1
|
Zhou H, Zhu Y, Zhang Z, Mei Y, Lv J, Zhang G, Li W, Chen X. Ventricular fibrillation/ventricular tachycardia within 72 h of VA-ECMO: incidence, outcomes, risk factors, and management. ESC Heart Fail 2024; 11:524-532. [PMID: 38088144 PMCID: PMC10804197 DOI: 10.1002/ehf2.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is an important technique for the treatment of refractory cardiogenic shock and cardiac arrest; however, the early management of ventricular fibrillation/ventricular tachycardia (VF/VT), within 72 h of VA-ECMO, and its effects on patient prognosis remain unclear. METHODS AND RESULTS We retrospectively analysed patients at the First Affiliated Hospital of Nanjing Medical University who underwent VA-ECMO between January 2017 and March 2022. The patients were divided into two groups, VF/VT and nVF/VT, based on whether or not VF/VT occurred within 72 h after the initiation of VA-ECMO. We utilized logistic regression analysis to evaluate the independent risk factors for VF/VT in patients undergoing VA-ECMO and to ascertain whether the onset of VF/VT affected 28 day survival rate, length of intensive care unit stay, and/or other clinical prognostic factors. Subgroup analysis was performed for the VF/VT group to determine whether defibrillation affected prognosis. In the present study, 126 patients were included, 65.87% of whom were males (83/126), with a mean age of 46.89 ± 16.23, a 28 day survival rate of 57.14% (72/126), an incidence rate of VF/VT within 72 h of VA-ECMO initiation of 27.78% (35/126), and 80% of whom (28/35) received extracorporeal cardiopulmonary resuscitation. The incidence of VF/VT resulting from cardiac arrest at an early stage was significantly higher than that of refractory cardiogenic shock (80% vs. 20%; P = 0.022). The restricted cubic spline model revealed a U-shaped relationship between VF/VT incidence and initial heart rate (iHR), and multivariate logistic regression analysis showed that an iHR > 120 b.p.m. [odds ratio (OR) 6.117; 95% confidence interval (CI) 1.672-22.376; P = 0.006] and hyperlactataemia (OR 1.125; 95% CI 1.016-1.246; P = 0.023) within 1 h of VA-ECMO initiation were independent risk factors for the occurrence of VF/VT. VF/VT was not found to be associated with the 28 day survival of patients undergoing VA-ECMO support, nor did it affect other secondary endpoints. Defibrillation did not alter the overall prognosis in patients with VF/VT during VA-ECMO. CONCLUSIONS An iHR > 120 b.p.m. and hyperlactataemia were independent risk factors for the occurrence of VF/VT within 72 h of VA-ECMO initiation. The occurrence of VF/VT does not affect, nor does defibrillation in these patients improve the overall patient prognosis. TRIAL REGISTRATION ChiCTR1900026105.
Collapse
Affiliation(s)
- Hao Zhou
- Emergency DepartmentNanjing Medical University First Affiliated Hospital and Jiangsu Province HospitalGuangzhou Street 300NanjingJiangsu ProvinceChina
| | - Yi Zhu
- Emergency DepartmentNanjing Medical University First Affiliated Hospital and Jiangsu Province HospitalGuangzhou Street 300NanjingJiangsu ProvinceChina
| | - Zhongman Zhang
- Emergency DepartmentNanjing Medical University First Affiliated Hospital and Jiangsu Province HospitalGuangzhou Street 300NanjingJiangsu ProvinceChina
| | - Yong Mei
- Emergency DepartmentNanjing Medical University First Affiliated Hospital and Jiangsu Province HospitalGuangzhou Street 300NanjingJiangsu ProvinceChina
| | - Jinru Lv
