1
|
Liu XY, Wang WL, Liu M, Chen MY, Pereira T, Doda DY, Ke YF, Wang SY, Wen D, Tong XG, Li WG, Yang Y, Han XD, Sun YL, Song X, Hao CY, Zhang ZH, Liu XY, Li CY, Peng R, Song XX, Yasi A, Pang MJ, Zhang K, He RN, Wu L, Chen SG, Chen WJ, Chao YG, Hu CG, Zhang H, Zhou M, Wang K, Liu PF, Chen C, Geng XY, Qin Y, Gao DR, Song EM, Cheng LL, Chen X, Ming D. Recent applications of EEG-based brain-computer-interface in the medical field. Mil Med Res 2025; 12:14. [PMID: 40128831 PMCID: PMC11931852 DOI: 10.1186/s40779-025-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Brain-computer interfaces (BCIs) represent an emerging technology that facilitates direct communication between the brain and external devices. In recent years, numerous review articles have explored various aspects of BCIs, including their fundamental principles, technical advancements, and applications in specific domains. However, these reviews often focus on signal processing, hardware development, or limited applications such as motor rehabilitation or communication. This paper aims to offer a comprehensive review of recent electroencephalogram (EEG)-based BCI applications in the medical field across 8 critical areas, encompassing rehabilitation, daily communication, epilepsy, cerebral resuscitation, sleep, neurodegenerative diseases, anesthesiology, and emotion recognition. Moreover, the current challenges and future trends of BCIs were also discussed, including personal privacy and ethical concerns, network security vulnerabilities, safety issues, and biocompatibility.
Collapse
Affiliation(s)
- Xiu-Yun Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Wen-Long Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Miao Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Ming-Yi Chen
- Department of Micro/Nano Electronics, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Tânia Pereira
- Institute for Systems and Computer Engineering, Technology and Science, 4099-002, Porto, Portugal
| | - Desta Yakob Doda
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Yu-Feng Ke
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Dong Wen
- School of Intelligence Science and Technology, University of Sciences and Technology Beijing, Beijing, 100083, China
| | | | - Wei-Guang Li
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Xiao-Di Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu-Lin Sun
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Cong-Ying Hao
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Zi-Hua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xin-Yang Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Chun-Yang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Rui Peng
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xiao-Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Abi Yasi
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Mei-Jun Pang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Kuo Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Run-Nan He
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Le Wu
- Department of Electric Engineering and Information Science, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Geng Chen
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen-Jin Chen
- Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yan-Gong Chao
- The First Hospital of Tsinghua University, Beijing, 100016, China
| | - Cheng-Gong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Heng Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Beijing, 110122, China
| | - Min Zhou
- Department of Critical Care Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, 230031, China
| | - Kun Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Peng-Fei Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Chen Chen
- School of Computer Science, Fudan University, Shanghai, 200438, China
| | - Xin-Yi Geng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yun Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dong-Rui Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - En-Ming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Long-Long Cheng
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China.
| | - Xun Chen
- Department of Electric Engineering and Information Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Dong Ming
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China.
| |
Collapse
|
2
|
Cui W, Xiang Y, Wang Y, Yu T, Liao XF, Hu B, Li Y. Deep Multiview Module Adaption Transfer Network for Subject-Specific EEG Recognition. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:2917-2930. [PMID: 38252578 DOI: 10.1109/tnnls.2024.3350085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Transfer learning is one of the popular methods to solve the problem of insufficient data in subject-specific electroencephalogram (EEG) recognition tasks. However, most existing approaches ignore the difference between subjects and transfer the same feature representations from source domain to different target domains, resulting in poor transfer performance. To address this issue, we propose a novel subject-specific EEG recognition method named deep multiview module adaption transfer (DMV-MAT) network. First, we design a universal deep multiview (DMV) network to generate different types of discriminative features from multiple perspectives, which improves the generalization performance by extensive feature sets. Second, module adaption transfer (MAT) is designed to evaluate each module by the feature distributions of source and target samples, which can generate an optimal weight sharing strategy for each target subject and promote the model to learn domain-invariant and domain-specific features simultaneously. We conduct extensive experiments in two EEG recognition tasks, i.e., motor imagery (MI) and seizure prediction, on four datasets. Experimental results demonstrate that the proposed method achieves promising performance compared with the state-of-the-art methods, indicating a feasible solution for subject-specific EEG recognition tasks. Implementation codes are available at https://github.com/YangLibuaa/DMV-MAT.
Collapse
|
3
|
Xiong H, Yan Y, Chen Y, Liu J. Graph convolution network-based eeg signal analysis: a review. Med Biol Eng Comput 2025:10.1007/s11517-025-03295-0. [PMID: 39883372 DOI: 10.1007/s11517-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN. An exhaustive classification of methods and a systematic analysis of key modules, such as brain map construction, node feature extraction, and GCN architecture design, are presented. In addition, we pay special attention to several key research issues related to GCN. This review enhances the understanding of the future potential of GCN in the field of EEG signal analysis. At the same time, several valuable development directions are sorted out for researchers in related fields, such as analysing the applicability of different GCN layers, building task-oriented GCN models, and improving adaptation to limited data.
Collapse
Affiliation(s)
- Hui Xiong
- School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, 300387, China.
| | - Yan Yan
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, 300387, China
- School of Artificial Intelligence, Tiangong University, Tianjin, 300387, China
| | - Yimei Chen
- School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jinzhen Liu
- School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
4
|
Zhu X, Meng M, Yan Z, Luo Z. Motor Imagery EEG Classification Based on Multi-Domain Feature Rotation and Stacking Ensemble. Brain Sci 2025; 15:50. [PMID: 39851418 PMCID: PMC11764101 DOI: 10.3390/brainsci15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Decoding motor intentions from electroencephalogram (EEG) signals is a critical component of motor imagery-based brain-computer interface (MI-BCIs). In traditional EEG signal classification, effectively utilizing the valuable information contained within the electroencephalogram is crucial. OBJECTIVES To further optimize the use of information from various domains, we propose a novel framework based on multi-domain feature rotation transformation and stacking ensemble for classifying MI tasks. METHODS Initially, we extract the features of Time Domain, Frequency domain, Time-Frequency domain, and Spatial Domain from the EEG signals, and perform feature selection for each domain to identify significant features that possess strong discriminative capacity. Subsequently, local rotation transformations are applied to the significant feature set to generate a rotated feature set, enhancing the representational capacity of the features. Next, the rotated features were fused with the original significant features from each domain to obtain composite features for each domain. Finally, we employ a stacking ensemble approach, where the prediction results of base classifiers corresponding to different domain features and the set of significant features undergo linear discriminant analysis for dimensionality reduction, yielding discriminative feature integration as input for the meta-classifier for classification. RESULTS The proposed method achieves average classification accuracies of 92.92%, 89.13%, and 86.26% on the BCI Competition III Dataset IVa, BCI Competition IV Dataset I, and BCI Competition IV Dataset 2a, respectively. CONCLUSIONS Experimental results show that the method proposed in this paper outperforms several existing MI classification methods, such as the Common Time-Frequency-Spatial Patterns and the Selective Extract of the Multi-View Time-Frequency Decomposed Spatial, in terms of classification accuracy and robustness.
Collapse
Affiliation(s)
| | - Ming Meng
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (X.Z.); (Z.Y.); (Z.L.)
| | | | | |
Collapse
|
5
|
Kassiri H, Muneeb A, Salahi R, Dabbaghian A. Closed-Loop Implantable Neurostimulators for Individualized Treatment of Intractable Epilepsy: A Review of Recent Developments, Ongoing Challenges, and Future Opportunities. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1268-1295. [PMID: 40030458 DOI: 10.1109/tbcas.2024.3456825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Driven by its proven therapeutic efficacy in treating movement disorders and psychiatric conditions, neurostimulation has emerged as a promising intervention for intractable epilepsy. Researchers envision an advanced implantable device capable of long-term neuronal monitoring, high spatio-temporal resolution data processing, and timely responsive neurostimulation upon seizure detection. However, the stringent energy constraints of implantable devices and significant inter-patient variability in neural activity pose substantial challenges and opportunities for biomedical circuits and systems researchers. For seizure detection, various ASIC solutions employing both deterministic and data-driven algorithms have been developed. These solutions leverage a subset of numerous signal features (spanning time and frequency domains) and classifiers (such as SVMs, DNNs, SNNs) to achieve notable success in terms of detection accuracy, latency, and energy efficiency. Implementations vary widely in computational approaches (digital, mixed-signal, analog, spike-based), training strategies (online versus offline), and application targets (patient-specific versus cross-patient). In terms of treatment, recent efforts have focused on the personalization of stimulation waveforms to enhance therapeutic efficacy. This personalization faces complex challenges, including a limited understanding of how stimulation parameters influence neuronal activity, the lack of a comprehensive brain model to capture its intricate electrochemical dynamics, and recording neural signals in the presence of stimulation artifacts. This review provides a comprehensive overview of the field, detailing the foundational principles, recent advancements, and ongoing challenges in enhancing the diagnostic accuracy, treatment efficacy, and energy efficiency of implantable patient-optimized neurostimulators. We also discuss potential future directions, emphasizing the need for standardized performance metrics, advanced computational models, and adaptive stimulation protocols to realize the full potential of this transformative technology.
