1
|
Carass A, Greenman D, Dewey BE, Calabresi PA, Prince JL, Pham DL. Image harmonization improves consistency of intra-rater delineations of MS lesions in heterogeneous MRI. NEUROIMAGE. REPORTS 2024; 4:100195. [PMID: 38370461 PMCID: PMC10871705 DOI: 10.1016/j.ynirp.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Clinical magnetic resonance images (MRIs) lack a standard intensity scale due to differences in scanner hardware and the pulse sequences used to acquire the images. When MRIs are used for quantification, as in the evaluation of white matter lesions (WMLs) in multiple sclerosis, this lack of intensity standardization becomes a critical problem affecting both the staging and tracking of the disease and its treatment. This paper presents a study of harmonization on WML segmentation consistency, which is evaluated using an object detection classification scheme that incorporates manual delineations from both the original and harmonized MRIs. A cohort of ten people scanned on two different imaging platforms was studied. An expert rater, blinded to the image source, manually delineated WMLs on images from both scanners before and after harmonization. It was found that there is closer agreement in both global and per-lesion WML volume and spatial distribution after harmonization, demonstrating the importance of image harmonization prior to the creation of manual delineations. These results could lead to better truth models in both the development and evaluation of automated lesion segmentation algorithms.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Danielle Greenman
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Blake E. Dewey
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dzung L. Pham
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Sadeghibakhi M, Pourreza H, Mahyar H. Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:1800411. [PMID: 35711337 PMCID: PMC9191687 DOI: 10.1109/jtehm.2022.3172025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/05/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Objective: Multiple Sclerosis (MS) is an autoimmune and demyelinating disease that leads to lesions in the central nervous system. This disease can be tracked and diagnosed using Magnetic Resonance Imaging (MRI). A multitude of multimodality automatic biomedical approaches are used to segment lesions that are not beneficial for patients in terms of cost, time, and usability. The authors of the present paper propose a method employing just one modality (FLAIR image) to segment MS lesions accurately. Methods: A patch-based Convolutional Neural Network (CNN) is designed, inspired by 3D-ResNet and spatial-channel attention module, to segment MS lesions. The proposed method consists of three stages: (1) the Contrast-Limited Adaptive Histogram Equalization (CLAHE) is applied to the original images and concatenated to the extracted edges to create 4D images; (2) the patches of size [Formula: see text] are randomly selected from the 4D images; and (3) the extracted patches are passed into an attention-based CNN which is used to segment the lesions. Finally, the proposed method was compared to previous studies of the same dataset. Results: The current study evaluates the model with a test set of ISIB challenge data. Experimental results illustrate that the proposed approach significantly surpasses existing methods of Dice similarity and Absolute Volume Difference while the proposed method uses just one modality (FLAIR) to segment the lesions. Conclusion: The authors have introduced an automated approach to segment the lesions, which is based on, at most, two modalities as an input. The proposed architecture comprises convolution, deconvolution, and an SCA-VoxRes module as an attention module. The results show, that the proposed method outperforms well compared to other methods.
Collapse
Affiliation(s)
- Mehdi Sadeghibakhi
- MV LaboratoryDepartment of Computer Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhad9177948974Iran
| | - Hamidreza Pourreza
- MV LaboratoryDepartment of Computer Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhad9177948974Iran
| | - Hamidreza Mahyar
- Faculty of Engineering, W Booth School of Engineering Practice and TechnologyMcMaster UniversityHamiltonONL8S 4L8Canada
| |
Collapse
|
3
|
Krishna Priya R, Chacko S. Improved particle swarm optimized deep convolutional neural network with super-pixel clustering for multiple sclerosis lesion segmentation in brain MRI imaging. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3506. [PMID: 34181310 DOI: 10.1002/cnm.3506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 06/13/2023]
Abstract
A central nervous system (CNS) disease affecting the insulating myelin sheaths around the brain axons is called multiple sclerosis (MS). In today's world, MS is extensively diagnosed and monitored using the MRI, because of the structural MRI sensitivity in dissemination of white matter lesions with respect to space and time. The main aim of this study is to propose Multiple Sclerosis Lesion Segmentation in Brain MRI imaging using Optimized Deep Convolutional Neural Network and Super-pixel Clustering. Three stages included in the proposed methodology are: (a) preprocessing, (b) segmentation of super-pixel, and (c) classification of super-pixel. In the first stage, image enhancement and skull stripping is done through performing a preprocessing step. In the second stage, the MS lesion and Non-MS lesion regions are segmented through applying SLICO algorithm over each slice of the volume. In the fourth stage, a CNN training and classification is performed using this segmented lesion and non-lesion regions. To handle this complex task, a newly developed Improved Particle Swarm Optimization (IPSO) based optimized convolutional neural network classifier is applied. On clinical MS data, the approach exhibits a significant increase in the accuracy segmenting of WM lesions when compared with the rest of evaluated methods.
