1
|
Hao R, Itsarachaiyot Y, Çavuşoğlu MC. Bayesian Optimization Based Preprocedural Planning For Robotic Left Atrial Appendage Occlusion. ... INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS. INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS 2024; 2024:10.1109/ismr63436.2024.10585608. [PMID: 39628872 PMCID: PMC11611301 DOI: 10.1109/ismr63436.2024.10585608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Left atrial appendage occlusion is a procedure to reduce the risk of thromboembolism in atrial fibrillation patients by blocking the left atrial appendage ostium using an occlusion device implanted by an intra-vascular delivery catheter. The preprocedural planning of the left atrial appendage occlusion procedure aims to identify an optimal implantation trajectory for a successful occlusion implant delivery from a structural understanding of the left atrial appendage. In this paper, a Bayesian Optimization based preprocedural planning approach is proposed for the robotic left atrial appendage occlusion procedure. The preprocedural planner efficiently samples transseptal puncture positions over the fossa ovalis and sequentially optimizes the transseptal puncture location. The iterative linear-quadratic-regulator is employed by the Bayesian Optimization planner for locally optimizing the occlusion trajectory for a given transseptal puncture location. The performance of the proposed Bayesian Optimization based preprocedural planner is evaluated in a simulation environment using a real cardiac anatomy model.
Collapse
Affiliation(s)
- Ran Hao
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH
| | - Yuttana Itsarachaiyot
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH
| | - M Cenk Çavuşoğlu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
2
|
Kilbride BF, Narsinh KH, Jordan CD, Mueller K, Moore T, Martin AJ, Wilson MW, Hetts SW. MRI-guided endovascular intervention: current methods and future potential. Expert Rev Med Devices 2022; 19:763-778. [PMID: 36373162 PMCID: PMC9869980 DOI: 10.1080/17434440.2022.2141110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Image-guided endovascular interventions, performed using the insertion and navigation of catheters through the vasculature, have been increasing in number over the years, as minimally invasive procedures continue to replace invasive surgical procedures. Such endovascular interventions are almost exclusively performed under x-ray fluoroscopy, which has the best spatial and temporal resolution of all clinical imaging modalities. Magnetic resonance imaging (MRI) offers unique advantages and could be an attractive alternative to conventional x-ray guidance, but also brings with it distinctive challenges. AREAS COVERED In this review, the benefits and limitations of MRI-guided endovascular interventions are addressed, systems and devices for guiding such interventions are summarized, and clinical applications are discussed. EXPERT OPINION MRI-guided endovascular interventions are still relatively new to the interventional radiology field, since significant technical hurdles remain to justify significant costs and demonstrate safety, design, and robustness. Clinical applications of MRI-guided interventions are promising but their full potential may not be realized until proper tools designed to function in the MRI environment are available. Translational research and further preclinical studies are needed before MRI-guided interventions will be practical in a clinical interventional setting.
Collapse
Affiliation(s)
- Bridget F. Kilbride
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Kazim H. Narsinh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Teri Moore
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Alastair J. Martin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Mark W. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Steven W. Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Tuna EE, Poirot NL, Franson D, Bayona JB, Huang S, Seiberlich N, Griswold MA, Cavusoglu MC. MRI Distortion Correction and Robot-to-MRI Scanner Registration for an MRI-Guided Robotic System. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:99205-99220. [PMID: 37041984 PMCID: PMC10085576 DOI: 10.1109/access.2022.3207156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Magnetic resonance imaging (MRI) guided robotic procedures require safe robotic instrument navigation and precise target localization. This depends on reliable tracking of the instrument from MR images, which requires accurate registration of the robot to the scanner. A novel differential image based robot-to-MRI scanner registration approach is proposed that utilizes a set of active fiducial coils, where background subtraction method is employed for coil detection. In order to use the presented preoperative registration approach jointly with the real-time high speed MRI image acquisition and reconstruction methods in real-time interventional procedures, the effects of the geometric MRI distortion in robot to scanner registration is analyzed using a custom distortion mapping algorithm. The proposed approach is validated by a set of target coils placed within the workspace, employing multi-planar capabilities of the scanner. Registration and validation errors are respectively 2.05 mm and 2.63 mm after the distortion correction showing an improvement of respectively 1.08 mm and 0.14 mm compared to the results without distortion correction.