Collapse
|
6
|
Djemili R, Djemili I. Nonlinear and chaos features over EMD/VMD decomposition methods for ictal EEG signals detection. Comput Methods Biomech Biomed Engin 2024; 27:2091-2110. [PMID: 37861376 DOI: 10.1080/10255842.2023.2271603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
The detection and identification of epileptic seizures attracted considerable relevance for the neurophysiologists. In order to accomplish the detection of epileptic seizures or equivalently ictal EEG states, this paper proposes the use of nonlinear and chaos features not computed over the raw EEG signals as it was commonly experienced, but instead over intrinsic mode functions (IMFs) extracted subsequently to the application of newly time-frequency signal decomposition methods on the basis of empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. The first step within the proposed methodology is to excerpt the various components of the IMFs by EMD and VMD decomposition methods on time EEG segments. The Hjorth parameters, the Hurst exponent, the Recurrence Quantification Analysis (RQA), the detrended fluctuation analysis (DFA), the Largest Lyapunov Exponent (LLE), The Higuchi and Katz fractal dimensions (HFD and KFD), seven nonlinear and chaos features computed over the IMFs were investigated and their classification performances evaluated using the k-nearest neighbor (KNN) and the multilayer perceptron neural network (MLPNN) classifiers. Furthermore, the combination of the best nonlinear features has also been examined in terms of sensitivity, specificity and overall classification accuracy. The publicly available Bonn EEG dataset has been has been employed to validate the efficiency of the proposed method for detecting ictal EEG signals from normal or interictal EEG segments. Among the several experiments involved in the current study, the ultimate results establish that the overall classification accuracy can achieve 100%, 99.45%, 99.8%, 99.8%, 98.6% and 99.1% for six different epileptic seizure detection case problems studied, confirming the ability of the proposed methodology in helping the clinic practitioners in the epilepsy detection care units to classify seizure events with a great confidence.
Collapse
Affiliation(s)
| | - Ilyes Djemili
- Lab. Electrotech, Université 20 Août, Skikda, Algeria
| |
Collapse
|
7
|
Prabhakar SK, Lee JJ, Won DO. Ensemble Fusion Models Using Various Strategies and Machine Learning for EEG Classification. Bioengineering (Basel) 2024; 11:986. [PMID: 39451362 PMCID: PMC11505020 DOI: 10.3390/bioengineering11100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Electroencephalography (EEG) helps to assess the electrical activities of the brain so that the neuronal activities of the brain are captured effectively. EEG is used to analyze many neurological disorders, as it serves as a low-cost equipment. To diagnose and treat every neurological disorder, lengthy EEG signals are needed, and different machine learning and deep learning techniques have been developed so that the EEG signals could be classified automatically. In this work, five ensemble models are proposed for EEG signal classification, and the main neurological disorder analyzed in this paper is epilepsy. The first proposed ensemble technique utilizes an equidistant assessment and ranking determination mode with the proposed Enhance the Sum of Connection and Distance (ESCD)-based feature selection technique for the classification of EEG signals; the second proposed ensemble technique utilizes the concept of Infinite Independent Component Analysis (I-ICA) and multiple classifiers with majority voting concept; the third proposed ensemble technique utilizes the concept of Genetic Algorithm (GA)-based feature selection technique and bagging Support Vector Machine (SVM)-based classification model. The fourth proposed ensemble technique utilizes the concept of Hilbert Huang Transform (HHT) and multiple classifiers with GA-based multiparameter optimization, and the fifth proposed ensemble technique utilizes the concept of Factor analysis with Ensemble layer K nearest neighbor (KNN) classifier. The best results are obtained when the Ensemble hybrid model using the equidistant assessment and ranking determination method with the proposed ESCD-based feature selection technique and Support Vector Machine (SVM) classifier is utilized, achieving a classification accuracy of 89.98%.
Collapse
Affiliation(s)
- Sunil Kumar Prabhakar
- Department of Artificial Intelligence Convergence, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Jae Jun Lee
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
| | - Dong-Ok Won
- Department of Artificial Intelligence Convergence, Hallym University, Chuncheon 24252, Republic of Korea;
| |
Collapse
|
8
|
Zhu L, Wang W, Huang A, Ying N, Xu P, Zhang J. An efficient channel recurrent Criss-cross attention network for epileptic seizure prediction. Med Eng Phys 2024; 130:104213. [PMID: 39160021 DOI: 10.1016/j.medengphy.2024.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Epilepsy is a chronic disease caused by repeated abnormal discharge of neurons in the brain. Accurately predicting the onset of epilepsy can effectively improve the quality of life for patients with the condition. While there are many methods for detecting epilepsy, EEG is currently considered one of the most effective analytical tools due to the abundant information it provides about brain activity. The aim of this study is to explore potential time-frequency and channel features from multi-channel epileptic EEG signals and to develop a patient-specific seizure prediction network. In this paper, an epilepsy EEG signal classification algorithm called Channel Recurrent Criss-cross Attention Network (CRCANet) is proposed. Firstly, the spectrograms processed by the short-time fourier transform is input into a Convolutional Neural Network (CNN). Then, the spectrogram feature map obtained in the previous step is input into the channel attention module to establish correlations between channels. Subsequently, the feature diagram containing channel attention characteristics is input into the recurrent criss-cross attention module to enhance the information content of each pixel. Finally, two fully connected layers are used for classification. We validated the method on 13 patients in the public CHB-MIT scalp EEG dataset, achieving an average accuracy of 93.8 %, sensitivity of 94.3 %, and specificity of 93.5 %. The experimental results indicate that CRCANet can effectively capture the time-frequency and channel characteristics of EEG signals while improving training efficiency.
Collapse
Affiliation(s)
- Lei Zhu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China.
| | - Wentao Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China
| | - Aiai Huang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China
| | - Nanjiao Ying
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China
| | - Ping Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China
| | - Jianhai Zhang
- School of Computer Science, Hangzhou Dianzi University, Hangzhou 310000, PR China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, PR China
| |
Collapse
|
9
|
Nie J, Shu H, Wu F. An epilepsy classification based on FFT and fully convolutional neural network nested LSTM. Front Neurosci 2024; 18:1436619. [PMID: 39139499 PMCID: PMC11319253 DOI: 10.3389/fnins.2024.1436619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Background and objective Epilepsy, which is associated with neuronal damage and functional decline, typically presents patients with numerous challenges in their daily lives. An early diagnosis plays a crucial role in managing the condition and alleviating the patients' suffering. Electroencephalogram (EEG)-based approaches are commonly employed for diagnosing epilepsy due to their effectiveness and non-invasiveness. In this study, a classification method is proposed that use fast Fourier Transform (FFT) extraction in conjunction with convolutional neural networks (CNN) and long short-term memory (LSTM) models. Methods Most methods use traditional frameworks to classify epilepsy, we propose a new approach to this problem by extracting features from the source data and then feeding them into a network for training and recognition. It preprocesses the source data into training and validation data and then uses CNN and LSTM to classify the style of the data. Results Upon analyzing a public test dataset, the top-performing features in the fully CNN nested LSTM model for epilepsy classification are FFT features among three types of features. Notably, all conducted experiments yielded high accuracy rates, with values exceeding 96% for accuracy, 93% for sensitivity, and 96% for specificity. These results are further benchmarked against current methodologies, showcasing consistent and robust performance across all trials. Our approach consistently achieves an accuracy rate surpassing 97.00%, with values ranging from 97.95 to 99.83% in individual experiments. Particularly noteworthy is the superior accuracy of our method in the AB versus (vs.) CDE comparison, registering at 99.06%. Conclusion Our method exhibits precise classification abilities distinguishing between epileptic and non-epileptic individuals, irrespective of whether the participant's eyes are closed or open. Furthermore, our technique shows remarkable performance in effectively categorizing epilepsy type, distinguishing between epileptic ictal and interictal states versus non-epileptic conditions. An inherent advantage of our automated classification approach is its capability to disregard EEG data acquired during states of eye closure or eye-opening. Such innovation holds promise for real-world applications, potentially aiding medical professionals in diagnosing epilepsy more efficiently.