- Emergency DepartmentNanjing Medical University First Affiliated Hospital and Jiangsu Province HospitalGuangzhou Street 300NanjingJiangsu ProvinceChina
| | - Gang Zhang
- Emergency DepartmentNanjing Medical University First Affiliated Hospital and Jiangsu Province HospitalGuangzhou Street 300NanjingJiangsu ProvinceChina
| | - Wei Li
- Emergency DepartmentNanjing Medical University First Affiliated Hospital and Jiangsu Province HospitalGuangzhou Street 300NanjingJiangsu ProvinceChina
| | - Xufeng Chen
- Emergency DepartmentNanjing Medical University First Affiliated Hospital and Jiangsu Province HospitalGuangzhou Street 300NanjingJiangsu ProvinceChina
| |
Collapse
|
2
|
Nyman M, Stølen TO, Johnsen AB, Garten K, Burton FL, Smith GL, Loennechen JP. A comprehensive protocol combining in vivo and ex vivo electrophysiological experiments in an arrhythmogenic animal model. Am J Physiol Heart Circ Physiol 2024; 326:H203-H215. [PMID: 37975708 PMCID: PMC11213483 DOI: 10.1152/ajpheart.00358.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Ventricular arrhythmias contribute significantly to cardiovascular mortality, with coronary artery disease as the predominant underlying cause. Understanding the mechanisms of arrhythmogenesis is essential to identify proarrhythmic factors and develop novel approaches for antiarrhythmic prophylaxis and treatment. Animal models are vital in basic research on cardiac arrhythmias, encompassing molecular, cellular, ex vivo whole heart, and in vivo models. Most studies use either in vivo protocols lacking important information on clinical relevance or exclusively ex vivo protocols, thereby missing the opportunity to explore underlying mechanisms. Consequently, interpretation may be difficult due to dissimilarities in animal models, interventions, and individual properties across animals. Moreover, proarrhythmic effects observed in vivo are often not replicated in corresponding ex vivo preparations during mechanistic studies. We have established a protocol to perform both an in vivo and ex vivo electrophysiological characterization in an arrhythmogenic rat model with heart failure following myocardial infarction. The same animal is followed throughout the experiment. In vivo methods involve intracardiac programmed electrical stimulation and external defibrillation to terminate sustained ventricular arrhythmia. Ex vivo methods conducted on the Langendorff-perfused heart include an electrophysiological study with optical mapping of regional action potentials, conduction velocities, and dispersion of electrophysiological properties. By exploring the retention of the in vivo proarrhythmic phenotype ex vivo, we aim to examine whether the subsequent ex vivo detailed measurements are relevant to in vivo pathological behavior. This protocol can enhance greater understanding of cardiac arrhythmias by providing a standardized, yet adaptable model for evaluating arrhythmogenicity or antiarrhythmic interventions in cardiac diseases.NEW & NOTEWORTHY Rodent models are widely used in arrhythmia research. However, most studies do not standardize clinically relevant in vivo and ex vivo techniques to support their conclusions. Here, we present a comprehensive electrophysiological protocol in an arrhythmogenic rat model, connecting in vivo and ex vivo programmed electrical stimulation with optical mapping. By establishing this protocol, we aim to facilitate the adoption of a standardized model for investigating arrhythmias, enhancing research rigor and comparability in this field.
