1
|
Birla RK. State of the art in Purkinje bioengineering. Tissue Cell 2024; 90:102467. [PMID: 39053130 DOI: 10.1016/j.tice.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
This review article will cover the recent developments in the new evolving field of Purkinje bioengineering and the development of human Purkinje networks. Recent work has progressed to the point of a methodological and systematic process to bioengineer Purkinje networks. This involves the development of 3D models based on human anatomy, followed by the development of tunable biomaterials, and strategies to reprogram stem cells to Purkinje cells. Subsequently, the reprogrammed cells and the biomaterials are coupled to bioengineer Purkinje networks, which are then tested using a small animal injury model. In this article, we discuss this process as a whole and then each step separately. We then describe potential applications of bioengineered Purkinje networks and challenges in the field that need to be overcome to move this field forward. Although the field of Purkinje bioengineering is new and in a state of infancy, it holds tremendous potential, both for therapeutic applications and to develop tools that can be used for disease modeling.
Collapse
Affiliation(s)
- Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA; Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA; Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
2
|
Brimmer S, Ji P, Birla AK, Keswani SG, Caldarone CA, Birla RK. Recent advances in biological pumps as a building block for bioartificial hearts. Front Bioeng Biotechnol 2023; 11:1061622. [PMID: 36741765 PMCID: PMC9895798 DOI: 10.3389/fbioe.2023.1061622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The field of biological pumps is a subset of cardiac tissue engineering and focused on the development of tubular grafts that are designed generate intraluminal pressure. In the simplest embodiment, biological pumps are tubular grafts with contractile cardiomyocytes on the external surface. The rationale for biological pumps is a transition from planar 3D cardiac patches to functional biological pumps, on the way to complete bioartificial hearts. Biological pumps also have applications as a standalone device, for example, to support the Fontan circulation in pediatric patients. In recent years, there has been a lot of progress in the field of biological pumps, with innovative fabrication technologies. Examples include the use of cell sheet engineering, self-organized heart muscle, bioprinting and in vivo bio chambers for vascularization. Several materials have been tested for biological pumps and included resected aortic segments from rodents, type I collagen, and fibrin hydrogel, to name a few. Multiple bioreactors have been tested to condition biological pumps and replicate the complex in vivo environment during controlled in vitro culture. The purpose of this article is to provide an overview of the field of the biological pumps, outlining progress in the field over the past several years. In particular, different fabrication methods, biomaterial platforms for tubular grafts and examples of bioreactors will be presented. In addition, we present an overview of some of the challenges that need to be overcome for the field of biological pumps to move forward.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Aditya K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Christopher A. Caldarone
- Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States,*Correspondence: Ravi K. Birla,
| |
Collapse
|
3
|
Roacho-Pérez JA, Garza-Treviño EN, Moncada-Saucedo NK, Carriquiry-Chequer PA, Valencia-Gómez LE, Matthews ER, Gómez-Flores V, Simental-Mendía M, Delgado-Gonzalez P, Delgado-Gallegos JL, Padilla-Rivas GR, Islas JF. Artificial Scaffolds in Cardiac Tissue Engineering. Life (Basel) 2022; 12:1117. [PMID: 35892919 PMCID: PMC9331725 DOI: 10.3390/life12081117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide. Current treatments directed at heart repair have several disadvantages, such as a lack of donors for heart transplantation or non-bioactive inert materials for replacing damaged tissue. Because of the natural lack of regeneration of cardiomyocytes, new treatment strategies involve stimulating heart tissue regeneration. The basic three elements of cardiac tissue engineering (cells, growth factors, and scaffolds) are described in this review, with a highlight on the role of artificial scaffolds. Scaffolds for cardiac tissue engineering are tridimensional porous structures that imitate the extracellular heart matrix, with the ability to promote cell adhesion, migration, differentiation, and proliferation. In the heart, there is an important requirement to provide scaffold cellular attachment, but scaffolds also need to permit mechanical contractility and electrical conductivity. For researchers working in cardiac tissue engineering, there is an important need to choose an adequate artificial scaffold biofabrication technique, as well as the ideal biocompatible biodegradable biomaterial for scaffold construction. Finally, there are many suitable options for researchers to obtain scaffolds that promote cell-electrical interactions and tissue repair, reaching the goal of cardiac tissue engineering.
Collapse
Affiliation(s)
- Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Nidia K. Moncada-Saucedo
- Servicio de Hematología, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Pablo A. Carriquiry-Chequer
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Laura E. Valencia-Gómez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Elizabeth Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Víctor Gómez-Flores
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Mario Simental-Mendía
- Orthopedic Trauma Service, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| |
Collapse
|
4
|
Williams SK, Birla RK. Tissue engineering solutions to replace contractile function during pediatric heart surgery. Tissue Cell 2020; 67:101452. [PMID: 33137707 DOI: 10.1016/j.tice.2020.101452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022]
Abstract
Pediatric heart surgery remains challenging due to the small size of the pediatric heart, the severity of congenital abnormalities and the unique characteristics of each case. New tools and technologies are needed to tackle this enormous challenge. Tissue engineering strategies are focused on fabricating contractile heart muscle, ventricles, Fontan pumps and whole hearts, and a transplantable tissue equivalent has tremendous implications in pediatric heart surgery to provide functional cardiac tissue. This technology will prove to be a game-changer in the field of pediatric heart surgery and provide a novel toolkit for pediatric heart surgeons. This review will provide insight into the potential applications of tissue engineering technologies to replace lost contractile function in pediatric patients with heart abnormalities.