Collapse
Affiliation(s)
- E Erdem Tuna
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nate Lombard Poirot
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Juana Barrera Bayona
- School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sherry Huang
- General Electric Healthcare, Royal Oak, MI 48067, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann-Anbor, MI 48109, USA
| | - Mark A Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M Cenk Cavusoglu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Dupont PE, Simaan N, Choset H, Rucker C. Continuum Robots for Medical Interventions. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:847-870. [PMID: 35756186 PMCID: PMC9231641 DOI: 10.1109/jproc.2022.3141338] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Continuum robots are not constructed with discrete joints but, instead, change shape and position their tip by flexing along their entire length. Their narrow curvilinear shape makes them well suited to passing through body lumens, natural orifices, or small surgical incisions to perform minimally invasive procedures. Modeling and controlling these robots are, however, substantially more complex than traditional robots comprised of rigid links connected by discrete joints. Furthermore, there are many approaches to achieving robot flexure. Each presents its own design and modeling challenges, and to date, each has been pursued largely independently of the others. This article attempts to provide a unified summary of the state of the art of continuum robot architectures with respect to design for specific clinical applications. It also describes a unifying framework for modeling and controlling these systems while additionally explaining the elements unique to each architecture. The major research accomplishments are described for each topic and directions for the future progress needed to achieve widespread clinical use are identified.
Collapse
Affiliation(s)
- Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Nabil Simaan
- Department of Mechanical Engineering, the Department of Computer Science, and the Department of Otolaryngology, Vanderbilt University, Nashville, TN 37235 USA
| | - Howie Choset
- Mechanical Engineering Department, the Biomedical Engineering Department, and the Robotics Institute, Carnegie Mellon, Pittsburgh, PA 15213 USA
| | - Caleb Rucker
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
5
|
Su H, Kwok KW, Cleary K, Iordachita I, Cavusoglu MC, Desai JP, Fischer GS. State of the Art and Future Opportunities in MRI-Guided Robot-Assisted Surgery and Interventions. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:968-992. [PMID: 35756185 PMCID: PMC9231642 DOI: 10.1109/jproc.2022.3169146] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of target anatomy, surrounding tissue, and instrumentation, but there are significant challenges in harnessing it for effectively guiding interventional procedures. Challenges include the strong static magnetic field, rapidly switching magnetic field gradients, high-power radio frequency pulses, sensitivity to electrical noise, and constrained space to operate within the bore of the scanner. MRI has a number of advantages over other medical imaging modalities, including no ionizing radiation, excellent soft-tissue contrast that allows for visualization of tumors and other features that are not readily visible by other modalities, true 3-D imaging capabilities, including the ability to image arbitrary scan plane geometry or perform volumetric imaging, and capability for multimodality sensing, including diffusion, dynamic contrast, blood flow, blood oxygenation, temperature, and tracking of biomarkers. The use of robotic assistants within the MRI bore, alongside the patient during imaging, enables intraoperative MR imaging (iMRI) to guide a surgical intervention in a closed-loop fashion that can include tracking of tissue deformation and target motion, localization of instrumentation, and monitoring of therapy delivery. With the ever-expanding clinical use of MRI, MRI-compatible robotic systems have been heralded as a new approach to assist interventional procedures to allow physicians to treat patients more accurately and effectively. Deploying robotic systems inside the bore synergizes the visual capability of MRI and the manipulation capability of robotic assistance, resulting in a closed-loop surgery architecture. This article details the challenges and history of robotic systems intended to operate in an MRI environment and outlines promising clinical applications and associated state-of-the-art MRI-compatible robotic systems and technology for making this possible.
Collapse
Affiliation(s)
- Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Ka-Wai Kwok
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
| | - Kevin Cleary
- Children's National Health System, Washington, DC 20010 USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218 USA
| | - M Cenk Cavusoglu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jaydev P Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Gregory S Fischer
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| |
Collapse
|
6
|
Limpabandhu C, Hu Y, Ren H, Song W, Tse Z. Towards catheter steering using magnetic tractor beam coupling. Proc Inst Mech Eng H 2022; 236:9544119221075400. [PMID: 35130770 PMCID: PMC8915239 DOI: 10.1177/09544119221075400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Catheters are used in various clinical applications, and the ability to direct the catheter to the desired location is critical for clinical outcomes. Steerable catheters assist clinicians to access targeted areas, notably the vascular bundles and major vessels, while causing no damage to the surrounding tissue. A novel catheter actuation technology for catheter steering is presented in this study. The technique is simple and relies on three magnetic couples interacting with one another to generate steering motions. A proof-of-concept catheter prototype demonstrated the capacity to remotely steer a catheter over 100 mm of distance and ±45° of angular positioning, showing the potential manoeuvrability for clinical applications. It is feasible to steer a catheter using this three-magnet pair approach with the great potential to be used for catheterisation procedures. The presented mechanism's kinematics and a near-form solution for catheter steering regardless of design factors will be studied in the future.