Collapse
Affiliation(s)
- R Krishna Priya
- Department of Electrical and Communication Engineering, National University of Science and Technology, Oman
| | - Susamma Chacko
- Department of Quality Enhancement and Assurance, National University of Science and Technology, Oman
| |
Collapse
|
4
|
Kassem MA, Hosny KM, Damaševičius R, Eltoukhy MM. Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review. Diagnostics (Basel) 2021; 11:1390. [PMID: 34441324 PMCID: PMC8391467 DOI: 10.3390/diagnostics11081390] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022] Open
Abstract
Computer-aided systems for skin lesion diagnosis is a growing area of research. Recently, researchers have shown an increasing interest in developing computer-aided diagnosis systems. This paper aims to review, synthesize and evaluate the quality of evidence for the diagnostic accuracy of computer-aided systems. This study discusses the papers published in the last five years in ScienceDirect, IEEE, and SpringerLink databases. It includes 53 articles using traditional machine learning methods and 49 articles using deep learning methods. The studies are compared based on their contributions, the methods used and the achieved results. The work identified the main challenges of evaluating skin lesion segmentation and classification methods such as small datasets, ad hoc image selection and racial bias.
Collapse
Affiliation(s)
- Mohamed A. Kassem
- Department of Robotics and Intelligent Machines, Faculty of Artificial Intelligence, Kaferelshiekh University, Kaferelshiekh 33511, Egypt;
| | - Khalid M. Hosny
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
| | - Mohamed Meselhy Eltoukhy
- Computer Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
5
|
Gryska E, Schneiderman J, Björkman-Burtscher I, Heckemann RA. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 2021; 11:e042660. [PMID: 33514580 PMCID: PMC7849889 DOI: 10.1136/bmjopen-2020-042660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Medical image analysis practices face challenges that can potentially be addressed with algorithm-based segmentation tools. In this study, we map the field of automatic MR brain lesion segmentation to understand the clinical applicability of prevalent methods and study designs, as well as challenges and limitations in the field. DESIGN Scoping review. SETTING Three databases (PubMed, IEEE Xplore and Scopus) were searched with tailored queries. Studies were included based on predefined criteria. Emerging themes during consecutive title, abstract, methods and whole-text screening were identified. The full-text analysis focused on materials, preprocessing, performance evaluation and comparison. RESULTS Out of 2990 unique articles identified through the search, 441 articles met the eligibility criteria, with an estimated growth rate of 10% per year. We present a general overview and trends in the field with regard to publication sources, segmentation principles used and types of lesions. Algorithms are predominantly evaluated by measuring the agreement of segmentation results with a trusted reference. Few articles describe measures of clinical validity. CONCLUSIONS The observed reporting practices leave room for improvement with a view to studying replication, method comparison and clinical applicability. To promote this improvement, we propose a list of recommendations for future studies in the field.
