1
|
Athavale ON, Di Natale MR, Avci R, Clark AR, Furness JB, Cheng LK, Du P. Mapping the rat gastric slow-wave conduction pathway: bridging in vitro and in vivo methods, revealing a loosely coupled region in the distal stomach. Am J Physiol Gastrointest Liver Physiol 2024; 327:G254-G266. [PMID: 38860855 PMCID: PMC11427108 DOI: 10.1152/ajpgi.00069.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Rhythmic electrical events, termed slow waves, govern the timing and amplitude of phasic contractions of the gastric musculature. Extracellular multielectrode measurement of gastric slow waves can be a biomarker for phenotypes of motility dysfunction. However, a gastric slow-wave conduction pathway for the rat, a common animal model, is unestablished. In this study, the validity of extracellular recording was demonstrated in vitro with simultaneous intracellular and extracellular recordings and by pharmacological inhibition of slow waves. The conduction pathway was determined by in vivo extracellular recordings while considering the effect of motion. Slow-wave characteristics [means (SD)] varied regionally having higher amplitude in the antrum than the distal corpus [1.03 (0.12) mV vs. 0.75 (0.31) mV; n = 7; P = 0.025 paired t test] and faster propagation near the greater curvature than the lesser curvature [1.00 (0.14) mm·s-1 vs. 0.74 (0.14) mm·s-1; n = 9 GC, 7 LC; P = 0.003 unpaired t test]. Notably, in some subjects, separate wavefronts propagated near the lesser and greater curvatures with a loosely coupled region occurring in the area near the distal corpus midline at the interface of the two wavefronts. This region had either the greater or lesser curvature wavefront propagating through it in a time-varying manner. The conduction pattern suggests that slow waves in the rat stomach form annular wavefronts in the antrum and not the corpus. This study has implications for interpretation of the relationship between slow waves, the interstitial cells of Cajal network structure, smooth muscles, and gastric motility.NEW & NOTEWORTHY Mapping of rat gastric slow waves showed regional variations in their organization. In some subjects, separate wavefronts propagated near the lesser and greater curvatures with a loosely coupled region near the midline, between the wavefronts, having a varying slow-wave origin. Furthermore, simultaneous intracellular and extracellular recordings were concordant and independent of movement artifacts, indicating that extracellular recordings can be interpreted in terms of their intracellular counterparts when intracellular recording is not possible.
Collapse
Affiliation(s)
- Omkar N Athavale
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Madeleine R Di Natale
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - John B Furness
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Prats-Boluda G, Martinez-de-Juan JL, Nieto-Del-Amor F, Termenon M, Varón C, Ye-Lin Y. Vectorgastrogram: dynamic trajectory and recurrence quantification analysis to assess slow wave vector movement in healthy subjects. Phys Eng Sci Med 2024; 47:663-677. [PMID: 38436885 PMCID: PMC11166836 DOI: 10.1007/s13246-024-01396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Functional gastric disorders entail chronic or recurrent symptoms, high prevalence and a significant financial burden. These disorders do not always involve structural abnormalities and since they cannot be diagnosed by routine procedures, electrogastrography (EGG) has been proposed as a diagnostic alternative. However, the method still has not been transferred to clinical practice due to the difficulty of identifying gastric activity because of the low-frequency interference caused by skin-electrode contact potential in obtaining spatiotemporal information by simple procedures. This work attempted to robustly identify the gastric slow wave (SW) main components by applying multivariate variational mode decomposition (MVMD) to the multichannel EGG. Another aim was to obtain the 2D SW vectorgastrogram VGGSW from 4 electrodes perpendicularly arranged in a T-shape and analyse its dynamic trajectory and recurrence quantification (RQA) to assess slow wave vector movement in healthy subjects. The results revealed that MVMD can reliably identify the gastric SW, with detection rates over 91% in fasting postprandial subjects and a frequency instability of less than 5.3%, statistically increasing its amplitude and frequency after ingestion. The VGGSW dynamic trajectory showed a statistically higher predominance of vertical displacement after ingestion. RQA metrics (recurrence ratio, average length, entropy, and trapping time) showed a postprandial statistical increase, suggesting that gastric SW became more intense and coordinated with a less complex VGGSW and higher periodicity. The results support the VGGSW as a simple technique that can provide relevant information on the "global" spatial pattern of gastric slow wave propagation that could help diagnose gastric pathologies.