Collapse
Affiliation(s)
- Mathias Nyman
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Cardiology, St. Olavs University Hospital, Trondheim, Norway
| | - Tomas O Stølen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Berit Johnsen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karin Garten
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Francis L Burton
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Jan Pål Loennechen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Cardiology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
3
|
Gionti V, Scacchi S, Colli Franzone P, Pavarino LF, Dore R, Storti C. Role of Scar and Border Zone Geometry on the Genesis and Maintenance of Re-Entrant Ventricular Tachycardia in Patients With Previous Myocardial Infarction. Front Physiol 2022; 13:834747. [PMID: 35399271 PMCID: PMC8989182 DOI: 10.3389/fphys.2022.834747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
In patients with healed myocardial infarction, the left ventricular ejection fraction is characterized by low sensitivity and specificity in the prediction of future malignant arrhythmias. Thus, there is the need for new parameters in daily practice to perform arrhythmic risk stratification. The aim of this study is to identify some features of proarrhythmic geometric configurations of scars and border zones (BZ), by means of numerical simulations based on left ventricular models derived from post myocardial infarction patients. Two patients with similar clinical characteristics were included in this study. Both patients exhibited left ventricular scars characterized by subendo- and subepicardial BZ and a transmural BZ isthmus. The scar of patient #1 was significantly larger than that of patient #2, whereas the transmural BZ isthmus and the subdendo- and subepicardial BZs of patient #2 were thicker than those of patient #1. Patient #1 was positive at electrophysiologic testing, whereas patient #2 was negative. Based on the cardiac magnetic resonance (CMR) data, we developed a geometric model of the left ventricles of the two patients, taking into account the position, extent, and topological features of scars and BZ. The numerical simulations were based on the anisotropic monodomain model of electrocardiology. In the model of patient #1, sustained ventricular tachycardia (VT) was inducible by an S2 stimulus delivered at any of the six stimulation sites considered, while in the model of patient #2 we were not able to induce sustained VT. In the model of patient #1, making the subendo- and subepicardial BZs as thick as those of patient #2 did not affect the inducibility and maintenance of VT. On the other hand, in the model of patient #2, making the subendo- and subepicardial BZs as thin as those of patient #1 yielded sustained VT. In conclusion, the results show that the numerical simulations have an effective predictive capability in discriminating patients at high arrhythmic risk. The extent of the infarct scar and the presence of transmural BZ isthmuses and thin subendo- and subepicardial BZs promote sustained VT.
Collapse
Affiliation(s)
- Vincenzo Gionti
- Divisione di Cardiologia, Istituto di Cura Città di Pavia, Pavia, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Simone Scacchi
| | | | - Luca F. Pavarino
- Dipartimento di Matematica, Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Dore
- Divisione di Cardiologia, Istituto di Cura Città di Pavia, Pavia, Italy
| | - Cesare Storti
- Divisione di Cardiologia, Istituto di Cura Città di Pavia, Pavia, Italy
| |
Collapse
|
4
|
Mendonca Costa C, Gemmell P, Elliott MK, Whitaker J, Campos FO, Strocchi M, Neic A, Gillette K, Vigmond E, Plank G, Razavi R, O'Neill M, Rinaldi CA, Bishop MJ. Determining anatomical and electrophysiological detail requirements for computational ventricular models of porcine myocardial infarction. Comput Biol Med 2022; 141:105061. [PMID: 34915331 PMCID: PMC8819160 DOI: 10.1016/j.compbiomed.2021.105061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/20/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Computational models of the heart built from cardiac MRI and electrophysiology (EP) data have shown promise for predicting the risk of and ablation targets for myocardial infarction (MI) related ventricular tachycardia (VT), as well as to predict paced activation sequences in heart failure patients. However, most recent studies have relied on low resolution imaging data and little or no EP personalisation, which may affect the accuracy of model-based predictions. OBJECTIVE To investigate the impact of model anatomy, MI scar morphology, and EP personalisation strategies on paced activation sequences and VT inducibility to determine the level of detail required to make accurate model-based predictions. METHODS Imaging and EP data were acquired from a cohort of six pigs with experimentally induced MI. Computational models of ventricular anatomy, incorporating MI scar, were constructed including bi-ventricular or left ventricular (LV) only anatomy, and MI scar morphology with varying detail. Tissue conductivities and action potential duration (APD) were fitted to 12-lead ECG data using the QRS duration and the QT interval, respectively, in addition to corresponding literature parameters. Paced activation sequences and VT induction were simulated. Simulated paced activation and VT inducibility were compared between models and against experimental data. RESULTS Simulations predict that the level of model anatomical detail has little effect on simulated paced activation, with all model predictions comparing closely with invasive EP measurements. However, detailed scar morphology from high-resolution images, bi-ventricular anatomy, and personalized tissue conductivities are required to predict experimental VT outcome. CONCLUSION This study provides clear guidance for model generation based on clinical data. While a representing high level of anatomical and scar detail will require high-resolution image acquisition, EP personalisation based on 12-lead ECG can be readily incorporated into modelling pipelines, as such data is widely available.
