1
|
Isaković J, Chin BD, Oberwinter M, Rance HK. From lab coats to clinical trials: Evolution and application of electromagnetic fields for ischemic stroke rehabilitation and monitoring. Brain Res 2025; 1850:149391. [PMID: 39662791 DOI: 10.1016/j.brainres.2024.149391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Stroke is a neurovascular disorder which stands as one of the leading causes of death and disability worldwide, resulting in motor and cognitive impairment. Although the treatment approach depends on the time elapsed, the type of stroke and the availability of care centers, common interventions include thrombectomy or the administration of a tissue plasminogen activator (tPA). While these methods restore blood flow, they fall short in helping patients regain lost function. With that, recent years have seen a rise in novel methods, one of which is the use of electromagnetic fields (EMFs). Due to their ability to impact the charges in their vicinity, thereby altering the immune response and cell signaling, EMFs became suitable candidates for stroke rehabilitation. Based on their characteristics, therapeutic EMFs can be categorized into transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), pulsed (PEMFs) and low frequency (LF-EMFs) electromagnetic fields, among others. In addition to treatment, EMFs are being explored for stroke monitoring, utilizing external EMFs for imaging or recording innate EMFs linked to neural activity. Drawing from research on the effects of EMFs, this review aims to provide a comprehensive overview of the physical principles and molecular mechanisms underlying the action of EMFs, along with a discussion of their application in preclinical studies and clinical trials. Finally, this paper not only addresses the importance of treatment availability and potential side-effects, but also delves into the technical and ethical challenges associated with the use of EMFs, while exploring their prospects and future opportunities.
Collapse
Affiliation(s)
- Jasmina Isaković
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany.
| | - Benjamin Daniel Chin
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany
| | - Moritz Oberwinter
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany
| | - Hannah Katarina Rance
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Kaluskar P, Bharadwaj D, Iyer KS, Dy C, Zheng M, Brogan DM. A Systematic Review to Compare Electrical, Magnetic, and Optogenetic Stimulation for Peripheral Nerve Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:722-739. [PMID: 39381397 PMCID: PMC11456630 DOI: 10.1016/j.jhsg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 10/10/2024] Open
Abstract
The purpose of this systematic review was to assess the currently available evidence for the use of external stimulation to modulate neural activity and promote peripheral nerve regeneration. The most common external stimulations are electrical stimulation (ES), optogenetic stimulation (OS), and magnetic stimulation (MS). Understanding the comparative effectiveness of these stimulation methods is pivotal in advancing therapeutic interventions for peripheral nerve injuries. This systematic review focused on these three external stimulation modalities as potential strategies to enhance peripheral nerve repair (PNR). We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework to systematically evaluate and compare the efficiency of ES, OS, and MS in PNR. The review included studies published between 2018 and 2023 using ES, OS, or MS for PNR focused on enhancing recovery of peripheral nerve injuries in rodent models identified through PubMed and Google Scholar. The search strategies and inclusion criteria identified 19 studies (13 ES, 4 OS, and 2 MS) for detailed analysis, focusing on critical parameters such as functional recovery, histological outcomes, and electrophysiological data. Although ES demonstrated a consistent improvement in all the analyses, high-frequency repetitive MS (HFr-MS) emerged as a promising modality. HFr-MS demonstrated accelerated PNR, as histological and electrophysiological evidence indicated. In contrast, OS exhibited superior functional recovery outcomes. Notable limitations include constrained MS and OS data sets and the challenge of comparing relative improvements because of methodological diversity in evaluation techniques. Our findings underscore the potential of HFr-MS and OS in PNR while emphasizing the critical need for standardized testing protocols to facilitate meaningful cross-study comparisons. External stimulations have the potential to improve functional recovery in patients with nerve injury.
Collapse
Affiliation(s)
- Priya Kaluskar
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
- ARC Training Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Melbourne, Australia
| | - Dhruv Bharadwaj
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, the University of Western Australia, Perth, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, the University of Western Australia, Perth, Australia
| | - Christopher Dy
- Orthopaedic Surgery Division of Hand and Microsurgery, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - David M. Brogan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
4
|
Gutierrez MI, Poblete-Naredo I, Mercado-Gutierrez JA, Toledo-Peral CL, Quinzaños-Fresnedo J, Yanez-Suarez O, Gutierrez-Martinez J. Devices and Technology in Transcranial Magnetic Stimulation: A Systematic Review. Brain Sci 2022; 12:1218. [PMID: 36138954 PMCID: PMC9496961 DOI: 10.3390/brainsci12091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/18/2023] Open
Abstract
The technology for transcranial magnetic stimulation (TMS) has significantly changed over the years, with important improvements in the signal generators, the coils, the positioning systems, and the software for modeling, optimization, and therapy planning. In this systematic literature review (SLR), the evolution of each component of TMS technology is presented and analyzed to assess the limitations to overcome. This SLR was carried out following the PRISMA 2020 statement. Published articles of TMS were searched for in four databases (Web of Science, PubMed, Scopus, IEEE). Conference papers and other reviews were excluded. Records were filtered using terms about TMS technology with a semi-automatic software; articles that did not present new technology developments were excluded manually. After this screening, 101 records were included, with 19 articles proposing new stimulator designs (18.8%), 46 presenting or adapting coils (45.5%), 18 proposing systems for coil placement (17.8%), and 43 implementing algorithms for coil optimization (42.6%). The articles were blindly classified by the authors to reduce the risk of bias. However, our results could have been influenced by our research interests, which would affect conclusions for applications in psychiatric and neurological diseases. Our analysis indicates that more emphasis should be placed on optimizing the current technology with a special focus on the experimental validation of models. With this review, we expect to establish the base for future TMS technological developments.