Collapse
Affiliation(s)
| | - Yihua Hu
- Department of Electronic Engineering, University of York, York, UK
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Wenzhan Song
- School of Electrical and Computer Engineering, University of Georgia, GA, USA
| | - Zion Tse
- Department of Electronic Engineering, University of York, York, UK
| |
Collapse
|
7
|
Franson D, Dupuis A, Gulani V, Griswold M, Seiberlich N. A System for Real-Time, Online Mixed-Reality Visualization of Cardiac Magnetic Resonance Images. J Imaging 2021; 7:jimaging7120274. [PMID: 34940741 PMCID: PMC8709155 DOI: 10.3390/jimaging7120274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Image-guided cardiovascular interventions are rapidly evolving procedures that necessitate imaging systems capable of rapid data acquisition and low-latency image reconstruction and visualization. Compared to alternative modalities, Magnetic Resonance Imaging (MRI) is attractive for guidance in complex interventional settings thanks to excellent soft tissue contrast and large fields-of-view without exposure to ionizing radiation. However, most clinically deployed MRI sequences and visualization pipelines exhibit poor latency characteristics, and spatial integration of complex anatomy and device orientation can be challenging on conventional 2D displays. This work demonstrates a proof-of-concept system linking real-time cardiac MR image acquisition, online low-latency reconstruction, and a stereoscopic display to support further development in real-time MR-guided intervention. Data are acquired using an undersampled, radial trajectory and reconstructed via parallelized through-time radial generalized autocalibrating partially parallel acquisition (GRAPPA) implemented on graphics processing units. Images are rendered for display in a stereoscopic mixed-reality head-mounted display. The system is successfully tested by imaging standard cardiac views in healthy volunteers. Datasets comprised of one slice (46 ms), two slices (92 ms), and three slices (138 ms) are collected, with the acquisition time of each listed in parentheses. Images are displayed with latencies of 42 ms/frame or less for all three conditions. Volumetric data are acquired at one volume per heartbeat with acquisition times of 467 ms and 588 ms when 8 and 12 partitions are acquired, respectively. Volumes are displayed with a latency of 286 ms or less. The faster-than-acquisition latencies for both planar and volumetric display enable real-time 3D visualization of the heart.
Collapse
Affiliation(s)
- Dominique Franson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Correspondence: (D.F.); (A.D.)
| | - Andrew Dupuis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Correspondence: (D.F.); (A.D.)
| | - Vikas Gulani
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (V.G.); (N.S.)
| | - Mark Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (V.G.); (N.S.)
| |
Collapse
|
8
|
Hao R, Çavuşoğlu MC. A Probabilistic Approach for Contact Stability and Contact Safety Analysis of Robotic Intracardiac Catheter. JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL 2021; 143:094502. [PMID: 34334808 PMCID: PMC8299815 DOI: 10.1115/1.4050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/17/2021] [Indexed: 06/13/2023]
Abstract
The disturbances caused by the blood flow and tissue surface motions are major concerns during the motion planning of an intracardiac robotic catheter. Maintaining a stable and safe contact on the desired ablation point is essential for achieving effective lesions during the ablation procedure. In this paper, a probabilistic formulation of the contact stability and the contact safety for intravascular cardiac catheters under the blood flow and surface motion disturbances is presented. Probabilistic contact stability and contact safety metrics, employing a sample-based representation of the blood flow velocity distribution and the heart motion trajectory, are introduced. Finally, the contact stability and safety for an magnetic resonance imaging-actuated robotic catheter under main pulmonary artery blood flow disturbances and left ventricle surface motion disturbances are analyzed in simulation as example scenarios.
Collapse
Affiliation(s)
- Ran Hao
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - M. Cenk Çavuşoğlu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
9
|
Erin O, Boyvat M, Lazovic J, Tiryaki ME, Sitti M. Wireless MRI-Powered Reversible Orientation-Locking Capsule Robot. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100463. [PMID: 35478933 PMCID: PMC7612672 DOI: 10.1002/advs.202100463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Indexed: 06/01/2023]
Abstract
Magnetic resonance imaging (MRI) scanners do not provide only high-resolution medical imaging but also magnetic robot actuation and tracking. However, the rotational motion capabilities of MRI-powered wireless magnetic capsule-type robots have been limited due to the very high axial magnetic field inside the MRI scanner. Medical functionalities of such robots also remain a challenge due to the miniature robot designs. Therefore, a wireless capsule-type reversible orientation-locking robot (REVOLBOT) is proposed that has decoupled translational motion and planar orientation change capability by locking and unlocking the rotation of a spherical ferrous bead inside the robot on demand. Such an on-demand locking/unlocking mechanism is achieved by a phase-changing wax material in which the ferrous bead is embedded inside. Controlled and on-demand hyperthermia and drug delivery using wireless power transfer-based Joule heating induced by external alternating magnetic fields are the additional features of this robot. The experimental feasibility of the REVOLBOT prototype with steerable navigation, medical function, and MRI tracking capabilities with an 1.33 Hz scan rate is demonstrated inside a preclinical 7T small-animal MRI scanner. The proposed robot has the potential for future clinical use in teleoperated minimally invasive treatment procedures with hyperthermia and drug delivery capabilities while being wirelessly powered and monitored inside MRI scanners.