Collapse
Affiliation(s)
- Emilia Gryska
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| | - Justin Schneiderman
- Sektionen för klinisk neurovetenskap, Goteborgs Universitet Institutionen for Neurovetenskap och fysiologi, Goteborg, Sweden
| | | | - Rolf A Heckemann
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| |
Collapse
|
6
|
Essa E, Aldesouky D, Hussein SE, Rashad MZ. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Med Biol Eng Comput 2020; 58:2161-2175. [PMID: 32681214 DOI: 10.1007/s11517-020-02225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
The segmentation of the lesion plays a core role in diagnosis and monitoring of multiple sclerosis (MS). Magnetic resonance imaging (MRI) is the most frequent image modality used to evaluate such lesions. Because of the massive amount of data, manual segmentation cannot be achieved within a sensible time that restricts the usage of accurate quantitative measurement in clinical practice. Therefore, the need for effective automated segmentation techniques is critical. However, a large spatial variability between the structure of brain lesions makes it more challenging. Recently, convolutional neural network (CNN), in particular, the region-based CNN (R-CNN), have attained tremendous progress within the field of object recognition because of its ability to learn and represent features. CNN has proven a last-breaking performance in various fields, such as object recognition, and has also gained more attention in brain imaging, especially in tissue and brain segmentation. In this paper, an automated technique for MS lesion segmentation is proposed, which is built on a 3D patch-wise R-CNN. The proposed system includes two stages: first, segmenting MS lesions in T2-w and FLAIR sequences using R-CNN, then an adaptive neuro-fuzzy inference system (ANFIS) is applied to fuse the results of the two modalities. To evaluate the performance of the proposed method, the public MICCAI2008 MS challenge dataset is employed to segment MS lesions. The experimental results show competitive results of the proposed method compared with the state-of-the-art MS lesion segmentation methods with an average total score of 83.25 and an average sensitivity of 61.8% on the MICCAI2008 testing set. Graphical Abstract The proposed system overview. First, the input of two modalities FLAIR and T2 are pre-processed to remove the skull and correct the bias field. Then 3D patches for lesion and non-lesion tissues are extracted and fed to R-CNN. Each R-CNN produces a probability map of the segmentation result that provides to ANFIS to fuse the results and obtain the final MS lesion segmentation. The MS lesions are shown on a pre-processed FLAIR image.
Collapse
Affiliation(s)
- Ehab Essa
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt.
| | - Doaa Aldesouky
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - Sherif E Hussein
- Computer Engineering and Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - M Z Rashad
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| |
Collapse
|
7
|
González-Villà S, Oliver A, Huo Y, Lladó X, Landman BA. A fully automated pipeline for brain structure segmentation in multiple sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102306. [PMID: 32585568 PMCID: PMC7322098 DOI: 10.1016/j.nicl.2020.102306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 10/25/2022]
Abstract
Accurate volume measurements of the brain structures are important for treatment evaluation and disease follow-up in multiple sclerosis (MS) patients. With the aim of obtaining reproducible measurements and avoiding the intra-/inter-rater variability that manual delineations introduce, several automated brain structure segmentation strategies have been proposed in recent years. However, most of these strategies tend to be affected by the abnormal MS lesion intensities, which corrupt the structure segmentation result. To address this problem, we recently reformulated two label fusion strategies of the state of the art, improving their segmentation performance on the lesion areas. Here, we integrate these reformulated strategies in a completely automated pipeline that includes pre-processing (inhomogeneity correction and intensity normalization), atlas selection, masked registration and label fusion, and combine them with an automated lesion segmentation method of the state of the art. We study the effect of automating the lesion mask acquisition on the structure segmentation result, analyzing the output of the proposed pipeline when used in combination with manually and automatically segmented lesion masks. We further analyze the effect of those masks on the segmentation result of the original label fusion strategies when combined with the well-established pre-processing step of lesion filling. The experiments performed show that, when the original methods are used to segment the lesion-filled images, significant structure volume differences are observed in a comparison between manually and automatically segmented lesion masks. The results indicate a mean volume decrease of 1.13%±1.93 in the cerebrospinal fluid, and a mean volume increase of 0.13%±0.14 and 0.05%±0.08 in the cerebral white matter and cerebellar gray matter, respectively. On the other hand, no significant volume differences were found when the proposed automated pipeline was used for segmentation, which demonstrates its robustness against variations in the lesion mask used.