Collapse
Affiliation(s)
- Mario Ibrahin Gutierrez
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, CONACYT —Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | | | - Jorge Airy Mercado-Gutierrez
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Cinthya Lourdes Toledo-Peral
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Jimena Quinzaños-Fresnedo
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Oscar Yanez-Suarez
- Neuroimaging Research Laboratory, Electrical Engineering Department, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City 14389, Mexico
| | - Josefina Gutierrez-Martinez
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| |
Collapse
|
5
|
Vrba D, Malena L, Albrecht J, Fricova J, Anders M, Rokyta R, Rodrigues D, Vrba J. Numerical analysis of transcranial magnetic stimulation application in patients with orofacial pain. IEEE Trans Neural Syst Rehabil Eng 2022; 30:590-599. [PMID: 35239486 DOI: 10.1109/tnsre.2022.3156703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this paper, we monitored the accuracy of non-navigated application of repetitive Transcranial Magnetic Stimulation (rTMS) in 10 patients suffering from orofacial pain by using functional magnetic resonance (fMRI), computer modeling and numerical simulation. Through a unique process, each fMRI scan was used to define a Region of Interest (ROI) where the source of the orofacial pain was located, which was to be stimulated using rTMS. For each patient, MRI scans with a spatial resolution of 0.7 mm were converted into an anatomically accurate head model. The head model including the ROI was then co-registered with a model of the stimulation coil in an electromagnetic field numerical simulator. The accuracy of rTMS application was evaluated based on the calculations of electric field intensity distribution in the ROI. The research has yielded unique insight into ROIs (with average volume 904mm3) in patients with orofacial pain and has also extended further possibilities of human head MRI image semi-automatic segmentation. According to the calculations performed, the average ROI volume that was stimulated by an electric field with an intensity of over 80 V/m was only 4.4%, with the maximum ROI volume being 20.5%. Furthermore, a numerical study of the impact of coil rotation and translation was performed. It demonstrated a) the optimal placement of the stimulation coil can significantly increase the volume of the stimulated ROI up to 60% and b) patients with orofacial pain would need precise coil positioning with a navigation error lower than 10 mm. Due to an acceptable proccessing time of up to 6 hours, described numerical simulation opens up new options for precise rTMS treatment planning. This planning platform together withpatient-specific navigated rTMS, could lead to significant increase of treatment outcomes in patients suffering from orofacial pain.
Collapse
|
6
|
Ueno S, Sekino M. Figure-Eight Coils for Magnetic Stimulation: From Focal Stimulation to Deep Stimulation. Front Hum Neurosci 2022; 15:805971. [PMID: 34975440 PMCID: PMC8716496 DOI: 10.3389/fnhum.2021.805971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
This article reviews the evolution and recent developments of transcranial magnetic brain stimulation using figure-eight coils to stimulate localized areas in the human brain. Geometric variations of figure-eight coils and their characteristics are reviewed and discussed for applications in neuroscience and medicine. Recent topics of figure-eight coils, such as focality of figure-eight coils, tradeoff between depth and focality, and approaches for extending depth, are discussed.
Collapse
Affiliation(s)
- Shoogo Ueno
- Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Sekino
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Huang P, Xu L, Xie Y. Biomedical Applications of Electromagnetic Detection: A Brief Review. BIOSENSORS 2021; 11:225. [PMID: 34356696 PMCID: PMC8301974 DOI: 10.3390/bios11070225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023]
Abstract
This paper presents a review on the biomedical applications of electromagnetic detection in recent years. First of all, the thermal, non-thermal, and cumulative thermal effects of electromagnetic field on organism and their biological mechanisms are introduced. According to the electromagnetic biological theory, the main parameters affecting electromagnetic biological effects are frequency and intensity. This review subsequently makes a brief review about the related biomedical application of electromagnetic detection and biosensors using frequency as a clue, such as health monitoring, food preservation, and disease treatment. In addition, electromagnetic detection in combination with machine learning (ML) technology has been used in clinical diagnosis because of its powerful feature extraction capabilities. Therefore, the relevant research involving the application of ML technology to electromagnetic medical images are summarized. Finally, the future development to electromagnetic detection for biomedical applications are presented.