Collapse
Affiliation(s)
- Caroline Mendonca Costa
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK.
| | - Philip Gemmell
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Mark K Elliott
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - John Whitaker
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Fernando O Campos
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Marina Strocchi
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | | | - Karli Gillette
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Austria; Medical University of Graz, Austria and BioTechMed, Graz, Austria
| | - Edward Vigmond
- Institut de Rythmologie et de modélisation cardiaque (LIRYC), University of Bordeaux, France
| | - Gernot Plank
- Medical University of Graz, Austria and BioTechMed, Graz, Austria
| | - Reza Razavi
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Mark O'Neill
- Department of Cardiology, Guy's and St Thomas' Hospital, London, UK
| | - Christopher A Rinaldi
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK; Department of Cardiology, Guy's and St Thomas' Hospital, London, UK
| | - Martin J Bishop
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| |
Collapse
|
5
|
Han B, Trew ML, Zgierski-Johnston CM. Cardiac Conduction Velocity, Remodeling and Arrhythmogenesis. Cells 2021; 10:cells10112923. [PMID: 34831145 PMCID: PMC8616078 DOI: 10.3390/cells10112923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac electrophysiological disorders, in particular arrhythmias, are a key cause of morbidity and mortality throughout the world. There are two basic requirements for arrhythmogenesis: an underlying substrate and a trigger. Altered conduction velocity (CV) provides a key substrate for arrhythmogenesis, with slowed CV increasing the probability of re-entrant arrhythmias by reducing the length scale over which re-entry can occur. In this review, we examine methods to measure cardiac CV in vivo and ex vivo, discuss underlying determinants of CV, and address how pathological variations alter CV, potentially increasing arrhythmogenic risk. Finally, we will highlight future directions both for methodologies to measure CV and for possible treatments to restore normal CV.
Collapse
Affiliation(s)
- Bo Han
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Department of Cardiovascular Surgery, The Fourth People’s Hospital of Jinan, 250031 Jinan, China
| | - Mark L. Trew
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand;
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
6
|
Schultz F, Swiatlowska P, Alvarez-Laviada A, Sanchez-Alonso JL, Song Q, de Vries AAF, Pijnappels DA, Ongstad E, Braga VMM, Entcheva E, Gourdie RG, Miragoli M, Gorelik J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43. FASEB J 2019; 33:10453-10468. [PMID: 31253057 PMCID: PMC6704460 DOI: 10.1096/fj.201802740rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Healthy cardiomyocytes are electrically coupled at the intercalated discs by gap junctions. In infarcted hearts, adverse gap-junctional remodeling occurs in the border zone, where cardiomyocytes are chemically and electrically influenced by myofibroblasts. The physical movement of these contacts remains unquantified. Using scanning ion conductance microscopy, we show that intercellular contacts between cardiomyocytes and myofibroblasts are highly dynamic, mainly owing to the edge dynamics (lamellipodia) of the myofibroblasts. Decreasing the amount of functional connexin-43 (Cx43) at the membrane through Cx43 silencing, suppression of Cx43 trafficking, or hypoxia-induced Cx43 internalization attenuates heterocellular contact dynamism. However, we found decreased dynamism and stabilized membrane contacts when cellular coupling was strengthened using 4-phenylbutyrate (4PB). Fluorescent-dye transfer between cells showed that the extent of functional coupling between the 2 cell types correlated with contact dynamism. Intercellular calcein transfer from myofibroblasts to cardiomyocytes is reduced after myofibroblast-specific Cx43 down-regulation. Conversely, 4PB-treated myofibroblasts increased their functional coupling to cardiomyocytes. Consistent with lamellipodia-mediated contacts, latrunculin-B decreases dynamism, lowers physical communication between heterocellular pairs, and reduces Cx43 intensity in contact regions. Our data show that heterocellular cardiomyocyte-myofibroblast contacts exhibit high dynamism. Therefore, Cx43 is a potential target for prevention of aberrant cardiomyocyte coupling and myofibroblast proliferation in the infarct border zone.-Schultz, F., Swiatlowska, P., Alvarez-Laviada, A., Sanchez-Alonso, J. L., Song, Q., de Vries, A. A. F., Pijnappels, D. A., Ongstad, E., Braga, V. M. M., Entcheva, E., Gourdie, R. G., Miragoli, M., Gorelik, J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43.