Collapse
Affiliation(s)
- Stuart K Williams
- Bioficial Organs Program, University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
5
|
Islas JF, Abbasgholizadeh R, Dacso C, Potaman VN, Navran S, Bond RA, Iyer D, Birla R, Schwartz RJ. β-Adrenergic stimuli and rotating suspension culture enhance conversion of human adipogenic mesenchymal stem cells into highly conductive cardiac progenitors. J Tissue Eng Regen Med 2020; 14:306-318. [PMID: 31821703 DOI: 10.1002/term.2994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Abstract
Clinical trials using human adipogenic mesenchymal stem cells (hAdMSCs) for the treatment of cardiac diseases have shown improvement in cardiac function and were proven safe. However, hAdMSCs do not convert efficiently into cardiomyocytes (CMs) or vasculature. Thus, reprogramming hAdMSCs into myocyte progenitors may fare better in future investigations. To reprogramme hAdMSCs into electrically conductive cardiac progenitor cells, we pioneered a three-step reprogramming strategy that uses proven MESP1/ETS2 transcription factors, β-adrenergic and hypoxic signalling induced in three-dimensional (3D) cardiospheres. In Stage 1, ETS2 and MESP1 activated NNKX2.5, TBX5, MEF2C, dHAND, and GATA4 during the conversion of hAdMSCs into cardiac progenitor cells. Next, in Stage 2, β2AR activation repositioned cardiac progenitors into de novo immature conductive cardiac cells, along with the appearance of RYR2, CAV2.1, CAV3.1, NAV1.5, SERCA2, and CX45 gene transcripts and displayed action potentials. In Stage 3, electrical conduction that was fostered by 3D cardiospheres formed in a Synthecon®, Inc. rotating bioreactor induced the appearance of hypoxic genes: HIF-1α/β, PCG 1α/β, and NOS2, which coincided with the robust activation of adult contractile genes including MLC2v, TNNT2, and TNNI3, ion channel genes, and the appearance of hyperpolarization-activated and cyclic nucleotide-gated channels (HCN1-4). Conduction velocities doubled to ~200 mm/s after hypoxia and doubled yet again after dissociation of the 3D cell clusters to ~400 mm/s. By comparison, normal conduction velocities within working ventricular myocytes in the whole heart range from 0.5 to 1 m/s. Epinephrine stimulation of stage 3 cardiac cells in patches resulted in an increase in amplitude of the electrical wave, indicative of conductive cardiac cells. Our efficient protocol that converted hAdMSCs into highly conductive cardiac progenitors demonstrated the potential utilization of stage 3 cells for tissue engineering applications for cardiac repair.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Texas Heart Institute, Texas Medical Center, Houston, TX.,Departamento de Bioquímica y Medicina Molecular, Faculta de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | - Clifford Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Texas Medical Center, Houston, TX
| | | | | | - Richard A Bond
- College of Pharmacy, Science and Engineering Research Center, University of Houston, Houston, TX
| | - Dinakar Iyer
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Ravi Birla
- Department of Biomedical Engineering, University of Houston, Houston, TX
| | - Robert J Schwartz
- Texas Heart Institute, Texas Medical Center, Houston, TX.,Department of Biology and Biochemistry, University of Houston, Houston, TX
| |
Collapse
|
6
|
Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications. ASAIO J 2018; 63:333-341. [PMID: 28459744 DOI: 10.1097/mat.0000000000000486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.
Collapse
|
7
|
|
8
|
Salazar BH, Hoffman KA, Reddy AK, Madala S, Birla RK. 16-Channel Flexible System to Measure Electrophysiological Properties of Bioengineered Hearts. Cardiovasc Eng Technol 2017; 9:94-104. [PMID: 29150791 DOI: 10.1007/s13239-017-0336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022]
Abstract
As tissue engineering continues to mature, it is necessary to develop new technologies that bring insight into current paradigms and guide improvements for future experiments. To this end, we have developed a system to characterize our bioartificial heart model and compare them to functional native structures. In the present study, the hearts of adult Sprague-Dawley were decellularized resulting in a natural three-dimensional cardiac scaffold. Neonatal rat primary cardiac cells were then cultured within a complex 3D fibrin gel, forming a 3-dimensional cardiac construct, which was sutured to the acellular scaffold and suspended in media for 24-48 h. The resulting bioartificial hearts (BAHs) were then affixed with 16 electrodes, in different configurations to evaluate not only the electrocardiographic characteristics of the cultured tissues, but to also test the system's consistency. Histological evaluation showed cellularization and cardiac tissue formation. The BAHs and native hearts were then evaluated with our 16-channel flexible system to acquire the metrics associated with their respective electrophysiological properties. Time delays between the native signals were in the range of 0-95 ms. As well, color maps revealed a trend in impulse propagation throughout the native hearts. After evaluation of the normal rat QRS complex we found the average amplitude of the R-wave to be 5351.48 ± 44.92 μV and the average QRS duration was found to be 10.61 ± 0.18 ms. In contrast, BAHs exhibited more erratic and non-uniform activity that garnered no appreciable quantification. The data collected in this study proves our system's efficacy for EKG data procurement.
Collapse
Affiliation(s)
- Betsy H Salazar
- Biomedical Engineering Department, University of Houston, Houston, TX, 77204, USA.
| | | | - Anilkumar K Reddy
- Baylor College of Medicine, Houston, TX, 77030, USA.,Indus Instruments, Webster, TX, 77598, USA
| | | | - Ravi K Birla
- Biomedical Engineering Department, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
9
|
Patel NM, Birla RK. Pulsatile flow conditioning of three-dimensional bioengineered cardiac ventricle. Biofabrication 2016; 9:015003. [DOI: 10.1088/1758-5090/9/1/015003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|