Collapse
Affiliation(s)
| | - Huazhong Shu
- Laboratory of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China
| | | |
Collapse
|
10
|
Gill TS, Zaidi SSH, Shirazi MA. Attention-based deep convolutional neural network for classification of generalized and focal epileptic seizures. Epilepsy Behav 2024; 155:109732. [PMID: 38636140 DOI: 10.1016/j.yebeh.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Epilepsy affects over 50 million people globally. Electroencephalography is critical for epilepsy diagnosis, but manual seizure classification is time-consuming and requires extensive expertise. This paper presents an automated multi-class seizure classification model using EEG signals from the Temple University Hospital Seizure Corpus ver. 1.5.2. 11 features including time-based correlation, time-based eigenvalues, power spectral density, frequency-based correlation, frequency-based eigenvalues, sample entropy, spectral entropy, logarithmic sum, standard deviation, absolute mean, and ratio of Daubechies D4 wavelet transformed coefficients were extracted from 10-second sliding windows across channels. The model combines multi-head self-attention mechanism with a deep convolutional neural network (CNN) to classify seven subtypes of generalized and focal epileptic seizures. The model achieved 0.921 weighted accuracy and 0.902 weighted F1 score in classifying focal onset non-motor, generalized onset non-motor, simple partial, complex partial, absence, tonic, and tonic-clonic seizures. In comparison, a CNN model without multi-head attention achieved 0.767 weighted accuracy. Ablation studies were conducted to validate the importance of transformer encoders and attention. The promising classification results demonstrate the potential of deep learning for handling EEG complexity and improving epilepsy diagnosis. This seizure classification model could enable timely interventions when translated into clinical practice.
Collapse
Affiliation(s)
- Taimur Shahzad Gill
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Syed Sajjad Haider Zaidi
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Muhammad Ayaz Shirazi
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| |
Collapse
|
11
|
Wang B, Xu Y, Peng S, Wang H, Li F. Detection Method of Epileptic Seizures Using a Neural Network Model Based on Multimodal Dual-Stream Networks. SENSORS (BASEL, SWITZERLAND) 2024; 24:3360. [PMID: 38894151 PMCID: PMC11174829 DOI: 10.3390/s24113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder, and its diagnosis mainly relies on the analysis of electroencephalogram (EEG) signals. However, the raw EEG signals contain limited recognizable features, and in order to increase the recognizable features in the input of the network, the differential features of the signals, the amplitude spectrum and the phase spectrum in the frequency domain are extracted to form a two-dimensional feature vector. In order to solve the problem of recognizing multimodal features, a neural network model based on a multimodal dual-stream network is proposed, which uses a mixture of one-dimensional convolution, two-dimensional convolution and LSTM neural networks to extract the spatial features of the EEG two-dimensional vectors and the temporal features of the signals, respectively, and combines the advantages of the two networks, using the hybrid neural network to extract both the temporal and spatial features of the signals at the same time. In addition, a channel attention module was used to focus the model on features related to seizures. Finally, multiple sets of experiments were conducted on the Bonn and New Delhi data sets, and the highest accuracy rates of 99.69% and 97.5% were obtained on the test set, respectively, verifying the superiority of the proposed model in the task of epileptic seizure detection.
Collapse
Affiliation(s)
- Baiyang Wang
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (B.W.)
| | - Yidong Xu
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (B.W.)
| | - Siyu Peng
- School of Information Engineering, Changji University, Changji Hui Autonomous Prefecture, Changji 831100, China
| | - Hongjun Wang
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (B.W.)
| | - Fang Li
- School of Information Engineering, Changji University, Changji Hui Autonomous Prefecture, Changji 831100, China
| |
Collapse
|
12
|
Mallick S, Baths V. Novel deep learning framework for detection of epileptic seizures using EEG signals. Front Comput Neurosci 2024; 18:1340251. [PMID: 38590939 PMCID: PMC11000706 DOI: 10.3389/fncom.2024.1340251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Epilepsy is a chronic neurological disorder characterized by abnormal electrical activity in the brain, often leading to recurrent seizures. With 50 million people worldwide affected by epilepsy, there is a pressing need for efficient and accurate methods to detect and diagnose seizures. Electroencephalogram (EEG) signals have emerged as a valuable tool in detecting epilepsy and other neurological disorders. Traditionally, the process of analyzing EEG signals for seizure detection has relied on manual inspection by experts, which is time-consuming, labor-intensive, and susceptible to human error. To address these limitations, researchers have turned to machine learning and deep learning techniques to automate the seizure detection process. Methods In this work, we propose a novel method for epileptic seizure detection, leveraging the power of 1-D Convolutional layers in combination with Bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) and Average pooling Layer as a single unit. This unit is repeatedly used in the proposed model to extract the features. The features are then passed to the Dense layers to predict the class of the EEG waveform. The performance of the proposed model is verified on the Bonn dataset. To assess the robustness and generalizability of our proposed architecture, we employ five-fold cross-validation. By dividing the dataset into five subsets and iteratively training and testing the model on different combinations of these subsets, we obtain robust performance measures, including accuracy, sensitivity, and specificity. Results Our proposed model achieves an accuracy of 99-100% for binary classifications into seizure and normal waveforms, 97.2%-99.2% accuracy for classifications into normal-interictal-seizure waveforms, 96.2%-98.4% accuracy for four class classification and accuracy of 95.81%-98% for five class classification. Discussion Our proposed models have achieved significant improvements in the performance metrics for the binary classifications and multiclass classifications. We demonstrate the effectiveness of the proposed architecture in accurately detecting epileptic seizures from EEG signals by using EEG signals of varying lengths. The results indicate its potential as a reliable and efficient tool for automated seizure detection, paving the way for improved diagnosis and management of epilepsy.
Collapse
Affiliation(s)
- Sayani Mallick
- Cognitive Neuroscience Laboratory, Department of Electrical and Electronics Engineering, BITS Pilani, KK Birla Goa Campus, Pilani, Goa, India
| | - Veeky Baths
- Cognitive Neuroscience Laboratory, Department of Biological Sciences, BITS Pilani, KK Birla Goa Campus, Pilani, Goa, India
| |
Collapse
|
13
|
Peng R, Du Z, Zhao C, Luo J, Liu W, Chen X, Wu D. Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification. IEEE Trans Neural Syst Rehabil Eng 2024; 32:831-839. [PMID: 38349833 DOI: 10.1109/tnsre.2024.3365713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification.
Collapse
|
14
|
Ingolfsson TM, Benatti S, Wang X, Bernini A, Ducouret P, Ryvlin P, Beniczky S, Benini L, Cossettini A. Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradient-boosted tree classifiers. Sci Rep 2024; 14:2980. [PMID: 38316856 PMCID: PMC10844293 DOI: 10.1038/s41598-024-52551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Electroencephalography (EEG) is widely used to monitor epileptic seizures, and standard clinical practice consists of monitoring patients in dedicated epilepsy monitoring units via video surveillance and cumbersome EEG caps. Such a setting is not compatible with long-term tracking under typical living conditions, thereby motivating the development of unobtrusive wearable solutions. However, wearable EEG devices present the challenges of fewer channels, restricted computational capabilities, and lower signal-to-noise ratio. Moreover, artifacts presenting morphological similarities to seizures act as major noise sources and can be misinterpreted as seizures. This paper presents a combined seizure and artifacts detection framework targeting wearable EEG devices based on Gradient Boosted Trees. The seizure detector achieves nearly zero false alarms with average sensitivity values of [Formula: see text] for 182 seizures from the CHB-MIT dataset and [Formula: see text] for 25 seizures from the private dataset with no preliminary artifact detection or removal. The artifact detector achieves a state-of-the-art accuracy of [Formula: see text] (on the TUH-EEG Artifact Corpus dataset). Integrating artifact and seizure detection significantly reduces false alarms-up to [Formula: see text] compared to standalone seizure detection. Optimized for a Parallel Ultra-Low Power platform, these algorithms enable extended monitoring with a battery lifespan reaching 300 h. These findings highlight the benefits of integrating artifact detection in wearable epilepsy monitoring devices to limit the number of false positives.