Collapse
Affiliation(s)
- Francisca Schultz
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pamela Swiatlowska
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | - Qianqian Song
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Daniël A. Pijnappels
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emily Ongstad
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Vania M. M. Braga
- Department of Respiratory Sciences, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Robert G. Gourdie
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Michele Miragoli
- Humanitas Clinical and Research Center, Milan, Italy;,Department of Medicine and Surgery, University of Parma, Parma, Italy,Correspondence: Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43124 Parma, Italy. E-mail:
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom;,Correspondence: National Heart and Lung Institute, 4th Floor, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Rd., London W12 0NN, United Kingdom. E-mail:
| |
Collapse
|
7
|
Colli-Franzone P, Gionti V, Pavarino L, Scacchi S, Storti C. Role of infarct scar dimensions, border zone repolarization properties and anisotropy in the origin and maintenance of cardiac reentry. Math Biosci 2019; 315:108228. [DOI: 10.1016/j.mbs.2019.108228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
|
8
|
Pashakhanloo F, Herzka DA, Halperin H, McVeigh ER, Trayanova NA. Role of 3-Dimensional Architecture of Scar and Surviving Tissue in Ventricular Tachycardia: Insights From High-Resolution Ex Vivo Porcine Models. Circ Arrhythm Electrophysiol 2019; 11:e006131. [PMID: 29880529 DOI: 10.1161/circep.117.006131] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/05/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND An improved knowledge of the spatial organization of infarct structure and its contribution to ventricular tachycardia (VT) is important for designing optimal treatments. This study explores the relationship between the 3-dimensional structure of the healed infarct and the VT reentrant pathways in high-resolution models of infarcted porcine hearts. METHODS Structurally detailed models of infarcted ventricles were reconstructed from ex vivo late gadolinium enhancement and diffusion tensor magnetic resonance imaging data of 8 chronically infarcted porcine hearts at submillimeter resolution (0.25×0.25×0.5 mm3). To characterize the 3-dimensional structure of surviving tissue in the zone of infarct, a novel scar-mapped thickness metric was introduced. Further, using the ventricular models, electrophysiological simulations were conducted to determine and analyze the 3-dimensional VT pathways that were established in each of the complex infarct morphologies. RESULTS The scar-mapped thickness metric revealed the heterogeneous organization of infarct and enabled us to systematically characterize the distribution of surviving tissue thickness in 8 hearts. Simulation results demonstrated the involvement of a subendocardial tissue layer of varying thickness in the majority of VT pathways. Importantly, they revealed that VT pathways are most frequently established within thin surviving tissue structures of thickness ≤2.2 mm (90th percentile) surrounding the scar. CONCLUSIONS The combination of high-resolution imaging data and ventricular simulations revealed the 3-dimensional distribution of surviving tissue surrounding the scar and demonstrated its involvement in VT pathways. The new knowledge obtained in this study contributes toward a better understanding of infarct-related VT.
Collapse
Affiliation(s)
| | - Daniel A Herzka
- Department of Biomedical Engineering (F.P., D.A.H., E.R.M., N.A.T.)
| | | | - Elliot R McVeigh
- Department of Biomedical Engineering (F.P., D.A.H., E.R.M., N.A.T.).,Johns Hopkins University, Baltimore, MD. Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego, La Jolla (E.R.M.)