Collapse
Affiliation(s)
- Onder Erin
- Department of Physical IntelligenceMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Mustafa Boyvat
- Department of Physical IntelligenceMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Jelena Lazovic
- Department of Physical IntelligenceMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Mehmet Efe Tiryaki
- Department of Physical IntelligenceMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
| | - Metin Sitti
- Department of Physical IntelligenceMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
10
|
Hao R, Erdem Tuna E, Çavuşoğlu MC. Contact Stability and Contact Safety of a Magnetic Resonance Imaging-Guided Robotic Catheter Under Heart Surface Motion. JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL 2021; 143:071010. [PMID: 33994580 PMCID: PMC8086176 DOI: 10.1115/1.4049837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Contact force quality is one of the most critical factors for safe and effective lesion formation during catheter based atrial fibrillation ablation procedures. In this paper, the contact stability and contact safety of a novel magnetic resonance imaging (MRI)-actuated robotic cardiac ablation catheter subject to surface motion disturbances are studied. First, a quasi-static contact force optimization algorithm, which calculates the actuation needed to achieve a desired contact force at an instantaneous tissue surface configuration is introduced. This algorithm is then generalized using a least-squares formulation to optimize the contact stability and safety over a prediction horizon for a given estimated heart motion trajectory. Four contact force control schemes are proposed based on these algorithms. The first proposed force control scheme employs instantaneous heart position feedback. The second control scheme applies a constant actuation level using a quasi-periodic heart motion prediction. The third and the last contact force control schemes employ a generalized adaptive filter-based heart motion prediction, where the former uses the predicted instantaneous position feedback, and the latter is a receding horizon controller. The performance of the proposed control schemes is compared and evaluated in a simulation environment.
Collapse
Affiliation(s)
- Ran Hao
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - E. Erdem Tuna
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - M. Cenk Çavuşoğlu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
11
|
Lin D, Jiao N, Wang Z, Liu L. A Magnetic Continuum Robot With Multi-Mode Control Using Opposite-Magnetized Magnets. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3061376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Real-Time Multi-Modal Sensing and Feedback for Catheterization in Porcine Tissue. SENSORS 2021; 21:s21010273. [PMID: 33401617 PMCID: PMC7795440 DOI: 10.3390/s21010273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022]
Abstract
Objective: In this study, we introduce a multi-modal sensing and feedback framework aimed at assisting clinicians during endovascular surgeries and catheterization procedures. This framework utilizes state-of-the-art imaging and sensing sub-systems to produce a 3D visualization of an endovascular catheter and surrounding vasculature without the need for intra-operative X-rays. Methods: The catheterization experiments within this study are conducted inside a porcine limb undergoing motions. A hybrid position-force controller of a robotically-actuated ultrasound (US) transducer for uneven porcine tissue surfaces is introduced. The tissue, vasculature, and catheter are visualized by integrated real-time US images, 3D surface imaging, and Fiber Bragg Grating (FBG) sensors. Results: During externally-induced limb motions, the vasculature and catheter can be reliably reconstructed at mean accuracies of 1.9±0.3 mm and 0.82±0.21 mm, respectively. Conclusions: The conventional use of intra-operative X-ray imaging to visualize instruments and vasculature in the human body can be reduced by employing improved diagnostic technologies that do not operate via ionizing radiation or nephrotoxic contrast agents. Significance: The presented multi-modal framework enables the radiation-free and accurate reconstruction of significant tissues and instruments involved in catheterization procedures.
Collapse
|
13
|
Mutlu S, Yasa O, Erin O, Sitti M. Magnetic Resonance Imaging-Compatible Optically Powered Miniature Wireless Modular Lorentz Force Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002948. [PMID: 33511017 PMCID: PMC7816712 DOI: 10.1002/advs.202002948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Indexed: 06/12/2023]
Abstract
Minimally invasive medical procedures under magnetic resonance imaging (MRI) guidance have significant clinical promise. However, this potential has not been fully realized yet due to challenges regarding MRI compatibility and miniaturization of active and precise positioning systems inside MRI scanners, i.e., restrictions on ferromagnetic materials and long conductive cables and limited space around the patient for additional instrumentation. Lorentz force-based electromagnetic actuators can overcome these challenges with the help of very high, axial, and uniform magnetic fields (3-7 Tesla) of the scanners. Here, a miniature, MRI-compatible, and optically powered wireless Lorentz force actuator module consisting of a solar cell and a coil with a small volume of 2.5 × 2.5 × 3.0 mm3 is proposed. Many of such actuator modules can be used to create various wireless active structures for future interventional MRI applications, such as positioning needles, markers, or other medical tools on the skin of a patient. As proof-of-concept prototypes toward such applications, a single actuator module that bends a flexible beam, four modules that rotate around an axis, and six modules that roll as a sphere are demonstrated inside a 7 Tesla preclinical MRI scanner.