Collapse
Affiliation(s)
| | - Simone Benatti
- University of Bologna, 40126, Bologna, Italy
- University of Modena and Reggio Emilia, 41121, Reggio Emilia, Italy
| | | | - Adriano Bernini
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Pauline Ducouret
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Philippe Ryvlin
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Sandor Beniczky
- Aarhus University Hospital, 8200, Aarhus, Denmark
- Danish Epilepsy Centre (Filadelfia), 4293, Dianalund, Denmark
| | - Luca Benini
- ETH Zürich, D-ITET, 8092, Zürich, Switzerland
- University of Bologna, 40126, Bologna, Italy
| | | |
Collapse
|
15
|
Krishnan PT, Erramchetty SK, Balusa BC. Advanced framework for epilepsy detection through image-based EEG signal analysis. Front Hum Neurosci 2024; 18:1336157. [PMID: 38317649 PMCID: PMC10839025 DOI: 10.3389/fnhum.2024.1336157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Background Recurrent and unpredictable seizures characterize epilepsy, a neurological disorder affecting millions worldwide. Epilepsy diagnosis is crucial for timely treatment and better outcomes. Electroencephalography (EEG) time-series data analysis is essential for epilepsy diagnosis and surveillance. Complex signal processing methods used in traditional EEG analysis are computationally demanding and difficult to generalize across patients. Researchers are using machine learning to improve epilepsy detection, particularly visual feature extraction from EEG time-series data. Objective This study examines the application of a Gramian Angular Summation Field (GASF) approach for the analysis of EEG signals. Additionally, it explores the utilization of image features, specifically the Scale-Invariant Feature Transform (SIFT) and Oriented FAST and Rotated BRIEF (ORB) techniques, for the purpose of epilepsy detection in EEG data. Methods The proposed methodology encompasses the transformation of EEG signals into images based on GASF, followed by the extraction of features utilizing SIFT and ORB techniques, and ultimately, the selection of relevant features. A state-of-the-art machine learning classifier is employed to classify GASF images into two categories: normal EEG patterns and focal EEG patterns. Bern-Barcelona EEG recordings were used to test the proposed method. Results This method classifies EEG signals with 96% accuracy using SIFT features and 94% using ORB features. The Random Forest (RF) classifier surpasses state-of-the-art approaches in precision, recall, F1-score, specificity, and Area Under Curve (AUC). The Receiver Operating Characteristic (ROC) curve shows that Random Forest outperforms Support Vector Machine (SVM) and k-Nearest Neighbors (k-NN) classifiers. Significance The suggested method has many advantages over time-series EEG data analysis and machine learning classifiers used in epilepsy detection studies. A novel image-based preprocessing pipeline using GASF for robust image synthesis and SIFT and ORB for feature extraction is presented here. The study found that the suggested method can accurately discriminate between normal and focal EEG signals, improving patient outcomes through early and accurate epilepsy diagnosis.
Collapse
Affiliation(s)
| | | | - Bhanu Chander Balusa
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
16
|
Tao W, Wang Z, Wong CM, Jia Z, Li C, Chen X, Chen CLP, Wan F. ADFCNN: Attention-Based Dual-Scale Fusion Convolutional Neural Network for Motor Imagery Brain-Computer Interface. IEEE Trans Neural Syst Rehabil Eng 2024; 32:154-165. [PMID: 38090841 DOI: 10.1109/tnsre.2023.3342331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Convolutional neural networks (CNNs) have been successfully applied to motor imagery (MI)-based brain-computer interface (BCI). Nevertheless, single-scale CNN fail to extract abundant information over a wide spectrum from EEG signals, while typical multi-scale CNNs cannot effectively fuse information from different scales with concatenation-based methods. To overcome these challenges, we propose a new scheme equipped with attention-based dual-scale fusion convolutional neural network (ADFCNN), which jointly extracts and fuses EEG spectral and spatial information at different scales. This scheme also provides novel insight through self-attention for effective information fusion from different scales. Specifically, temporal convolutions with two different kernel sizes identify EEG μ and β rhythms, while spatial convolutions at two different scales generate global and detailed spatial information, respectively, and the self-attention mechanism performs feature fusion based on the internal similarity of the concatenated features extracted by the dual-scale CNN. The proposed scheme achieves the superior performance compared with state-of-the-art methods in subject-specific motor imagery recognition on BCI Competition IV dataset 2a, 2b and OpenBMI dataset, with the cross-session average classification accuracies of 79.39% and significant improvements of 9.14% on BCI-IV2a, 87.81% and 7.66% on BCI-IV2b, 65.26% and 7.2% on OpenBMI dataset, and the within-session average classification accuracies of 86.87% and significant improvements of 10.89% on BCI-IV2a, 87.26% and 8.07% on BCI-IV2b, 84.29% and 5.17% on OpenBMI dataset, respectively. What is more, ablation experiments are conducted to investigate the mechanism and demonstrate the effectiveness of the dual-scale joint temporal-spatial CNN and self-attention modules. Visualization is also used to reveal the learning process and feature distribution of the model.
Collapse
|
17
|
Shi S, Liu W. B2-ViT Net: Broad Vision Transformer Network With Broad Attention for Seizure Prediction. IEEE Trans Neural Syst Rehabil Eng 2024; 32:178-188. [PMID: 38145523 DOI: 10.1109/tnsre.2023.3346955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Seizure prediction are necessary for epileptic patients. The global spatial interactions among channels, and long-range temporal dependencies play a crucial role in seizure onset prediction. In addition, it is necessary to search for seizure prediction features in a vast space to learn new generalized feature representations. Many previous deep learning algorithms have achieved some results in automatic seizure prediction. However, most of them do not consider global spatial interactions among channels and long-range temporal dependencies together, and only learn the feature representation in the deep space. To tackle these issues, in this study, an novel bi-level programming seizure prediction model, B2-ViT Net, is proposed for learning the new generalized spatio-temporal long-range correlation features, which can characterize the global interactions among channels in spatial, and long-range dependencies in temporal required for seizure prediction. In addition, the proposed model can comprehensively learn generalized seizure prediction features in a vast space due to its strong deep and broad feature search capabilities. Sufficient experiments are conducted on two public datasets, CHB-MIT and Kaggle datasets. Compared with other existing methods, our proposed model has shown promising results in automatic seizure prediction tasks, and provides a certain degree of interpretability.
Collapse
|
18
|
Zhong X, Liu G, Dong X, Li C, Li H, Cui H, Zhou W. Automatic Seizure Detection Based on Stockwell Transform and Transformer. SENSORS (BASEL, SWITZERLAND) 2023; 24:77. [PMID: 38202939 PMCID: PMC10781173 DOI: 10.3390/s24010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Epilepsy is a chronic neurological disease associated with abnormal neuronal activity in the brain. Seizure detection algorithms are essential in reducing the workload of medical staff reviewing electroencephalogram (EEG) records. In this work, we propose a novel automatic epileptic EEG detection method based on Stockwell transform and Transformer. First, the S-transform is applied to the original EEG segments, acquiring accurate time-frequency representations. Subsequently, the obtained time-frequency matrices are grouped into different EEG rhythm blocks and compressed as vectors in these EEG sub-bands. After that, these feature vectors are fed into the Transformer network for feature selection and classification. Moreover, a series of post-processing methods were introduced to enhance the efficiency of the system. When evaluating the public CHB-MIT database, the proposed algorithm achieved an accuracy of 96.15%, a sensitivity of 96.11%, a specificity of 96.38%, a precision of 96.33%, and an area under the curve (AUC) of 0.98 in segment-based experiments, along with a sensitivity of 96.57%, a false detection rate of 0.38/h, and a delay of 20.62 s in event-based experiments. These outstanding results demonstrate the feasibility of implementing this seizure detection method in future clinical applications.
