poor speech perception. Currently, there is no clinically and commercially available intra-operative force feedback system. A custom made sensor is therefore proposed, integrated within the implant to enable real-time force readings. The device will provide surgeons with the vital force feedback information related to the implants' position within the cochlea. This paper concentrates on demonstrating that the proposed sensor is capable of measuring the contact force below the rupture threshold of the cochlea's internal structure.
Collapse
|
12
|
Shepherd RK, Villalobos J, Burns O, Nayagam DAX. The development of neural stimulators: a review of preclinical safety and efficacy studies. J Neural Eng 2018; 15:041004. [PMID: 29756600 PMCID: PMC6049833 DOI: 10.1088/1741-2552/aac43c] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Given the rapid expansion of the field of neural stimulation and the rigorous regulatory approval requirements required before these devices can be applied clinically, it is important that there is clarity around conducting preclinical safety and efficacy studies required for the development of this technology. APPROACH The present review examines basic design principles associated with the development of a safe neural stimulator and describes the suite of preclinical safety studies that need to be considered when taking a device to clinical trial. MAIN RESULTS Neural stimulators are active implantable devices that provide therapeutic intervention, sensory feedback or improved motor control via electrical stimulation of neural or neuro-muscular tissue in response to trauma or disease. Because of their complexity, regulatory bodies classify these devices in the highest risk category (Class III), and they are therefore required to go through a rigorous regulatory approval process before progressing to market. The successful development of these devices is achieved through close collaboration across disciplines including engineers, scientists and a surgical/clinical team, and the adherence to clear design principles. Preclinical studies form one of several key components in the development pathway from concept to product release of neural stimulators. Importantly, these studies provide iterative feedback in order to optimise the final design of the device. Key components of any preclinical evaluation include: in vitro studies that are focussed on device reliability and include accelerated testing under highly controlled environments; in vivo studies using animal models of the disease or injury in order to assess efficacy and, given an appropriate animal model, the safety of the technology under both passive and electrically active conditions; and human cadaver and ex vivo studies designed to ensure the device's form factor conforms to human anatomy, to optimise the surgical approach and to develop any specialist surgical tooling required. SIGNIFICANCE The pipeline from concept to commercialisation of these devices is long and expensive; careful attention to both device design and its preclinical evaluation will have significant impact on the duration and cost associated with taking a device through to commercialisation. Carefully controlled in vitro and in vivo studies together with ex vivo and human cadaver trials are key components of a thorough preclinical evaluation of any new neural stimulator.
Collapse
Affiliation(s)
- Robert K Shepherd
- Bionics Institute, East Melbourne, Australia. Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | | | | | | |
Collapse
|
13
|
Lo J, Bester C, Collins A, Newbold C, Hampson A, Chambers S, Eastwood H, O'Leary S. Intraoperative force and electrocochleography measurements in an animal model of cochlear implantation. Hear Res 2018; 358:50-58. [DOI: 10.1016/j.heares.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/07/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
|
14
|
Drouillard M, Torres R, Mamelle E, De Seta D, Sterkers O, Ferrary E, Nguyen Y. Influence of electrode array stiffness and diameter on hearing in cochlear implanted guinea pig. PLoS One 2017; 12:e0183674. [PMID: 28837630 PMCID: PMC5570298 DOI: 10.1371/journal.pone.0183674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/08/2017] [Indexed: 11/18/2022] Open
Abstract
During cochlear implantation, electrode array translocation and trauma should be avoided to preserve residual hearing. The aim of our study was to evaluate the effect of physical parameters of the array on residual hearing and cochlear structures during insertion. Three array prototypes with different stiffnesses or external diameters were implanted in normal hearing guinea pigs via a motorized insertion tool carried on a robot-based arm, and insertion forces were recorded. Array prototypes 0.4 and 0.4R had 0.4 mm external diameter and prototype 0.3 had 0.3 mm external diameter. The axial stiffness was set to 1 for the 0.4 prototype and the stiffnesses of the 0.4R and 0.3 prototypes were calculated from this as 6.8 and 0.8 (relative units), respectively. Hearing was assessed preoperatively by the auditory brainstem response (ABR), and then at day 7 and day 30 post-implantation. A study of the macroscopic anatomy was performed on cochleae harvested at day 30 to examine the scala location of the array. At day 7, guinea pigs implanted with the 0.4R array had significantly poorer hearing results than those implanted with the 0.3 array (26±17.7, 44±23.4, 33±20.5 dB, n = 7, vs 5±8.7, 1±11.6, 12±11.5 dB, n = 6, mean±SEM, respectively, at 8, 16 and 24 kHz, p<0.01) or those implanted with the 0.4 array (44±23.4 dB, n = 7, vs 28±21.7 dB, n = 7, at 16 kHz, p<0.05). Hearing remained stable from day 7 to day 30. The maximal peak of insertion force was higher with the 0.4R array than with the 0.3 array (56±23.8 mN, n = 7, vs 26±8.7 mN, n = 6). Observation of the cochleae showed that an incorrectly positioned electrode array or fibrosis were associated with hearing loss ≥40 dB (at 16 kHz). An optimal position in the scala tympani with a flexible and thin array and prevention of fibrosis should be the primary objectives to preserve hearing during cochlear implantation.