Collapse
Affiliation(s)
- Pu Huang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
| | - Lijun Xu
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China;
| | - Yuedong Xie
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China;
| |
Collapse
|
8
|
Gomez-Tames J, Laakso I, Hirata A. Review on biophysical modelling and simulation studies for transcranial magnetic stimulation. ACTA ACUST UNITED AC 2020; 65:24TR03. [DOI: 10.1088/1361-6560/aba40d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Fiocchi S, Chiaramello E, Luzi L, Ferrulli A, Bonato M, Roth Y, Zangen A, Ravazzani P, Parazzini M. Deep Transcranial Magnetic Stimulation for the Addiction Treatment: Electric Field Distribution Modeling. ACTA ACUST UNITED AC 2018. [DOI: 10.1109/jerm.2018.2874528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Xiong H, Zheng C, Liu J. A multi-channel high-speed magnetic field detection system based on FPGA for transcranial magnetic stimulation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:065108. [PMID: 29960514 DOI: 10.1063/1.5025103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transcranial magnetic stimulation (TMS), a popular technology, acts on the brain by using a pulse magnetic field to cause a series of physiological and biochemical reactions. In order to detect the magnetic field generated by the TMS coil with high-speed and multi-channel performance, a novel magnetic field detection system based on a field programmable gate array (FPGA) is designed and implemented. The detection system includes an induction coil array, a data acquisition (DAQ) card, and upper computer monitor software. The DAQ card contains analog signal processing circuits, a multiplexer, an analog-to-digital converter, and a FPGA with a high-speed, parallel, and switching idea. The system can sample at a rate of 500 ksps, with 14-bit resolution and 12 channels. The three dimensional (3D) magnetic field can be monitored on the screen with a waveform display and 3D magnetic field vector display. The DAQ card has a good signal noise and distortion and cross talk of 88.35 dB and -79.69 dB, respectively. Compared with the NI DAQ card, the proposed system has a relative error smaller than 1.81% and a mean square error smaller than 2.89 × 10-6, which verifies that the proposed detection system has a good performance. The multi-channel high-speed magnetic field detection system provides an important platform for the study of TMS in medical, engineering, and other fields.
Collapse
Affiliation(s)
- Hui Xiong
- The School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
| | - Chunhou Zheng
- The School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
| | - Jinzhen Liu
- The School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
| |
Collapse
|
11
|
Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation. PLoS One 2017; 12:e0178422. [PMID: 28586349 PMCID: PMC5460812 DOI: 10.1371/journal.pone.0178422] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/12/2017] [Indexed: 11/19/2022] Open
Abstract
Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA) coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8) coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.
Collapse
|
12
|
Petrichella S, Johnson N, He B. The influence of corticospinal activity on TMS-evoked activity and connectivity in healthy subjects: A TMS-EEG study. PLoS One 2017; 12:e0174879. [PMID: 28384197 PMCID: PMC5383066 DOI: 10.1371/journal.pone.0174879] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/16/2017] [Indexed: 11/30/2022] Open
Abstract
Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) can be used to analyze cortical reactivity and connectivity. However, the effects of corticospinal and peripheral muscle activity on TMS-evoked potentials (TEPs) are not well understood. The aim of this paper is to evaluate the relationship between cortico-spinal activity, in the form of peripheral motor-evoked potentials (MEPs), and the TEPs from motor areas, along with the connectivity among activated brain areas. TMS was applied to left and right motor cortex (M1), separately, at motor threshold while multi-channel EEG responses were recorded in 17 healthy human subjects. Cortical excitability and source imaging analysis were performed for all trials at each stimulation location, as well as comparing trials resulting in MEPs to those without. Connectivity analysis was also performed comparing trials resulting in MEPs to those without. Cortical excitability results significantly differed between the MEP and no-MEP conditions for left M1 TMS at 60 ms (CP1, CP3, C1) and for right M1 TMS at 54 ms (CP6, C6). Connectivity analysis revealed higher outflow and inflow between M1 and somatosensory cortex bi-directionally for trials with MEPs than those without for both left M1 TMS (at 60, 100, 164 ms) and right M1 TMS (at 54, 100, and 164 ms). Both TEP amplitudes and connectivity measures related to motor and somatosensory areas ipsilateral to the stimulation were shown to correspond with peripheral MEP amplitudes. This suggests that cortico-spinal activation, along with the resulting somatosensory feedback, affects the cortical activity and dynamics within motor areas reflected in the TEPs. The findings suggest that TMS-EEG, along with adaptive connectivity estimators, can be used to evaluate the cortical dynamics associated with sensorimotor integration and proprioceptive manipulation along with the influence of peripheral muscle feedback.
Collapse
Affiliation(s)
- Sara Petrichella
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Nessa Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
13
|
Gomez-Tames J, Sugiyama Y, Laakso I, Tanaka S, Koyama S, Sadato N, Hirata A. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation. Phys Med Biol 2016; 61:8825-8838. [DOI: 10.1088/1361-6560/61/24/8825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|