Collapse
Affiliation(s)
- Xiangwen Zhong
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Guoyang Liu
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Chuanyu Li
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Haotian Li
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Haozhou Cui
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 260100, China
- Shenzhen Institute, Shandong University, Shenzhen 518057, China
| |
Collapse
|
19
|
Zhang H, Zhou QQ, Chen H, Hu XQ, Li WG, Bai Y, Han JX, Wang Y, Liang ZH, Chen D, Cong FY, Yan JQ, Li XL. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Mil Med Res 2023; 10:67. [PMID: 38115158 PMCID: PMC10729551 DOI: 10.1186/s40779-023-00502-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Electroencephalography (EEG) is a non-invasive measurement method for brain activity. Due to its safety, high resolution, and hypersensitivity to dynamic changes in brain neural signals, EEG has aroused much interest in scientific research and medical fields. This article reviews the types of EEG signals, multiple EEG signal analysis methods, and the application of relevant methods in the neuroscience field and for diagnosing neurological diseases. First, three types of EEG signals, including time-invariant EEG, accurate event-related EEG, and random event-related EEG, are introduced. Second, five main directions for the methods of EEG analysis, including power spectrum analysis, time-frequency analysis, connectivity analysis, source localization methods, and machine learning methods, are described in the main section, along with different sub-methods and effect evaluations for solving the same problem. Finally, the application scenarios of different EEG analysis methods are emphasized, and the advantages and disadvantages of similar methods are distinguished. This article is expected to assist researchers in selecting suitable EEG analysis methods based on their research objectives, provide references for subsequent research, and summarize current issues and prospects for the future.
Collapse
Affiliation(s)
- Hao Zhang
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Qing-Qi Zhou
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China
| | - He Chen
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiao-Qing Hu
- Department of Psychology, the State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518057, Guangdong, China
| | - Wei-Guang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yang Bai
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Jun-Xia Han
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Yao Wang
- School of Communication Science, Beijing Language and Culture University, Beijing, 100083, China
| | - Zhen-Hu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| | - Dan Chen
- School of Computer Science, Wuhan University, Wuhan, 430072, China.
| | - Feng-Yu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116081, Liaoning, China.
| | - Jia-Qing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China.
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, China.
| |
Collapse
|
20
|
Wang Z, Liu F, Shi S, Xia S, Peng F, Wang L, Ai S, Xu Z. Automatic epileptic seizure detection based on persistent homology. Front Physiol 2023; 14:1227952. [PMID: 38192741 PMCID: PMC10773586 DOI: 10.3389/fphys.2023.1227952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Epilepsy is a prevalent brain disease, which is quite difficult-to-treat or cure. This study developed a novel automatic seizure detection method based on the persistent homology method. In this study, a Vietoris-Rips (VR) complex filtration model was constructed based on the EEG data. And the persistent homology method was applied to calculate the VR complex filtration barcodes to describe the topological changes of EEG recordings. Afterward, the barcodes as the topological characteristics of EEG signals were fed into the GoogLeNet for classification. The persistent homology is applicable for multi-channel EEG data analysis, where the global topological information is calculated and the features are extracted by considering the multi-channel EEG data as a whole, without the multiple calculations or the post-stitching. Three databases were used to evaluate the proposed approach and the results showed that the approach had high performances in the epilepsy detection. The results obtained from the CHB-MIT Database recordings revealed that the proposed approach can achieve a segment-based averaged accuracy, sensitivity and specificity values of 97.05%, 96.71% and 97.38%, and achieve an event-based averaged sensitivity value of 100% with 1.22 s average detection latency. In addition, on the Siena Scalp Database, the proposed method yields averaged accuracy, sensitivity and specificity values of 96.42%, 95.23% and 97.6%. Multiple tasks of the Bonn Database also showed achieved accuracy of 99.55%, 98.63%, 98.28% and 97.68%, respectively. The experimental results on these three EEG databases illustrate the efficiency and robustness of our approach for automatic detection of epileptic seizure.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Feifei Liu
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shengxiang Xia
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Fulai Peng
- Medical Rehabilitation Research Center, Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Lin Wang
- The Fifth People’s Hospital of Jinan, Jinan, China
| | - Sen Ai
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Zheng Xu
- School of Science, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
21
|
Du Z, Peng R, Liu W, Li W, Wu D. Mixture of Experts for EEG-Based Seizure Subtype Classification. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4781-4789. [PMID: 38032784 DOI: 10.1109/tnsre.2023.3337802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Epilepsy is a pervasive neurological disorder affecting approximately 50 million individuals worldwide. Electroencephalogram (EEG) based seizure subtype classification plays a crucial role in epilepsy diagnosis and treatment. However, automatic seizure subtype classification faces at least two challenges: 1) class imbalance, i.e., certain seizure types are considerably less common than others; and 2) no a priori knowledge integration, so that a large number of labeled EEG samples are needed to train a machine learning model, particularly, deep learning. This paper proposes two novel Mixture of Experts (MoE) models, Seizure-MoE and Mix-MoE, for EEG-based seizure subtype classification. Particularly, Mix-MoE adequately addresses the above two challenges: 1) it introduces a novel imbalanced sampler to address significant class imbalance; and 2) it incorporates a priori knowledge of manual EEG features into the deep neural network to improve the classification performance. Experiments on two public datasets demonstrated that the proposed Seizure-MoE and Mix-MoE outperformed multiple existing approaches in cross-subject EEG-based seizure subtype classification. Our proposed MoE models may also be easily extended to other EEG classification problems with severe class imbalance, e.g., sleep stage classification.
Collapse
|
22
|
Belyaev M, Murugappan M, Velichko A, Korzun D. Entropy-Based Machine Learning Model for Fast Diagnosis and Monitoring of Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2023; 23:8609. [PMID: 37896703 PMCID: PMC10610702 DOI: 10.3390/s23208609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
This study presents the concept of a computationally efficient machine learning (ML) model for diagnosing and monitoring Parkinson's disease (PD) using rest-state EEG signals (rs-EEG) from 20 PD subjects and 20 normal control (NC) subjects at a sampling rate of 128 Hz. Based on the comparative analysis of the effectiveness of entropy calculation methods, fuzzy entropy showed the best results in diagnosing and monitoring PD using rs-EEG, with classification accuracy (ARKF) of ~99.9%. The most important frequency range of rs-EEG for PD-based diagnostics lies in the range of 0-4 Hz, and the most informative signals were mainly received from the right hemisphere of the head. It was also found that ARKF significantly decreased as the length of rs-EEG segments decreased from 1000 to 150 samples. Using a procedure for selecting the most informative features, it was possible to reduce the computational costs of classification by 11 times, while maintaining an ARKF ~99.9%. The proposed method can be used in the healthcare internet of things (H-IoT), where low-performance edge devices can implement ML sensors to enhance human resilience to PD.
Collapse
Affiliation(s)
- Maksim Belyaev
- Institute of Physics and Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
| | - Murugappan Murugappan
- Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Block 4, Kuwait City 13133, Kuwait;
- Department of Electronics and Communication Engineering, Faculty of Engineering, Vels Institute of Sciences, Technology, and Advanced Studies, Chennai 600117, India
- Centre of Excellence for Unmanned Aerial Systems (CoEUAS), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Andrei Velichko
- Institute of Physics and Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
| | - Dmitry Korzun
- Department of Computer Science, Institute of Mathematics and Information Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
| |
Collapse
|
23
|
Wang X, Wang Y, Liu D, Wang Y, Wang Z. Automated recognition of epilepsy from EEG signals using a combining space-time algorithm of CNN-LSTM. Sci Rep 2023; 13:14876. [PMID: 37684278 PMCID: PMC10491650 DOI: 10.1038/s41598-023-41537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease' condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists.