Collapse
Affiliation(s)
- Senol Mutlu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Department of Electrical and Electronics EngineeringBogazici UniversityIstanbul34342Turkey
| | - Oncay Yasa
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Onder Erin
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Carnegie Mellon UniversityMechanical Engineering DepartmentPittsburghPA15213USA
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- School of Medicine and School of EngineeringKoc UniversityIstanbul34450Turkey
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
| |
Collapse
|
14
|
Hao R, Poirot NL, Çavuşoğlu MC. Analysis of Contact Stability and Contact Safety of a Robotic Intravascular Cardiac Catheter under Blood Flow Disturbances. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2020; 2020:3216-3223. [PMID: 34079624 PMCID: PMC8165756 DOI: 10.1109/iros45743.2020.9341527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper studies the contact stability and contact safety of a robotic intravascular cardiac catheter under blood flow disturbances while in contact with tissue surface. A probabilistic blood flow disturbance model, where the blood flow drag forces on the catheter body are approximated using a quasi-static model, is introduced. Using this blood flow disturbance model, probabilistic contact stability and contact safety metrics, employing a sample based representation of the blood flow velocity distribution, are proposed. Finally, the contact stability and contact safety of a MRI-actuated robotic catheter are analyzed using these models in a specific example scenario under left pulmonary inferior vein (LIV) blood flow disturbances.
Collapse
Affiliation(s)
- Ran Hao
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH
| | - Nate Lombard Poirot
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH
| | - M Cenk Çavuşoğlu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
15
|
Tuna EE, Poirot NL, Bayona JB, Franson D, Huang S, Narvaez J, Seiberlich N, Griswold M, Çavuşoğlu MC. Differential Image Based Robot to MRI Scanner Registration with Active Fiducial Markers for an MRI-Guided Robotic Catheter System. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2020; 2020:2958-2964. [PMID: 34136309 PMCID: PMC8202025 DOI: 10.1109/iros45743.2020.9341043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In magnetic resonance imaging (MRI) guided robotic catheter ablation procedures, reliable tracking of the catheter within the MRI scanner is needed to safely navigate the catheter. This requires accurate registration of the catheter to the scanner. This paper presents a differential, multi-slice image-based registration approach utilizing active fiducial coils. The proposed method would be used to preoperatively register the MRI image space with the physical catheter space. In the proposed scheme, the registration is performed with the help of a registration frame, which has a set of embedded electromagnetic coils designed to actively create MRI image artifacts. These coils are detected in the MRI scanner's coordinate system by background subtraction. The detected coil locations in each slice are weighted by the artifact size and then registered to known ground truth coil locations in the catheter's coordinate system via least-squares fitting. The proposed approach is validated by using a set of target coils placed withing the workspace, employing multi-planar capabilities of the MRI scanner. The average registration and validation errors are respectively computed as 1.97 mm and 2.49 mm. The multi-slice approach is also compared to the single-slice method and shown to improve registration and validation by respectively 0.45 mm and 0.66 mm.
Collapse
Affiliation(s)
- E Erdem Tuna
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nate Lombard Poirot
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Juana Barrera Bayona
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Dominique Franson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Sherry Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Julian Narvaez
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Mark Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - M Cenk Çavuşoğlu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Hao R, Greigarn T, Çavuşoğlu MC. Contact Stability Analysis of Magnetically-Actuated Robotic Catheter Under Surface Motion. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2020; 2020:4455-4462. [PMID: 34123481 PMCID: PMC8197595 DOI: 10.1109/icra40945.2020.9196951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Contact force quality is one of the most critical factors for safe and effective lesion formation during cardiac ablation. The contact force and contact stability plays important roles in determining the lesion size and creating a gap-free lesion. In this paper, the contact stability of a novel magnetic resonance imaging (MRI)-actuated robotic catheter under tissue surface motion is studied. The robotic catheter is modeled using a pseudo-rigid-body model, and the contact model under surface constraint is provided. Two contact force control schemes to improve the contact stability of the catheter under heart surface motions are proposed and their performance are evaluated in simulation.