Collapse
Affiliation(s)
- Sandra González-Villà
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, University of Girona, 17003 Girona, Spain; Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Arnau Oliver
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Yuankai Huo
- Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Xavier Lladó
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Bennett A Landman
- Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
8
|
Carass A, Roy S, Gherman A, Reinhold JC, Jesson A, Arbel T, Maier O, Handels H, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Pham DL, Crainiceanu CM, Calabresi PA, Prince JL, Roncal WRG, Shinohara RT, Oguz I. Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis. Sci Rep 2020; 10:8242. [PMID: 32427874 PMCID: PMC7237671 DOI: 10.1038/s41598-020-64803-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
The Sørensen-Dice index (SDI) is a widely used measure for evaluating medical image segmentation algorithms. It offers a standardized measure of segmentation accuracy which has proven useful. However, it offers diminishing insight when the number of objects is unknown, such as in white matter lesion segmentation of multiple sclerosis (MS) patients. We present a refinement for finer grained parsing of SDI results in situations where the number of objects is unknown. We explore these ideas with two case studies showing what can be learned from our two presented studies. Our first study explores an inter-rater comparison, showing that smaller lesions cannot be reliably identified. In our second case study, we demonstrate fusing multiple MS lesion segmentation algorithms based on the insights into the algorithms provided by our analysis to generate a segmentation that exhibits improved performance. This work demonstrates the wealth of information that can be learned from refined analysis of medical image segmentations.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Adrian Gherman
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jacob C Reinhold
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andrew Jesson
- Centre For Intelligent Machines, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Tal Arbel
- Centre For Intelligent Machines, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Oskar Maier
- Institute of Medical Informatics, University of Lübeck, 23538, Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, 23538, Lübeck, Germany
| | - Mohsen Ghafoorian
- Institute for Computing and Information Sciences, Radboud University, 6525, HP, Nijmegen, Netherlands
| | - Bram Platel
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6525, GA, Nijmegen, Netherlands
| | - Ariel Birenbaum
- Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - William R Gray Roncal
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ipek Oguz
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|
9
|
Gros C, De Leener B, Badji A, Maranzano J, Eden D, Dupont SM, Talbott J, Zhuoquiong R, Liu Y, Granberg T, Ouellette R, Tachibana Y, Hori M, Kamiya K, Chougar L, Stawiarz L, Hillert J, Bannier E, Kerbrat A, Edan G, Labauge P, Callot V, Pelletier J, Audoin B, Rasoanandrianina H, Brisset JC, Valsasina P, Rocca MA, Filippi M, Bakshi R, Tauhid S, Prados F, Yiannakas M, Kearney H, Ciccarelli O, Smith S, Treaba CA, Mainero C, Lefeuvre J, Reich DS, Nair G, Auclair V, McLaren DG, Martin AR, Fehlings MG, Vahdat S, Khatibi A, Doyon J, Shepherd T, Charlson E, Narayanan S, Cohen-Adad J. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 2019; 184:901-915. [PMID: 30300751 PMCID: PMC6759925 DOI: 10.1016/j.neuroimage.2018.09.081] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/05/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data is challenging because of the large variability related to acquisition parameters and image artifacts. In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion contrast, size, location, and shape. The goal of this study was to develop a fully-automatic framework - robust to variability in both image parameters and clinical condition - for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS and non-MS cases. Scans of 1042 subjects (459 healthy controls, 471 MS patients, and 112 with other spinal pathologies) were included in this multi-site study (n = 30). Data spanned three contrasts (T1-, T2-, and T2∗-weighted) for a total of 1943 vol and featured large heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for PropSeg (p ≤ 0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of -15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on a variety of MRI contrasts. The proposed framework is open-source and readily available in the Spinal Cord Toolbox.