Collapse
Affiliation(s)
- Xiashuang Wang
- The Second Academy of China Aerospace Science and Industry Corporation (CASIC), 50 Yongding Road, Haidian District, Beijing, China.
| | - Yinglei Wang
- The Second Academy of China Aerospace Science and Industry Corporation (CASIC), 50 Yongding Road, Haidian District, Beijing, China
| | - Dunwei Liu
- The Second Academy of China Aerospace Science and Industry Corporation (CASIC), 50 Yongding Road, Haidian District, Beijing, China
| | - Ying Wang
- The Second Academy of China Aerospace Science and Industry Corporation (CASIC), 50 Yongding Road, Haidian District, Beijing, China
| | - Zhengjun Wang
- The Second Academy of China Aerospace Science and Industry Corporation (CASIC), 50 Yongding Road, Haidian District, Beijing, China
| |
Collapse
|
24
|
Prabhakar SK, Won DO. Performance comparison of bio-inspired and learning-based clustering analysis with machine learning techniques for classification of EEG signals. Front Artif Intell 2023; 6:1156269. [PMID: 37415937 PMCID: PMC10321130 DOI: 10.3389/frai.2023.1156269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
A comprehensive analysis of an automated system for epileptic seizure detection is explained in this work. When a seizure occurs, it is quite difficult to differentiate the non-stationary patterns from the discharges occurring in a rhythmic manner. The proposed approach deals with it efficiently by clustering it initially for the sake of feature extraction by using six different techniques categorized under two different methods, e.g., bio-inspired clustering and learning-based clustering. Learning-based clustering includes K-means clusters and Fuzzy C-means (FCM) clusters, while bio-inspired clusters include Cuckoo search clusters, Dragonfly clusters, Firefly clusters, and Modified Firefly clusters. Clustered values were then classified with 10 suitable classifiers, and after the performance comparison analysis of the EEG time series, the results proved that this methodology flow achieved a good performance index and a high classification accuracy. A comparatively higher classification accuracy of 99.48% was achieved when Cuckoo search clusters were utilized with linear support vector machines (SVM) for epilepsy detection. A high classification accuracy of 98.96% was obtained when K-means clusters were classified with a naive Bayesian classifier (NBC) and Linear SVM, and similar results were obtained when FCM clusters were classified with Decision Trees yielding the same values. The comparatively lowest classification accuracy, at 75.5%, was obtained when Dragonfly clusters were classified with the K-nearest neighbor (KNN) classifier, and the second lowest classification accuracy of 75.75% was obtained when Firefly clusters were classified with NBC.
Collapse
|
25
|
Wu Y, Hu Q, Li Y, Guo L, Zhu X, Wu X. OPP-Miner: Order-Preserving Sequential Pattern Mining for Time Series. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:3288-3300. [PMID: 35560099 DOI: 10.1109/tcyb.2022.3169327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional sequential pattern mining methods were designed for symbolic sequence. As a collection of measurements in chronological order, a time series needs to be discretized into symbolic sequences, and then users can apply sequential pattern mining methods to discover interesting patterns in time series. The discretization will not only cause the loss of some important information, which partially destroys the continuity of time series, but also ignore the order relations between time-series values. Inspired by order-preserving matching, this article explores a new method called order-preserving sequential pattern (OPP) mining, which does not need to discretize time series into symbolic sequences and represents patterns based on the order relations of time series. An inherent advantage of such representation is that the trend of a time series can be represented by the relative order of the values underneath time series. We propose an OPP-Miner algorithm to mine frequent patterns in time series with the same relative order. OPP-Miner employs the filtration and verification strategies to calculate the support and uses the pattern fusion strategy to generate candidate patterns. To compress the result set, we also study to find the maximal OPPs. Experimental results validate that OPP-Miner is not only efficient but can also discover similar subsequences in time series. In addition, case studies show that our algorithms have high utility in analyzing the COVID-19 epidemic by identifying critical trends and improve the clustering performance. The algorithms and data can be downloaded from https://github.com/wuc567/Pattern-Mining/tree/master/OPP-Miner.
Collapse
|
26
|
Yang L, Wei X, Liu F, Zhu X, Zhou F. Automatic feature learning model combining functional connectivity network and graph regularization for depression detection. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Priyadarshini BI, Reddy DK. Modified remora optimization based matching pursuit with density peak clustering for localization of epileptic seizure onset zones. EVOLVING SYSTEMS 2023. [DOI: 10.1007/s12530-023-09488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
28
|
Eltrass AS, Tayel MB, El-Qady AF. Identification and classification of epileptic EEG signals using invertible constant- Qtransform-based deep convolutional neural network. J Neural Eng 2022; 19. [PMID: 36541556 DOI: 10.1088/1741-2552/aca82c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Context.Epilepsy is the most widespread disorder of the nervous system, affecting humans of all ages and races. The most common diagnostic test in epilepsy is the electroencephalography (EEG).Objective.In this paper, a novel automated deep learning approach based on integrating a pre-trained convolutional neural network (CNN) structure, called AlexNet, with the constant-Qnon-stationary Gabor transform (CQ-NSGT) algorithm is proposed for classifying seizure versus seizure-free EEG records.Approach.The CQ-NSGT method is introduced to transform the input 1D EEG signal into 2D spectrogram which is sent to the AlexNet CNN model. The AlexNet architecture is utilized to capture the discriminating features of the 2D image corresponding to each EEG signal in order to distinguish seizure and non-seizure subjects using multi-layer perceptron algorithm.Main results. The robustness of the introduced CQ-NSGT technique in transforming the 1D EEG signals into 2D spectrograms is assessed by comparing its classification results with the continuous wavelet transform method, and the results elucidate the high performance of the CQ-NSGT technique. The suggested epileptic seizure classification framework is investigated with clinical EEG data acquired from the Bonn University database, and the experimental results reveal the superior performance of the proposed framework over other state-of-the-art approaches with an accuracy of 99.56%, sensitivity of 99.12%, specificity of 99.67%, and precision of 98.69%.Significance.This elucidates the importance of the proposed automated system in helping neurologists to accurately interpret and classify epileptic EEG records without necessitating tedious visual inspection or massive data analysis for long-term EEG signals.
Collapse
Affiliation(s)
- Ahmed S Eltrass
- Electrical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Mazhar B Tayel
- Electrical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Qady
- Communications and Electronics Department, Higher Institute of Engineering and Technology King Marriott Academy, Alexandria, Egypt
| |
Collapse
|
29
|
Kovács P, Böck C, Tschoellitsch T, Huemer M, Meier J. Diagnostic quality assessment for low-dimensional ECG representations. Comput Biol Med 2022; 150:106086. [PMID: 36191392 DOI: 10.1016/j.compbiomed.2022.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/11/2022] [Accepted: 09/03/2022] [Indexed: 11/03/2022]
Abstract
There have been several attempts to quantify the diagnostic distortion caused by algorithms that perform low-dimensional electrocardiogram (ECG) representation. However, there is no universally accepted quantitative measure that allows the diagnostic distortion arising from denoising, compression, and ECG beat representation algorithms to be determined. Hence, the main objective of this work was to develop a framework to enable biomedical engineers to efficiently and reliably assess diagnostic distortion resulting from ECG processing algorithms. We propose a semiautomatic framework for quantifying the diagnostic resemblance between original and denoised/reconstructed ECGs. Evaluation of the ECG must be done manually, but is kept simple and does not require medical training. In a case study, we quantified the agreement between raw and reconstructed (denoised) ECG recordings by means of kappa-based statistical tests. The proposed methodology takes into account that the observers may agree by chance alone. Consequently, for the case study, our statistical analysis reports the "true", beyond-chance agreement in contrast to other, less robust measures, such as simple percent agreement calculations. Our framework allows efficient assessment of clinically important diagnostic distortion, a potential side effect of ECG (pre-)processing algorithms. Accurate quantification of a possible diagnostic loss is critical to any subsequent ECG signal analysis, for instance, the detection of ischemic ST episodes in long-term ECG recordings.
Collapse
Affiliation(s)
- Péter Kovács
- Department of Numerical Analysis, Eötvös Loránd University, Pázmány Péter sétány 1/c., Budapest, 1117, Hungary.
| | - Carl Böck
- JKU LIT SAL eSPML Lab, Institute of Signal Processing, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria.
| | - Thomas Tschoellitsch
- Clinic of Anesthesiology and Intensive Care Medicine, Johannes Kepler University Linz, Krankenhausstraße 9, Linz, 4020, Austria.
| | - Mario Huemer
- Institute of Signal Processing, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria.
| | - Jens Meier
- Clinic of Anesthesiology and Intensive Care Medicine, Johannes Kepler University Linz, Krankenhausstraße 9, Linz, 4020, Austria.
| |
Collapse
|
30
|
Peng R, Zhao C, Jiang J, Kuang G, Cui Y, Xu Y, Du H, Shao J, Wu D. TIE-EEGNet: Temporal Information Enhanced EEGNet for Seizure Subtype Classification. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2567-2576. [PMID: 36063519 DOI: 10.1109/tnsre.2022.3204540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electroencephalogram (EEG) based seizure subtype classification is very important in clinical diagnostics. However, manual seizure subtype classification is expensive and time-consuming, whereas automatic classification usually needs a large number of labeled samples for model training. This paper proposes an EEGNet-based slim deep neural network, which relieves the labeled data requirement in EEG-based seizure subtype classification. A temporal information enhancement module with sinusoidal encoding is used to augment the first convolution layer of EEGNet. A training strategy for automatic hyper-parameter selection is also proposed. Experiments on the public TUSZ dataset and our own CHSZ dataset with infants and children demonstrated that our proposed TIE-EEGNet outperformed several traditional and deep learning models in cross-subject seizure subtype classification. Additionally, it also achieved the best performance in a challenging transfer learning scenario. Both our code and the CHSZ dataset are publicized.