Collapse
Affiliation(s)
- Ran Hao
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH
| | - Tipakorn Greigarn
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH
| | - M Cenk Çavuşoğlu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
17
|
Alipour A, Meyer ES, Dumoulin CL, Watkins RD, Elahi H, Loew W, Schweitzer J, Olson G, Chen Y, Tao S, Guttman M, Kolandaivelu A, Halperin HR, Schmidt EJ. MRI Conditional Actively Tracked Metallic Electrophysiology Catheters and Guidewires With Miniature Tethered Radio-Frequency Traps: Theory, Design, and Validation. IEEE Trans Biomed Eng 2019; 67:1616-1627. [PMID: 31535979 DOI: 10.1109/tbme.2019.2941460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cardiovascular interventional devices typically have long metallic braids or backbones to aid in steerability and pushability. However, electromagnetic coupling of metallic-based cardiovascular interventional devices with the radiofrequency (RF) fields present during Magnetic Resonance Imaging (MRI) can make a device unsafe for use in an MRI scanner. We aimed to develop MRI conditional actively-tracked cardiovascular interventional devices by sufficiently attenuating induced currents on the metallic braid/tube and internal-cabling using miniaturized resonant floating RF traps (MBaluns). METHOD MBaluns were designed for placement at multiple locations along a conducting cardiovascular device to prevent the establishment of standing waves and to dissipate RF-induced energy. The MBaluns were constructed with loosely-wound solenoids to be sensitive to transverse magnetic fields created by both surface currents on the device's metallic backbone and common-mode currents on internal cables. Electromagnetic simulations were used to optimize MBalun parameters. Following optimization, two different MBalun designs were applied to MR-actively-tracked metallic guidewires and metallic-braided electrophysiology ablation catheters. Control-devices were constructed without MBaluns. MBalun performance was validated using network-analyzer quantification of current attenuation, electromagnetic Specific-Absorption-Rate (SAR) analysis, thermal tests during high SAR pulse sequences, and MRI-guided cardiovascular navigation in swine. RESULTS Electromagnetic SAR simulations resulted in ≈20 dB attenuation at the tip of the wire using six successive MBaluns. Network-analyzer tests confirmed ∼17 dB/MBalun surface-current attenuation. Thermal tests indicated temperature decreases of 5.9 °C in the MBalun-equipped guidewire tip. Both devices allowed rapid vascular navigation resulting from good torquability and MR-Tracking visibility. CONCLUSION MBaluns increased device diameter by 20%, relative to conventional devices, providing a spatially-efficient means to prevent heating during MRI. SIGNIFICANCE MBaluns allow use of long metallic components, which improves mechanical performance in active MR-guided interventional devices.
Collapse
|
18
|
Tuna EE, Liu T, Jackson RC, Poirot NL, Russell M, Çavuşoğlu MC. Analysis of Dynamic Response of an MRI-Guided Magnetically-Actuated Steerable Catheter System. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2018; 2018:4927-4934. [PMID: 30643664 PMCID: PMC6329396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper presents a free-space open-loop dynamic response analysis for an MRI-guided magnetically-actuated steerable intra-vascular catheter system. The catheter tip is embedded with a set of current carrying micro-coils. The catheter is directly actuated via the magnetic torques generated on these coils by the magnetic field of the magnetic resonance imaging (MRI) scanner. The relationship between the input current commands and catheter tip deflection angle presents an inherent nonlinearity in the proposed catheter system. The system nonlinearity is analyzed by utilizing a pendulum model. The pendulum model is used to describe the system nonlinearity and to perform an approximate input-output linearization. Then, a black-box system identification approach is performed for frequency response analysis of the linearized dynamics. The optimal estimated model is reduced by observing the modes and considering the Nyquist frequency of the camera system that is used to track the catheter motion. The reduced model is experimentally validated with 3D open-loop Cartesian free-space trajectories. This study paves the way for effective and accurate free-space closed-loop control of the robotic catheter with real-time feedback from MRI guidance in subsequent research.
Collapse
Affiliation(s)
- E Erdem Tuna
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Taoming Liu
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Russell C Jackson
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nate Lombard Poirot
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mac Russell
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M Cenk Çavuşoğlu
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Sharei H, Alderliesten T, van den Dobbelsteen JJ, Dankelman J. Navigation of guidewires and catheters in the body during intervention procedures: a review of computer-based models. J Med Imaging (Bellingham) 2018; 5:010902. [PMID: 29392159 PMCID: PMC5787668 DOI: 10.1117/1.jmi.5.1.010902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/04/2018] [Indexed: 11/29/2022] Open
Abstract
Guidewires and catheters are used during minimally invasive interventional procedures to traverse in vascular system and access the desired position. Computer models are increasingly being used to predict the behavior of these instruments. This information can be used to choose the right instrument for each case and increase the success rate of the procedure. Moreover, a designer can test the performance of instruments before the manufacturing phase. A precise model of the instrument is also useful for a training simulator. Therefore, to identify the strengths and weaknesses of different approaches used to model guidewires and catheters, a literature review of the existing techniques has been performed. The literature search was carried out in Google Scholar and Web of Science and limited to English for the period 1960 to 2017. For a computer model to be used in practice, it should be sufficiently realistic and, for some applications, real time. Therefore, we compared different modeling techniques with regard to these requirements, and the purposes of these models are reviewed. Important factors that influence the interaction between the instruments and the vascular wall are discussed. Finally, different ways used to evaluate and validate the models are described. We classified the developed models based on their formulation into finite-element method (FEM), mass-spring model (MSM), and rigid multibody links. Despite its numerical stability, FEM requires a very high computational effort. On the other hand, MSM is faster but there is a risk of numerical instability. The rigid multibody links method has a simple structure and is easy to implement. However, as the length of the instrument is increased, the model becomes slower. For the level of realism of the simulation, friction and collision were incorporated as the most influential forces applied to the instrument during the propagation within a vascular system. To evaluate the accuracy, most of the studies compared the simulation results with the outcome of physical experiments on a variety of phantom models, and only a limited number of studies have done face validity. Although a subset of the validated models is considered to be sufficiently accurate for the specific task for which they were developed and, therefore, are already being used in practice, these models are still under an ongoing development for improvement. Realism and computation time are two important requirements in catheter and guidewire modeling; however, the reviewed studies made a trade-off depending on the purpose of their model. Moreover, due to the complexity of the interaction with the vascular system, some assumptions have been made regarding the properties of both instruments and vascular system. Some validation studies have been reported but without a consistent experimental methodology.