Collapse
Affiliation(s)
- Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Dominique Eden
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Sara M. Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Jason Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Ren Zhuoquiong
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Yaou Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | | | | | | | - Lydia Chougar
- Juntendo University Hospital, Tokyo, Japan
- Hospital Cochin, Paris, France
| | - Leszek Stawiarz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elise Bannier
- CHU Rennes, Radiology Department
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France
| | - Anne Kerbrat
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France
- CHU Rennes, Neurology Department
| | - Gilles Edan
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France
- CHU Rennes, Neurology Department
| | - Pierre Labauge
- MS Unit. DPT of Neurology. University Hospital of Montpellier
| | - Virginie Callot
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, CHU Timone, CEMEREM, Marseille, France
| | - Jean Pelletier
- APHM, CHU Timone, CEMEREM, Marseille, France
- APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | - Bertrand Audoin
- APHM, CHU Timone, CEMEREM, Marseille, France
- APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | | | - Jean-Christophe Brisset
- Observatoire Français de la Sclérose en Plaques (OFSEP) ; Univ Lyon, Université Claude Bernard Lyon 1 ; Hospices Civils de Lyon ; CREATIS-LRMN, UMR 5220 CNRS & U 1044 INSERM ; Lyon, France
| | - Paola Valsasina
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Rohit Bakshi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Shahamat Tauhid
- Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Ferran Prados
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
- Center for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Marios Yiannakas
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
| | - Hugh Kearney
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
| | | | | | - Caterina Mainero
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | - Jennifer Lefeuvre
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Daniel S. Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | | | | | - Allan R. Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Shahabeddin Vahdat
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Neurology Department, Stanford University, US
| | - Ali Khatibi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | | | | | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
10
|
Shelgaonkar SL, Nandgaonkar AB. Deep Belief Network for the Enhancement of Ultrasound Images with Pelvic Lesions. JOURNAL OF INTELLIGENT SYSTEMS 2018. [DOI: 10.1515/jisys-2016-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIt is well known that ultrasound images are cost-efficient and exhibit hassle-free usage. However, very few works have focused on exploiting the ultrasound modality for lesion diagnosis. Moreover, there is no reliable contribution reported in the literature for diagnosing pelvic lesions from the pelvic portion of humans, especially females. While few contributions are found for diagnosis of lesions in the pelvic region, no effort has been made on enhancing the images. Inspired from the neural network (NN), our methodology adopts deep belief NN for enhancing the ultrasound image with pelvic lesions. The higher-order statistical characteristics of image textures, such as entropy and autocorrelation, are considered to enhance the image from its noisy environment. The alignment problem is considered using skewness. The proposed method is compared with the existing NN method to demonstrate its enhancement performance.
Collapse
|
11
|
Valcarcel AM, Linn KA, Khalid F, Vandekar SN, Tauhid S, Satterthwaite TD, Muschelli J, Martin ML, Bakshi R, Shinohara RT. A dual modeling approach to automatic segmentation of cerebral T2 hyperintensities and T1 black holes in multiple sclerosis. Neuroimage Clin 2018; 20:1211-1221. [PMID: 30391859 PMCID: PMC6224321 DOI: 10.1016/j.nicl.2018.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/26/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WML) in multiple sclerosis (MS). The most widely established MRI outcome measure is the volume of hyperintense lesions on T2-weighted images (T2L). Unfortunately, T2L are non-specific for the level of tissue destruction and show a weak relationship to clinical status. Interest in lesions that appear hypointense on T1-weighted images (T1L) ("black holes") has grown because T1L provide more specificity for axonal loss and a closer link to neurologic disability. The technical difficulty of T1L segmentation has led investigators to rely on time-consuming manual assessments prone to inter- and intra-rater variability. This study aims to develop an automatic T1L segmentation approach, adapted from a T2L segmentation algorithm. MATERIALS AND METHODS T1, T2, and fluid-attenuated inversion recovery (FLAIR) sequences were acquired from 40 MS subjects at 3 Tesla (3 T). T2L and T1L were manually segmented. A Method for Inter-Modal Segmentation Analysis (MIMoSA) was then employed. RESULTS Using cross-validation, MIMoSA proved to be robust for segmenting both T2L and T1L. For T2L, a Sørensen-Dice coefficient (DSC) of 0.66 and partial AUC (pAUC) up to 1% false positive rate of 0.70 were achieved. For T1L, 0.53 DSC and 0.64 pAUC were achieved. Manual and MIMoSA segmented volumes were correlated and resulted in 0.88 for T1L and 0.95 for T2L. The correlation between Expanded Disability Status Scale (EDSS) scores and manual versus automatic volumes were similar for T1L (0.32 manual vs. 0.34 MIMoSA), T2L (0.33 vs. 0.32), and the T1L/T2L ratio (0.33 vs 0.33). CONCLUSIONS Though originally designed to segment T2L, MIMoSA performs well for segmenting T1 black holes in patients with MS.