| | | |
Collapse
|
9
|
Factors Promoting Conduction Slowing as Substrates for Block and Reentry in Infarcted Hearts. Biophys J 2019; 117:2361-2374. [PMID: 31521328 PMCID: PMC6990374 DOI: 10.1016/j.bpj.2019.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/03/2019] [Accepted: 08/05/2019] [Indexed: 01/11/2023] Open
Abstract
The development of effective and safe therapies for scar-related ventricular tachycardias requires a detailed understanding of the mechanisms underlying the conduction block that initiates electrical re-entries associated with these arrhythmias. Conduction block has been often associated with electrophysiological changes that prolong action potential duration (APD) within the border zone (BZ) of chronically infarcted hearts. However, experimental evidence suggests that remodeling processes promoting conduction slowing as opposed to APD prolongation mark the chronic phase. In this context, the substrate for the initial block at the mouth of an isthmus/diastolic channel leading to ventricular tachycardia is unclear. The goal of this study was to determine whether electrophysiological parameters associated with conduction slowing can cause block and re-entry in the BZ. In silico experiments were conducted on two-dimensional idealized infarct tissue as well as on a cohort of postinfarction porcine left ventricular models constructed from ex vivo magnetic resonance imaging scans. Functional conduction slowing in the BZ was modeled by reducing sodium current density, whereas structural conduction slowing was represented by decreasing tissue conductivity and including fibrosis. The arrhythmogenic potential of APD prolongation was also tested as a basis for comparison. Within all models, the combination of reduced sodium current with structural remodeling more often degenerated into re-entry and, if so, was more likely to be sustained for more cycles. Although re-entries were also detected in experiments with prolonged APD, they were often not sustained because of the subsequent block caused by long-lasting repolarization. Functional and structural conditions associated with slow conduction rather than APD prolongation form a potent substrate for arrhythmogenesis at the isthmus/BZ of chronically infarcted hearts. Reduced excitability led to block while slow conduction shortened the wavelength of propagation, facilitating the sustenance of re-entries. These findings provide important insights for models of patient-specific risk stratification and therapy planning.
Collapse
|
10
|
Lopez-Perez A, Sebastian R, Izquierdo M, Ruiz R, Bishop M, Ferrero JM. Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia. Front Physiol 2019; 10:580. [PMID: 31156460 PMCID: PMC6531915 DOI: 10.3389/fphys.2019.00580] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
In the chronic stage of myocardial infarction, a significant number of patients develop life-threatening ventricular tachycardias (VT) due to the arrhythmogenic nature of the remodeled myocardium. Radiofrequency ablation (RFA) is a common procedure to isolate reentry pathways across the infarct scar that are responsible for VT. Unfortunately, this strategy show relatively low success rates; up to 50% of patients experience recurrent VT after the procedure. In the last decade, intensive research in the field of computational cardiac electrophysiology (EP) has demonstrated the ability of three-dimensional (3D) cardiac computational models to perform in-silico EP studies. However, the personalization and modeling of certain key components remain challenging, particularly in the case of the infarct border zone (BZ). In this study, we used a clinical dataset from a patient with a history of infarct-related VT to build an image-based 3D ventricular model aimed at computational simulation of cardiac EP, including detailed patient-specific cardiac anatomy and infarct scar geometry. We modeled the BZ in eight different ways by combining the presence or absence of electrical remodeling with four different levels of image-based patchy fibrosis (0, 10, 20, and 30%). A 3D torso model was also constructed to compute the ECG. Patient-specific sinus activation patterns were simulated and validated against the patient's ECG. Subsequently, the pacing protocol used to induce reentrant VTs in the EP laboratory was reproduced in-silico. The clinical VT was induced with different versions of the model and from different pacing points, thus identifying the slow conducting channel responsible for such VT. Finally, the real patient's ECG recorded during VT episodes was used to validate our simulation results and to assess different strategies to model the BZ. Our study showed that reduced conduction velocities and heterogeneity in action potential duration in the BZ are the main factors in promoting reentrant activity. Either electrical remodeling or fibrosis in a degree of at least 30% in the BZ were required to initiate VT. Moreover, this proof-of-concept study confirms the feasibility of developing 3D computational models for cardiac EP able to reproduce cardiac activation in sinus rhythm and during VT, using exclusively non-invasive clinical data.