Collapse
Affiliation(s)
- Hoda Sharei
- Delft University of Technology, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft, The Netherlands
| | - Tanja Alderliesten
- Academic Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - John J. van den Dobbelsteen
- Delft University of Technology, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft, The Netherlands
| | - Jenny Dankelman
- Delft University of Technology, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft, The Netherlands
| |
Collapse
|
20
|
Liu T, Jackson R, Franson D, Poirot NL, Criss RK, Seiberlich N, Griswold MA, Çavuşoğlu MC. Iterative Jacobian-Based Inverse Kinematics and Open-Loop Control of an MRI-Guided Magnetically Actuated Steerable Catheter System. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2017; 22:1765-1776. [PMID: 29255343 PMCID: PMC5731790 DOI: 10.1109/tmech.2017.2704526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This paper presents an iterative Jacobian-based inverse kinematics method for an MRI-guided magnetically-actuated steerable intravascular catheter system. The catheter is directly actuated by magnetic torques generated on a set of current-carrying micro-coils embedded on the catheter tip, by the magnetic field of the magnetic resonance imaging (MRI) scanner. The Jacobian matrix relating changes of the currents through the coils to changes of the tip position is derived using a three dimensional kinematic model of the catheter deflection. The inverse kinematics is numerically computed by iteratively applying the inverse of the Jacobian matrix. The damped least square method is implemented to avoid numerical instability issues that exist during the computation of the inverse of the Jacobian matrix. The performance of the proposed inverse kinematics approach is validated using a prototype of the robotic catheter by comparing the actual trajectories of the catheter tip obtained via open-loop control with the desired trajectories. The results of reproducibility and accuracy evaluations demonstrate that the proposed Jacobian-based inverse kinematics method can be used to actuate the catheter in open-loop to successfully perform complex ablation trajectories required in atrial fibrillation ablation procedures. This study paves the way for effective and accurate closed-loop control of the robotic catheter with real-time feedback from MRI guidance in subsequent research.
Collapse
Affiliation(s)
- Taoming Liu
- Case Western Reserve University, Cleveland, Ohio 44106, USA. Department of Electrical Engineering and Computer Science
| | - Russell Jackson
- Case Western Reserve University, Cleveland, Ohio 44106, USA. Department of Electrical Engineering and Computer Science
| | - Dominique Franson
- Case Western Reserve University, Cleveland, Ohio 44106, USA. Department of Biomedical Engineering
| | - Nate Lombard Poirot
- Case Western Reserve University, Cleveland, Ohio 44106, USA. Department of Mechanical and Aerospace Engineering
| | - Reinhardt Kam Criss
- Case Western Reserve University, Cleveland, Ohio 44106, USA. Department of Electrical Engineering and Computer Science
| | - Nicole Seiberlich
- Case Western Reserve University, Cleveland, Ohio 44106, USA. Department of Biomedical Engineering
| | - Mark A Griswold
- Case Western Reserve University, Cleveland, Ohio 44106, USA. Department of Biomedical Engineering. Department of Radiology, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | - M Cenk Çavuşoğlu
- Case Western Reserve University, Cleveland, Ohio 44106, USA. Department of Electrical Engineering and Computer Science
| |
Collapse
|
21
|
Greigarn T, Jackson R, Liu T, Çavuşoğlu MC. Experimental Validation of the Pseudo-Rigid-Body Model of the MRI-Actuated Catheter. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2017; 2017:3600-3605. [PMID: 29218235 DOI: 10.1109/icra.2017.7989414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An MRI-actuated catheter is a novel robotic catheter system that utilizes the MRI for both remote steering and visualization for catheter ablation of atrial fibrillation. Planning and control of the catheter requires a sufficiently fast yet accurate model of the catheter. The pseudo-rigid-body (PRB) model offers a reasonable trade-off between speed and accuracy by approximating the continuum catheter as rigid links connected by flexible joints, thus reducing the infinite degrees of freedom of the continuum mechanism to a finite one. In this paper, a PRB model of the MRI-actuated catheter is validated experimentally by comparing the deflections of the PRB model with the deflections of the catheter prototype.