Collapse
Affiliation(s)
- Alessandra M Valcarcel
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kristin A Linn
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fariha Khalid
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Boston, MA, USA; Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon N Vandekar
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shahamat Tauhid
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Boston, MA, USA; Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, USA
| | - Melissa Lynne Martin
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohit Bakshi
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Boston, MA, USA; Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Knight J, Taylor GW, Khademi A. Voxel-Wise Logistic Regression and Leave-One-Source-Out Cross Validation for white matter hyperintensity segmentation. Magn Reson Imaging 2018; 54:119-136. [PMID: 29932970 DOI: 10.1016/j.mri.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
Many algorithms have been proposed for automated segmentation of white matter hyperintensities (WMH) in brain MRI. Yet, broad uptake of any particular algorithm has not been observed. In this work, we argue that this may be due to variable and suboptimal validation data and frameworks, precluding direct comparison of methods on heterogeneous data. As a solution, we present Leave-One-Source-Out Cross Validation (LOSO-CV), which leverages all available data for performance estimation, and show that this gives more realistic (lower) estimates of segmentation algorithm performance on data from different scanners. We also develop a FLAIR-only WMH segmentation algorithm: Voxel-Wise Logistic Regression (VLR), inspired by the open-source Lesion Prediction Algorithm (LPA). Our variant facilitates more accurate parameter estimation, and permits intuitive interpretation of model parameters. We illustrate the performance of the VLR algorithm using the LOSO-CV framework with a dataset comprising freely available data from several recent competitions (96 images from 7 scanners). The performance of the VLR algorithm (median Similarity Index of 0.69) is compared to its LPA predecessor (0.58), and the results of the VLR algorithm in the 2017 WMH Segmentation Competition are also presented.
Collapse
Affiliation(s)
- Jesse Knight
- University of Guelph, 50 Stone Rd E, Guelph, Canada.
| | - Graham W Taylor
- University of Guelph, 50 Stone Rd E, Guelph, Canada; Vector Institute, 101 College Street, Toronto, Suite HL30B, Canada
| | - April Khademi
- Ryerson University, 350 Victoria St, Toronto, Canada
| |
Collapse
|
13
|
Galimzianova A, Lesjak Ž, Rubin DL, Likar B, Pernuš F, Špiclin Ž. Locally adaptive magnetic resonance intensity models for unsupervised segmentation of multiple sclerosis lesions. J Med Imaging (Bellingham) 2017; 5:011007. [PMID: 29134190 DOI: 10.1117/1.jmi.5.1.011007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 11/14/2022] Open
Abstract
Multiple sclerosis (MS) is a neurological disease characterized by focal lesions and morphological changes in the brain captured on magnetic resonance (MR) images. However, extraction of the corresponding imaging markers requires accurate segmentation of normal-appearing brain structures (NABS) and the lesions in MR images. On MR images of healthy brains, the NABS can be accurately captured by MR intensity mixture models, which, in combination with regularization techniques, such as in Markov random field (MRF) models, are known to give reliable NABS segmentation. However, on MR images that also contain abnormalities such as MS lesions, obtaining an accurate and reliable estimate of NABS intensity models is a challenge. We propose a method for automated segmentation of normal-appearing and abnormal structures in brain MR images that is based on a locally adaptive NABS model, a robust model parameters estimation method, and an MRF-based segmentation framework. Experiments on multisequence brain MR images of 30 MS patients show that, compared to whole-brain MR intensity model and compared to four popular unsupervised lesion segmentation methods, the proposed method increases the accuracy of MS lesion segmentation.
Collapse
Affiliation(s)
- Alfiia Galimzianova
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia.,Stanford University, School of Medicine, Palo Alto, California, United States
| | - Žiga Lesjak
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Daniel L Rubin
- Stanford University, School of Medicine, Palo Alto, California, United States
| | - Boštjan Likar
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia.,Sensum, Computer Vision Systems, Ljubljana, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia.,Sensum, Computer Vision Systems, Ljubljana, Slovenia
| |
Collapse
|
14
|
Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion. PATCH-BASED TECHNIQUES IN MEDICAL IMAGING : THIRD INTERNATIONAL WORKSHOP, PATCH-MI 2017, HELD IN CONJUNCTION WITH MICCAI 2017, QUEBEC CITY, QC, CANADA, SEPTEMBER 14, 2017, PROCEEDINGS. PATCH-MI (WORKSHOP) (3RD : 2017 : QUEBEC, QUEBEC) 2017; 10530:138-145. [PMID: 29707700 DOI: 10.1007/978-3-319-67434-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper adapts the joint label fusion (JLF) multi-atlas image segmentation algorithm to the problem of multiple sclerosis (MS) lesion segmentation in multi-modal MRI. Conventionally, JLF requires a set of atlas images to be co-registered to the target image using deformable registration. However, given the variable spatial distribution of lesions in the brain, whole-brain deformable registration is unlikely to line up lesions between atlases and the target image. As a solution, we propose to first pre-segment the target image using an intensity regression based technique, yielding a set of "candidate" lesions. Each "candidate" lesion is then matched to a set of similar lesions in the atlas based on location and size; and deformable registration and JLF are applied at the level of the "candidate" lesion. The approach is evaluated on a dataset of 74 subjects with MS and shown to improve Dice similarity coefficient with reference manual segmentation by 12% over intensity regression technique.