Collapse
Affiliation(s)
- Mylène Drouillard
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Inserm, Unité “Réhabilitation chirurgicale mini-invasive et robotisée de l'audition”, Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Renato Torres
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Inserm, Unité “Réhabilitation chirurgicale mini-invasive et robotisée de l'audition”, Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Elisabeth Mamelle
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Inserm, Unité “Réhabilitation chirurgicale mini-invasive et robotisée de l'audition”, Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Daniele De Seta
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Inserm, Unité “Réhabilitation chirurgicale mini-invasive et robotisée de l'audition”, Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Olivier Sterkers
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Inserm, Unité “Réhabilitation chirurgicale mini-invasive et robotisée de l'audition”, Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Evelyne Ferrary
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Inserm, Unité “Réhabilitation chirurgicale mini-invasive et robotisée de l'audition”, Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Yann Nguyen
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Inserm, Unité “Réhabilitation chirurgicale mini-invasive et robotisée de l'audition”, Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Three-Dimensional Force Profile During Cochlear Implantation Depends on Individual Geometry and Insertion Trauma. Ear Hear 2017; 38:e168-e179. [DOI: 10.1097/aud.0000000000000394] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Richardson RT, Thompson AC, Wise AK, Needham K. Challenges for the application of optical stimulation in the cochlea for the study and treatment of hearing loss. Expert Opin Biol Ther 2016; 17:213-223. [PMID: 27960585 DOI: 10.1080/14712598.2017.1271870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Electrical stimulation has long been the most effective strategy for evoking neural activity from bionic devices and has been used with great success in the cochlear implant to allow deaf people to hear speech and sound. Despite its success, the spread of electrical current stimulates a broad region of neural tissue meaning that contemporary devices have limited precision. Optical stimulation as an alternative has attracted much recent interest for its capacity to provide highly focused stimuli, and therefore, potentially improved sensory perception. Given its specificity of activation, optical stimulation may also provide a useful tool in the study of fundamental neuroanatomy and neurophysiological processes. Areas covered: This review examines the advances in optical stimulation - infrared, nanoparticle-enhanced, and optogenetic-based - and its application in the inner ear for the restoration of auditory function following hearing loss. Expert opinion: Initial outcomes suggest that optogenetic-based approaches hold the greatest potential and viability amongst optical techniques for application in the cochlea. The future success of this approach will be governed by advances in the targeted delivery of opsins to auditory neurons, improvements in channel kinetics, development of optical arrays, and innovation of opsins that activate within the optimal near-infrared therapeutic window.
Collapse
Affiliation(s)
- Rachael T Richardson
- a Bionics Institute , East Melbourne , Australia.,b Department of Medical Bionics , University of Melbourne , East Melbourne , Australia
| | | | - Andrew K Wise
- a Bionics Institute , East Melbourne , Australia.,b Department of Medical Bionics , University of Melbourne , East Melbourne , Australia
| | - Karina Needham
- d Department of Surgery (Otolaryngology) , University of Melbourne, Royal Victorian Eye & Ear Hospital , East Melbourne , Australia
| |
Collapse
|
17
|
Llera M, Aellen T, Hervas J, Salvadé Y, Senn P, Le Floch S, Keppner H. Liquid-air based Fabry-Pérot cavity on fiber tip sensor. OPTICS EXPRESS 2016; 24:8054-8065. [PMID: 27137244 DOI: 10.1364/oe.24.008054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper presents a Fabry-Perot fiber tip sensor based on an air-liquid filled cavity. The cavity is sealed off by a thin gold coated membrane of parylene C, between 300 and 350 nm, creating a particularly flexible diaphragm. In order to retrieve and track the cavity of interest from other cavities formed within the sensor tip, a signal processing of the feedback signal is performed by inverse fast Fourier transform. The experimental sensor has been manufactured and tested for temperature, giving cavity length sensitivities of 6.1 nm/°C and 9.6 nm/°C for temperature increase and decrease respectively. The external gas pressure response gives a sensitivity of 15 nm/kPa. The fiber sensor has also been adapted for force sensing after silicone embedment and has shown a sensitivity of about 8.7 nm/mN. Finally, the sensor has been tested on insertion into a human temporal bone, proving that it could be an interesting candidate for insertion force monitoring for robotic cochlear implantation.
Collapse
|
18
|
Effect of embedded optical fibres on the mechanical properties of cochlear electrode arrays. Med Eng Phys 2016; 38:155-62. [DOI: 10.1016/j.medengphy.2015.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/11/2015] [Accepted: 11/24/2015] [Indexed: 11/22/2022]
|
19
|
Cochlear Dummy Electrodes for Insertion Training and Research Purposes: Fabrication, Mechanical Characterization, and Experimental Validation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:574209. [PMID: 26247024 PMCID: PMC4506834 DOI: 10.1155/2015/574209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/09/2015] [Indexed: 12/05/2022]
Abstract
To develop skills sufficient for hearing preservation cochlear implant surgery, surgeons need to perform several electrode insertion trials in ex vivo temporal bones, thereby consuming relatively expensive electrode carriers. The objectives of this study were to evaluate the insertion characteristics of cochlear electrodes in a plastic scala tympani model and to fabricate radio opaque polymer filament dummy electrodes of equivalent mechanical properties. In addition, this study should aid the design and development of new cochlear electrodes. Automated insertion force measurement is a new technique to reproducibly analyze and evaluate the insertion dynamics and mechanical characteristics of an electrode. Mechanical properties of MED-EL's FLEX28, FLEX24, and FLEX20 electrodes were assessed with the help of an automated insertion tool. Statistical analysis of the overall mechanical behavior of the electrodes and factors influencing the insertion force are discussed. Radio opaque dummy electrodes of comparable characteristics were fabricated based on insertion force measurements. The platinum-iridium wires were replaced by polymer filament to provide sufficient stiffness to the electrodes and to eradicate the metallic artifacts in X-ray and computed tomography (CT) images. These low-cost dummy electrodes are cheap alternatives for surgical training and for in vitro, ex vivo, and in vivo research purposes.
Collapse
|