Collapse
|
31
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
32
|
Karunakar Reddy V, Kumar AV R. Multi-channel neuro signal classification using Adam-based coyote optimization enabled deep belief network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Wang J, Wu X. A deep learning refinement strategy based on efficient channel attention for atrial fibrillation and atrial flutter signals identification. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Koorathota S, Khan Z, Lapborisuth P, Sajda P. Multimodal Neurophysiological Transformer for Emotion Recognition. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3563-3567. [PMID: 36086657 DOI: 10.1109/embc48229.2022.9871421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding neural function often requires multiple modalities of data, including electrophysiogical data, imaging techniques, and demographic surveys. In this paper, we introduce a novel neurophysiological model to tackle major challenges in modeling multimodal data. First, we avoid non-alignment issues between raw signals and extracted, frequency-domain features by addressing the issue of variable sampling rates. Second, we encode modalities through "cross-attention" with other modalities. Lastly, we utilize properties of our parent transformer architecture to model long-range dependencies between segments across modalities and assess intermediary weights to better understand how source signals affect prediction. We apply our Multimodal Neurophysiological Transformer (MNT) to predict valence and arousal in an existing open-source dataset. Experiments on non-aligned multimodal time-series show that our model performs similarly and, in some cases, outperforms existing methods in classification tasks. In addition, qualitative analysis suggests that MNT is able to model neural influences on autonomic activity in predicting arousal. Our architecture has the potential to be fine-tuned to a variety of downstream tasks, including for BCI systems.
Collapse
|
35
|
Kaushik G, Gaur P, Sharma RR, Pachori RB. EEG signal based seizure detection focused on Hjorth parameters from tunable-Q wavelet sub-bands. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Prabhakar SK, Rajaguru H, Kim C, Won DO. A Fusion-Based Technique With Hybrid Swarm Algorithm and Deep Learning for Biosignal Classification. Front Hum Neurosci 2022; 16:895761. [PMID: 35721347 PMCID: PMC9203681 DOI: 10.3389/fnhum.2022.895761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
The vital data about the electrical activities of the brain are carried by the electroencephalography (EEG) signals. The recordings of the electrical activity of brain neurons in a rhythmic and spontaneous manner from the scalp surface are measured by EEG. One of the most important aspects in the field of neuroscience and neural engineering is EEG signal analysis, as it aids significantly in dealing with the commercial applications as well. To uncover the highly useful information for neural classification activities, EEG studies incorporated with machine learning provide good results. In this study, a Fusion Hybrid Model (FHM) with Singular Value Decomposition (SVD) Based Estimation of Robust Parameters is proposed for efficient feature extraction of the biosignals and to understand the essential information it has for analyzing the brain functionality. The essential features in terms of parameter components are extracted using the developed hybrid model, and a specialized hybrid swarm technique called Hybrid Differential Particle Artificial Bee (HDPAB) algorithm is proposed for feature selection. To make the EEG more practical and to be used in a plethora of applications, the robust classification of these signals is necessary thereby relying less on the trained professionals. Therefore, the classification is done initially using the proposed Zero Inflated Poisson Mixture Regression Model (ZIPMRM) and then it is also classified with a deep learning methodology, and the results are compared with other standard machine learning techniques. This proposed flow of methodology is validated on a few standard Biosignal datasets, and finally, a good classification accuracy of 98.79% is obtained for epileptic dataset and 98.35% is obtained for schizophrenia dataset.
Collapse
Affiliation(s)
- Sunil Kumar Prabhakar
- Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, South Korea
| | - Harikumar Rajaguru
- Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam, India
| | - Chulho Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | - Dong-Ok Won
- Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, South Korea
- *Correspondence: Dong-Ok Won,
| |
Collapse
|
37
|
Harishvijey A, Benadict Raja J. Automated technique for EEG signal processing to detect seizure with optimized Variable Gaussian Filter and Fuzzy RBFELM classifier. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Sharma R, Arora C, Rehalia A, Bhardwaj A. Fruitfly optimizer with deep neural network for the detection of brain tumours using EEG signals. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2036352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ruchi Sharma
- Department of Electronics and Communication Engineering, Bharati Vidyapeeth College of Engineering, Delhi, India
| | - Charu Arora
- Department of Applied Sciences, Bharati Vidyapeeth College of Engineering, Delhi, India
| | - Arvind Rehalia
- Department of Information Technology, Bharati Vidyapeeth College of Engineering, Delhi, India
| | - Anil Bhardwaj
- Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
39
|
Yan X, Yang D, Lin Z, Vucetic B. Significant Low-dimensional Spectral-temporal Features for Seizure Detection. IEEE Trans Neural Syst Rehabil Eng 2022; 30:668-677. [PMID: 35245199 DOI: 10.1109/tnsre.2022.3156931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Absence seizure as a generalized onset seizure, simultaneously spreading seizure to both sides of the brain, involves around ten-second sudden lapses of consciousness. It common occurs in children than adults, which affects living quality even threats lives. Absence seizure can be confused with inattentive attention-deficit hyperactivity disorder since both have similar symptoms, such as inattention and daze. Therefore, it is necessary to detect absence seizure onset. However, seizure onset detection in electroencephalography (EEG) signals is a challenging task due to the non-stereotyped seizure activities as well as their stochastic and non-stationary characteristics in nature. Joint spectral-temporal features are believed to contain sufficient and powerful feature information for absence seizure detection. However, the resulting high-dimensional features involve redundant information and require heavy computational load. Here, we discover significant low-dimensional spectral-temporal features in terms of mean-standard deviation of wavelet transform coefficient (MS-WTC), based on which a novel absence seizure detection framework is developed. The EEG signals are transformed into the spectral-temporal domain, with their low-dimensional features fed into a convolutional neural network. Superior detection performance is achieved on the widely-used benchmark dataset as well as a clinical dataset from the Chinese 301 Hospital. For the former, seven classification tasks were evaluated with the accuracy from 99.8% to 100.0%, while for the latter, the method achieved a mean accuracy of 94.7%, overwhelming other methods with low-dimensional temporal and spectral features. Experimental results on two seizure datasets demonstrate reliability, efficiency and stability of our proposed MS-WTC method, validating the significance of the extracted low-dimensional spectral-temporal features.
Collapse
|
40
|
Zhang S, Liu G, Xiao R, Cui W, Cai J, Hu X, Sun Y, Qiu J, Qi Y. A combination of statistical parameters for epileptic seizure detection and classification using VMD and NLTWSVM. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Rout SK, Sahani M, Dora C, Biswal PK, Biswal B. An efficient epileptic seizure classification system using empirical wavelet transform and multi-fuse reduced deep convolutional neural network with digital implementation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Anuragi A, Singh Sisodia D, Pachori RB. Epileptic-seizure classification using phase-space representation of FBSE-EWT based EEG sub-band signals and ensemble learners. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Dai C, Wu J, Pi D, Becker SI, Cui L, Zhang Q, Johnson B. Brain EEG Time-Series Clustering Using Maximum-Weight Clique. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:357-371. [PMID: 32149677 DOI: 10.1109/tcyb.2020.2974776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brain electroencephalography (EEG), the complex, weak, multivariate, nonlinear, and nonstationary time series, has been recently widely applied in neurocognitive disorder diagnoses and brain-machine interface developments. With its specific features, unlabeled EEG is not well addressed by conventional unsupervised time-series learning methods. In this article, we handle the problem of unlabeled EEG time-series clustering and propose a novel EEG clustering algorithm, that we call mwcEEGc. The idea is to map the EEG clustering to the maximum-weight clique (MWC) searching in an improved Fréchet similarity-weighted EEG graph. The mwcEEGc considers the weights of both vertices and edges in the constructed EEG graph and clusters EEG based on their similarity weights instead of calculating the cluster centroids. To the best of our knowledge, it is the first attempt to cluster unlabeled EEG trials using MWC searching. The mwcEEGc achieves high-quality clusters with respect to intracluster compactness as well as intercluster scatter. We demonstrate the superiority of mwcEEGc over ten state-of-the-art unsupervised learning/clustering approaches by conducting detailed experimentations with the standard clustering validity criteria on 14 real-world brain EEG datasets. We also present that mwcEEGc satisfies the theoretical properties of clustering, such as richness, consistency, and order independence.