Collapse
Affiliation(s)
- Alejandro Lopez-Perez
- Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Rafael Sebastian
- Computational Multiscale Simulation Lab (CoMMLab), Universitat de València, Valencia, Spain
| | - M Izquierdo
- INCLIVA Health Research Institute, Valencia, Spain.,Arrhythmia Unit, Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ricardo Ruiz
- INCLIVA Health Research Institute, Valencia, Spain.,Arrhythmia Unit, Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Martin Bishop
- Division of Imaging Sciences & Biomedical Engineering, Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Jose M Ferrero
- Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
11
|
Connolly A, Kelly A, Campos FO, Myles R, Smith G, Bishop MJ. Ventricular Endocardial Tissue Geometry Affects Stimulus Threshold and Effective Refractory Period. Biophys J 2018; 115:2486-2498. [PMID: 30503533 PMCID: PMC6301915 DOI: 10.1016/j.bpj.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Understanding the biophysical processes by which electrical stimuli applied to cardiac tissue may result in local activation is important in both the experimental and clinical electrophysiology laboratory environments, as well as for gaining a more in-depth knowledge of the mechanisms of focal-trigger-induced arrhythmias. Previous computational models have predicted that local myocardial tissue architecture alone may significantly modulate tissue excitability, affecting both the local stimulus current required to excite the tissue and the local effective refractory period (ERP). In this work, we present experimental validation of this structural modulation of local tissue excitability on the endocardial tissue surface, use computational models to provide mechanistic understanding of this phenomena in relation to localized changes in electrotonic loading, and demonstrate its implications for the capture of afterdepolarizations. METHODS AND RESULTS Experiments on rabbit ventricular wedge preparations showed that endocardial ridges (surfaces of negative mean curvature) had a stimulus capture threshold that was 0.21 ± 0.03 V less than endocardial grooves (surfaces of positive mean curvature) for pairwise comparison (24% reduction, corresponding to 56.2 ± 6.4% of the energy). When stimulated at the minimal stimulus strength for capture, ridge locations showed a shorter ERP than grooves (n = 6, mean pairwise difference 7.4 ± 4.2 ms). When each site was stimulated with identical-strength stimuli, the difference in ERP was further increased (mean pairwise difference 15.8 ± 5.3 ms). Computational bidomain models of highly idealized cylindrical endocardial structures qualitatively agreed with these findings, showing that such changes in excitability are driven by structural modulation in electrotonic loading, quantifying this relationship as a function of surface curvature. Simulations further showed that capture of delayed afterdepolarizations was more likely in trabecular ridges than grooves, driven by this difference in loading. CONCLUSIONS We have demonstrated experimentally and explained mechanistically in computer simulations that the ability to capture tissue on the endocardial surface depends upon the local tissue architecture. These findings have important implications for deepening our understanding of excitability differences related to anatomical structure during stimulus application that may have important applications in the translation of novel experimental optogenetics pacing strategies. The uncovered preferential vulnerability to capture of afterdepolarizations of endocardial ridges, compared to grooves, provides important insight for understanding the mechanisms of focal-trigger-induced arrhythmias.
Collapse
Affiliation(s)
- Adam Connolly
- Department of Bioengineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fernando O Campos
- Department of Bioengineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Rachel Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martin J Bishop
- Department of Bioengineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
12
|
Connolly AJ, Bishop MJ. Computational Representations of Myocardial Infarct Scars and Implications for Arrhythmogenesis. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:27-40. [PMID: 27486348 PMCID: PMC4962962 DOI: 10.4137/cmc.s39708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Image-based computational modeling is becoming an increasingly used clinical tool to provide insight into the mechanisms of reentrant arrhythmias. In the context of ischemic heart disease, faithful representation of the electrophysiological properties of the infarct region within models is essential, due to the scars known for arrhythmic properties. Here, we review the different computational representations of the infarcted region, summarizing the experimental measurements upon which they are based. We then focus on the two most common representations of the scar core (complete insulator or electrically passive tissue) and perform simulations of electrical propagation around idealized infarct geometries. Our simulations highlight significant differences in action potential duration and focal effective refractory period (ERP) around the scar, driven by differences in electrotonic loading, depending on the choice of scar representation. Finally, a novel mechanism for arrhythmia induction, following a focal ectopic beat, is demonstrated, which relies on localized gradients in ERP directly caused by the electrotonic sink effects of the neighboring passive scar.
Collapse
Affiliation(s)
- Adam J Connolly
- Department of Imaging Sciences and Bioengineering, King's College London, St Thomas' Hospital, London, UK
| | - Martin J Bishop
- Department of Imaging Sciences and Bioengineering, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|