1
|
Zhang X, Zhang S, Lu B, Wang Y, Li N, Peng Y, Hou J, Qiu J, Li F, Yao D, Xu P. Dynamic corticomuscular multi-regional modulations during finger movement revealed by time-varying network analysis. J Neural Eng 2022; 19. [PMID: 35523144 DOI: 10.1088/1741-2552/ac6d7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A body movement involves the complicated information exchange between the central and peripheral systems, which is characterized by the dynamical coupling patterns between the multiple brain areas and multiple muscle units. How the central and peripheral nerves coordinate multiple internal brain regions and muscle groups is very important when accomplishing the action. APPROACH In this study, we extend the adaptive directed transfer function to construct the time-varying networks between multiple corticomuscular regions and divide the movement duration into different stages by the time-varying corticomuscular network patterns. MAIN RESULTS The inter dynamical corticomuscular network demonstrated the different interaction patterns between the central and peripheral systems during the different hand movement stages. The muscles transmit bottom-up movement information in the preparation stage, but the brain issues top-down control commands and dominates in the execution stage, and finally, the brain's dominant advantage gradually weakens in the relaxation stage. When classifying the different movement stages based on time-varying corticomuscular network indicators, an average accuracy above 74% could be reliably achieved. SIGNIFICANCE The findings of this study help deepen our knowledge of central-peripheral nerve pathways and coordination mechanisms, and also provide opportunities for monitoring and regulating movement disorders.
Collapse
Affiliation(s)
- Xiabing Zhang
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Shu Zhang
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Bin Lu
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Yifeng Wang
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Ning Li
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Yueheng Peng
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Jingming Hou
- Third Military Medical University Southwest Hospital, No. 30, Gaotanyanzheng Street, Shapingba District, Chongqing, 400038, CHINA
| | - Jing Qiu
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Fali Li
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Dezhong Yao
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Peng Xu
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| |
Collapse
|
2
|
Li P, Li C, Bore JC, Si Y, Li F, Cao Z, Zhang Y, Wang G, Zhang Z, Yao D, Xu P. L1-norm based time-varying brain neural network and its application to dynamic analysis for motor imagery. J Neural Eng 2022; 19. [PMID: 35234668 DOI: 10.1088/1741-2552/ac59a4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE EEG-based motor imagery (MI) brain-computer interface offers a promising way to improve the efficiency of motor rehabilitation and motor skill learning. In recent years, the power of dynamic network analysis for MI classification has been proved. In fact, its usability mainly depends on the accurate estimation of brain connection. However, traditional dynamic network estimation strategies such as adaptive directed transfer function (ADTF) are designed in the L2-norm. Usually, they estimate a series of pseudo connections caused by outliers, which results in biased features and further limits its online application. Thus, how to accurately infer dynamic causal relationship under outlier influence is urgent. APPROACH In this work, we proposed a novel ADTF, which solves the dynamic system in the L1-norm space (L1-ADTF), so as to restrict the outlier influence. To enhance its convergence, we designed an iteration strategy with the alternating direction method of multipliers (ADMM), which could be used for the solution of the dynamic state-space model restricted in the L1-norm space. Furthermore, we compared L1-ADTF to traditional ADTF and its dual extension across both simulation and real EEG experiments. MAIN RESULTS A quantitative comparison between L1-ADTF and other ADTFs in simulation studies demonstrates that fewer bias errors and more desirable dynamic state transformation patterns can be captured by the L1-ADTF. Application to real MI EEG datasets seriously noised by ocular artifacts also reveals the efficiency of the proposed L1-ADTF approach to extract the time-varying brain neural network patterns, even when more complex noises are involved. SIGNIFICANCE The L1-ADTF may not only be capable of tracking time-varying brain network state drifts robustly but may also be useful in solving a wide range of dynamic systems such as trajectory tracking problems and dynamic neural networks.
Collapse
Affiliation(s)
- Peiyang Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, NO.2,Chongwen Road,Nan'an District, Chongqing, China, Chongqing, 400065, CHINA
| | - Cunbo Li
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| | - Joyce Chelangat Bore
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| | - Yajing Si
- Department of Psychology, Xinxiang Medical University, No. 601, Jinsui Avenue, Hongqi District, Xinxiang, Henan, 453003, CHINA
| | - Fali Li
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 610054, CHINA
| | - Zehong Cao
- University of South Australia, Adelaide, SA 5095, Australia, Adelaide, South Australia, 5001, AUSTRALIA
| | - Yangsong Zhang
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang,Sichuan, P.R.China, Mianyang, 621010, CHINA
| | - Gang Wang
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 610054, CHINA
| | - Zhijun Zhang
- South China University of Technology, 777 Xingye Avenue East, Panyu District, Guangzhou, Guangzhou, 510640, CHINA
| | - Dezhong Yao
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| | - Peng Xu
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| |
Collapse
|
4
|
Tian Y, Ma L, Xu W, Chen S. The Influence of Listening to Music on Adults with Left-behind Experience Revealed by EEG-based Connectivity. Sci Rep 2020; 10:7575. [PMID: 32372046 PMCID: PMC7200695 DOI: 10.1038/s41598-020-64381-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/16/2020] [Indexed: 11/12/2022] Open
Abstract
The human brain has a close relationship with music. Music-induced structural and functional brain changes have been demonstrated in the healthy adult. In the present study, adults with left-behind experience (ALB) were divided into two groups. The experimental group (ALB-E) took part in the music therapy experiment with three stages, including before listening to music (pre-stage), initially listening to music (mid-stage) and after listening to music (post-stage). The control group (ALB-C) did not participate in music therapy. Scalp resting-state EEGs of ALB were recorded during the three stages. We found no significant frequency change in the ALB-C group. In the ALB-E group, only the theta power spectrum was significantly different at all stages. The topographical distributions of the theta power spectrum represented change in trends from the frontal regions to the occipital regions. The result of Granger causal analysis (GCA), based on theta frequency, showed a stronger information flow from the middle frontal gyrus to the middle temporal gyrus (MFG → MTG) in the left hemisphere at the pre-stage compared to the post-stage. Additionally, the experimental group showed a weaker information flow from inferior gyrus to superior temporal gyrus (IFG → STG) in the right hemisphere at post-test stage compared to the ALB-C group. Our results demonstrate that listening to music can play a positive role on improving negative feelings for individuals with left behind experience.
Collapse
Affiliation(s)
- Yin Tian
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, 400065, China.
| | - Liang Ma
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, 400065, China
| | - Wei Xu
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, 400065, China
| | - Sifan Chen
- Sichuan Heguang Clinical Psychology Institute, ChengDu, 610074, China
| |
Collapse
|
5
|
Sohrabpour A, Ye S, Worrell GA, Zhang W, He B. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach. IEEE Trans Biomed Eng 2016; 63:2474-2487. [PMID: 27740473 PMCID: PMC5152676 DOI: 10.1109/tbme.2016.2616474] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. METHODS Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). RESULTS Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. CONCLUSION Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). SIGNIFICANCE The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.
Collapse
Affiliation(s)
- Abbas Sohrabpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Shuai Ye
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | | | - Wenbo Zhang
- Minnesota Epilepsy Group, United Hospital, MN 55102 USA and also with the Department of Neurology, University of Minnesota, Minneapolis, 55455 USA
| | - Bin He
- Department of Biomedical Engineering, and the Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|