Collapse
|
15
|
Valverde S, Cabezas M, Roura E, González-Villà S, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira À, Oliver A, Lladó X. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage 2017; 155:159-168. [DOI: 10.1016/j.neuroimage.2017.04.034] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/12/2017] [Accepted: 04/14/2017] [Indexed: 12/30/2022] Open
|
16
|
Automated tissue segmentation of MR brain images in the presence of white matter lesions. Med Image Anal 2017; 35:446-457. [DOI: 10.1016/j.media.2016.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
|
17
|
Zeng K, Erus G, Sotiras A, Shinohara RT, Davatzikos C. Abnormality Detection via Iterative Deformable Registration and Basis-Pursuit Decomposition. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1937-1951. [PMID: 27046847 PMCID: PMC5484765 DOI: 10.1109/tmi.2016.2538998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a generic method for automatic detection of abnormal regions in medical images as deviations from a normative data base. The algorithm decomposes an image, or more broadly a function defined on the image grid, into the superposition of a normal part and a residual term. A statistical model is constructed with regional sparse learning to represent normative anatomical variations among a reference population (e.g., healthy controls), in conjunction with a Markov random field regularization that ensures mutual consistency of the regional learning among partially overlapping image blocks. The decomposition is performed in a principled way so that the normal part fits well with the learned normative model, while the residual term absorbs pathological patterns, which may then be detected through a statistical significance test. The decomposition is applied to multiple image features from an individual scan, detecting abnormalities using both intensity and shape information. We form an iterative scheme that interleaves abnormality detection with deformable registration, gradually improving robustness of the spatial normalization and precision of the detection. The algorithm is evaluated with simulated images and clinical data of brain lesions, and is shown to achieve robust deformable registration and localize pathological regions simultaneously. The algorithm is also applied on images from Alzheimer's disease patients to demonstrate the generality of the method.
Collapse
|
18
|
Stratified mixture modeling for segmentation of white-matter lesions in brain MR images. Neuroimage 2015; 124:1031-1043. [PMID: 26427644 DOI: 10.1016/j.neuroimage.2015.09.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/07/2015] [Accepted: 09/20/2015] [Indexed: 11/21/2022] Open
Abstract
Accurate characterization of white-matter lesions from magnetic resonance (MR) images has increasing importance for diagnosis and management of treatment of certain neurological diseases, and can be performed in an objective and effective way by automated lesion segmentation. This usually involves modeling the whole-brain MR intensity distribution, however, capturing various sources of MR intensity variability and lesion heterogeneity results in highly complex whole-brain MR intensity models, thus their robust estimation on a large set of MR images presents a huge challenge. We propose a novel approach employing stratified mixture modeling, where the main premise is that the otherwise complex whole-brain model can be reduced to a tractable parametric form in small brain subregions. We show on MR images of multiple sclerosis (MS) patients with different lesion loads that robust estimators enable accurate mixture modeling of MR intensity in small brain subregions even in the presence of lesions. Recombination of the mixture models across strata provided an accurate whole-brain MR intensity model. Increasing the number of subregions and, thereby, the model complexity, consistently improved the accuracy of whole-brain MR intensity modeling and segmentation of normal structures. The proposed approach was incorporated into three unsupervised lesion segmentation methods and, compared to original and three other state-of-the-art methods, the proposed modeling approach significantly improved lesion segmentation according to increased Dice similarity indices and lower number of false positives on real MR images of 30 patients with MS.
Collapse
|