Collapse
Affiliation(s)
- Tipakorn Greigarn
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH
| | - Russell Jackson
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH
| | - Taoming Liu
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH
| | - M Cenk Çavuşoğlu
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
22
|
Greigarn T, Liu T, Çavuşoğlu MC. Parameter Optimization of Pseudo-Rigid-Body Models of MRI-Actuated Catheters. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5112-5115. [PMID: 28261009 DOI: 10.1109/embc.2016.7591877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Simulation and control of a system containing compliant mechanisms such as cardiac catheters often incur high computational costs. One way to reduce the costs is to approximate the mechanisms with Pseudo-Rigid-Body Models (PRBMs). A PRBM generally consists of rigid links connected by spring-loaded revolute joints. The lengths of the rigid links and the stiffnesses of the springs are usually chosen to minimize the tip deflection differences between the PRBM and the compliant mechanism. In most applications, only the relationship between end load and tip deflection is considered. This is obviously not applicable for MRI-actuated catheters which is actuated by the coils attached to the body. This paper generalizes PRBM parameter optimization to include loading and reference points along the body.
Collapse
Affiliation(s)
- Tipakorn Greigarn
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH
| | - Taoming Liu
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH
| | - M Cenk Çavuşoğlu
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
23
|
Liu T, Lombard Poirot N, Greigarn T, Cenk Çavuşoğlu M. Design of a Magnetic Resonance Imaging Guided Magnetically Actuated Steerable Catheter. J Med Device 2017; 11:0210041-2100411. [PMID: 28690711 DOI: 10.1115/1.4036095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/25/2017] [Indexed: 11/08/2022] Open
Abstract
This paper presents design optimization of a magnetic resonance imaging (MRI) actuated steerable catheter for atrial fibrillation ablation in the left atrium. The catheter prototype, built over polymer tubing, is embedded with current-carrying electromagnetic coils. The prototype can be deflected to a desired location by controlling the currents passing through the coils. The design objective is to develop a prototype that can successfully accomplish the ablation task. To complete the tasks, the catheter needs to be capable of reaching a set of desired targets selected by a physician on the chamber and keeping a stable contact with the chamber surface. The design process is based on the maximization of the steering performance of the catheter by evaluating its workspace in free space. The selected design is validated by performing a simulation of an ablation intervention on a virtual model of the left atrium with a real atrium geometry. This validation shows that the prototype can reach every target required by the ablation intervention and provide an appropriate contact force against the chamber.
Collapse
Affiliation(s)
- Taoming Liu
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106 e-mail:
| | - Nate Lombard Poirot
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 e-mail:
| | - Tipakorn Greigarn
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106 e-mail:
| | - M Cenk Çavuşoğlu
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106 e-mail:
| |
Collapse
|
24
|
Jackson RC, Liu T, Çavuşoğlu MC. Catadioptric Stereo Tracking for Three Dimensional Shape Measurement of MRI Guided Catheters. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2017; 2016:4422-4428. [PMID: 28392968 DOI: 10.1109/icra.2016.7487641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The recent introduction of Magnetic Resonance Imaging (MRI)-actuated steerable catheters lays the ground work for increasing the efficacy of cardiac catheter procedures. The MRI, while capable of imaging the catheter for tracking and control, does not fulfill all of the needs required to identify and develop a complete catheter model. Specifially, the frequency response of the catheter must be identified to ensure stable control of the catheter system. This requires a higher frequency imaging than the MRI can achieve. This work uses a catadioptric stereo camera system consisting of a mirror and a single camera in order to track a MRI actuated catheter inside a MRI machine. The catadioptric system works in parallel to the MRI and is capable of recording the catheter at 60 fps for post processing. The accuracy of the catadioptric system is verified in imaging conditions that would be found inside the MRI. The stereo camera is then used to track a catheter as it is actuated inside the MRI.
Collapse
Affiliation(s)
- Russell C Jackson
- Department of Electrical Engineering and Computer Science (EECS) at Case Western Reserve University in Cleveland, OH, USA
| | - Taoming Liu
- Department of Electrical Engineering and Computer Science (EECS) at Case Western Reserve University in Cleveland, OH, USA
| | - M Cenk Çavuşoğlu
- Department of Electrical Engineering and Computer Science (EECS) at Case Western Reserve University in Cleveland, OH, USA
| |
Collapse
|