Collapse
|
44
|
Jing J, Pang X, Pan Z, Fan F, Meng Z. Classification and identification of epileptic EEG signals based on signal enhancement. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Koganemaru S, Mizuno F, Takahashi T, Takemura Y, Irisawa H, Matsuhashi M, Mima T, Mizushima T, Kansaku K. Event-Related Desynchronization and Corticomuscular Coherence Observed During Volitional Swallow by Electroencephalography Recordings in Humans. Front Hum Neurosci 2021; 15:643454. [PMID: 34899209 PMCID: PMC8664381 DOI: 10.3389/fnhum.2021.643454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Swallowing in humans involves many cortical areas although it is partly mediated by a series of brainstem reflexes. Cortical motor commands are sent to muscles during swallow. Previous works using magnetoencephalography showed event-related desynchronization (ERD) during swallow and corticomuscular coherence (CMC) during tongue movements in the bilateral sensorimotor and motor-related areas. However, there have been few analogous works that use electroencephalography (EEG). We investigated the ERD and CMC in the bilateral sensorimotor, premotor, and inferior prefrontal areas during volitional swallow by EEG recordings in 18 healthy human subjects. As a result, we found a significant ERD in the beta frequency band and CMC in the theta, alpha, and beta frequency bands during swallow in those cortical areas. These results suggest that EEG can detect the desynchronized activity and oscillatory interaction between the cortex and pharyngeal muscles in the bilateral sensorimotor, premotor, and inferior prefrontal areas during volitional swallow in humans.
Collapse
Affiliation(s)
- Satoko Koganemaru
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Physiology, Dokkyo Medical University, Mibu, Japan
| | - Fumiya Mizuno
- Division of Rehabilitation Medicine, Dokkyo Medical University Hospital, Mibu, Japan
| | | | - Yuu Takemura
- Department of Rehabilitation Medicine, Dokkyo Medical University, Mibu, Japan
| | - Hiroshi Irisawa
- Department of Rehabilitation Medicine, Dokkyo Medical University, Mibu, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Takashi Mizushima
- Department of Rehabilitation Medicine, Dokkyo Medical University, Mibu, Japan
| | - Kenji Kansaku
- Department of Physiology, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
46
|
Hao C, Wang R, Li M, Ma C, Cai Q, Gao Z. Convolutional neural network based on recurrence plot for EEG recognition. CHAOS (WOODBURY, N.Y.) 2021; 31:123120. [PMID: 34972327 DOI: 10.1063/5.0062242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Electroencephalogram (EEG) is a typical physiological signal. The classification of EEG signals is of great significance to human beings. Combining recurrence plot and convolutional neural network (CNN), we develop a novel method for classifying EEG signals. We select two typical EEG signals, namely, epileptic EEG and fatigue driving EEG, to verify the effectiveness of our method. We construct recurrence plots from EEG signals. Then, we build a CNN framework to classify the EEG signals under different brain states. For the classification of epileptic EEG signals, we design three different experiments to evaluate the performance of our method. The results suggest that the proposed framework can accurately distinguish the normal state and the seizure state of epilepsy. Similarly, for the classification of fatigue driving EEG signals, the method also has a good classification accuracy. In addition, we compare with the existing methods, and the results show that our method can significantly improve the detection results.
Collapse
Affiliation(s)
- Chongqing Hao
- School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Ruiqi Wang
- School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Mengyu Li
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Chao Ma
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Qing Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Zhongke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
47
|
Boonyakitanont P, Lek-Uthai A, Songsiri J. ScoreNet: A Neural Network-Based Post-Processing Model for Identifying Epileptic Seizure Onset and Offset in EEGs. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2474-2483. [PMID: 34797766 DOI: 10.1109/tnsre.2021.3129467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We design an algorithm to automatically detect epileptic seizure onsets and offsets from scalp electroencephalograms (EEGs). The proposed scheme consists of two sequential steps: detecting seizure episodes from long EEG recordings, and determining seizure onsets and offsets of the detected episodes. We introduce a neural network-based model called ScoreNet to carry out the second step by better predicting the seizure probability of pre-detected seizure epochs to determine seizure onsets and offsets. A cost function called log-dice loss with a similar meaning to the F1 score is proposed to handle the natural data imbalance inherent in EEG signals signifying seizure events. ScoreNet is then verified on the CHB-MIT Scalp EEG database in combination with several classifiers including random forest, convolutional neural network (CNN), and logistic regression. As a result, ScoreNet improves seizure detection performance over lone epoch-based seizure classification methods; F1 scores increase significantly from 16-37% to 53-70%, and false positive rates per hour decrease from 0.53-5.24 to 0.05-0.61. This method provides clinically acceptable latencies of detecting seizure onset and offset of less than 10 seconds. In addition, an effective latency index is proposed as a metric for detection latency whose scoring considers undetected events to provide better insight into onset and offset detection than conventional time-based metrics.
Collapse
|
48
|
Zhong W, Zhao W. Fetal ECG extraction using short time Fourier transform and generative adversarial networks. Physiol Meas 2021; 42. [PMID: 34713820 DOI: 10.1088/1361-6579/ac2c5b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Objective.Fetal ECG (FECG) plays an important role in fetal monitoring. However, the abdominal ECG (AECG) recorded at the maternal abdomen is affected by various noises, making the extraction of FECG a challenging task. The main objective is to present a novel approach to FECG extraction using short time Fourier transform (STFT) and generative adversarial networks (GAN).Methods.Firstly, the AECG signals are transformed from one-dimensional (1D) time domain to two-dimensional (2D) time-frequency domain by using the STFT. Secondly, the 2D-STFT coefficients of FECG are estimated by the GAN model in the time-frequency domain. Finally, after the inverse STFT, the FECG can be reconstructed in the time domain.Main results.Experimental results on two databases demonstrate the effectiveness of the proposed method. Specifically, the SE, PPV andF1of the proposed method on PCDB are 92.37 ± 3.78%, 93.69 ± 3.96% and 93.02 ± 3.81%, respectively. And the SE, PPV andF1on ADFECGDB are 90.32 ± 10.70%, 89.79 ± 9.26% and 90.05 ± 9.81%, respectively.Significance.Unlike the previous studies based on the elimination of maternal ECG in the 1D time domain, the novelty of the proposed method relies on extracting the FECG directly from the AECG in the 2D time-frequency domain. It sheds some light to the topic of FECG extraction.
Collapse
Affiliation(s)
- Wei Zhong
- Guangdong Police College, Guangzhou 510000, People's Republic of China
| | - Weibin Zhao
- Guangdong Police College, Guangzhou 510000, People's Republic of China
| |
Collapse
|
49
|
Abstract
In this paper, we introduce VPNet, a novel model-driven neural network architecture based on variable projection (VP). Applying VP operators to neural networks results in learnable features, interpretable parameters, and compact network structures. This paper discusses the motivation and mathematical background of VPNet and presents experiments. The VPNet approach was evaluated in the context of signal processing, where we classified a synthetic dataset and real electrocardiogram (ECG) signals. Compared to fully connected and one-dimensional convolutional networks, VPNet offers fast learning ability and good accuracy at a low computational cost of both training and inference. Based on these advantages and the promising results obtained, we anticipate a profound impact on the broader field of signal processing, in particular on classification, regression and clustering problems.
Collapse
Affiliation(s)
- Péter Kovács
- Department of Numerical Analysis, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest 1117, Hungary
| | - Gergő Bognár
- Department of Numerical Analysis, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest 1117, Hungary.,Institute of Signal Processing, Johannes Kepler University Linz, Altenberger str. 69, Linz 4040, Austria.,JKU LIT SAL eSPML Lab, Silicon Austria Labs, Altenberger str. 69, Linz 4040, Austria
| | - Christian Huber
- Embedded AI Research Group, Silicon Austria Labs GmbH, Altenberger str. 69, Linz 4040, Austria
| | - Mario Huemer
- Institute of Signal Processing, Johannes Kepler University Linz, Altenberger str. 69, Linz 4040, Austria.,JKU LIT SAL eSPML Lab, Silicon Austria Labs, Altenberger str. 69, Linz 4040, Austria
| |
Collapse
|
50
|
Sahani M, Rout SK, Dash PK. FPGA implementation of epileptic seizure detection using semisupervised reduced deep convolutional neural network. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|