Collapse
Affiliation(s)
- Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València (UPV), Valencia, Spain.
| | - Jose L Martinez-de-Juan
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Felix Nieto-Del-Amor
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València (UPV), Valencia, Spain
| | - María Termenon
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Cristina Varón
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València (UPV), Valencia, Spain
| |
Collapse
|
3
|
Wang S, Anderson K, Pizzella S, Xu H, Wen Z, Lin Y, Nan Y, Lau J, Wang Q, Ratts V, Wang Y. Noninvasive electrophysiological imaging identifies 4D uterine peristalsis patterns in subjects with normal menstrual cycles and patients with endometriosis. RESEARCH SQUARE 2023:rs.3.rs-2432192. [PMID: 36945376 PMCID: PMC10029120 DOI: 10.21203/rs.3.rs-2432192/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Throughout the menstrual cycle, spontaneous mild contractions in the inner layer of the uterine smooth muscle cause uterine peristalsis, which plays a critical role in normal menstruation and fertility. Disruptions in peristalsis patterns may occur in women experiencing subfertility, abnormal uterine bleeding, ovulatory dysfunction, endometriosis, and other disorders. However, current tools to measure uterine peristalsis in humans have limitations that hamper their research or clinical utilities. Here, we describe an electrophysiological imaging system to noninvasively quantify the four-dimensional (4D) electrical activation pattern during human uterine peristalsis with high spatial and temporal resolution and coverage. We longitudinally imaged 4968 uterine peristalses in 17 participants with normal gynecologic anatomy and physiology over 34 hours and 679 peristalses in 5 participants with endometriosis over 12.5 hours throughout the menstrual cycle. Our data provide quantitative evidence that uterine peristalsis changes in frequency, direction, duration, magnitude, and power throughout the menstrual cycle and is disrupted in endometriosis patients. Moreover, our data suggest that disrupted uterine peristalsis contributes to excess retrograde menstruation and infertility in patients with endometriosis and potentially contributes to infertility in this cohort.
Collapse
Affiliation(s)
| | | | | | | | | | - Yiqi Lin
- Washington University in St. Louis
| | - Yuan Nan
- Washington University School of Medicine in St. Louis
| | - Josephine Lau
- Washington University School of Medicine in St. Louis
| | | | - Valerie Ratts
- Washington University School of Medicine in St. Louis
| | - Yong Wang
- Washington University School of Medicine in St. Louis
| |
Collapse
|
4
|
Han H, Cheng LK, Avci R, Paskaranandavadivel N. Quantification of Gastric Slow Wave Velocity using Bipolar High-Resolution Recordings. IEEE Trans Biomed Eng 2021; 69:1063-1071. [PMID: 34529558 DOI: 10.1109/tbme.2021.3112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Gastric bio-electrical slow waves are, in part, responsible for coordinating motility. High-resolution (HR) in vivo recordings can be used to capture the wavefront velocity of the propagating slow waves. A standard marking-and-grouping approach is typically employed along with manual review. Here, a bipolar velocity estimation (BVE) method was developed, which utilized local directional information to estimate the wavefront velocity in an efficient manner. METHODS With this approach, unipolar in vivo HR recordings were used to construct bipolar recordings in different directions. Then, the local directionality of the slow wave was extracted by calculating time delay information. The accuracy of the method was verified using synthetic data and then validated with in vivo HR pig experimental recordings. RESULTS Against ventilator noise amplitude of 0% - 70% of the average slow wave amplitude, the direction and speed error increased from 4.4 and 0.9 mm/s to 8.6 and 1.4 mm/s. For signals added with high-frequency noise with signal-to-noise ratios of 60 dB - 12 dB, the error increased from 8.0 and 1.0 mm/s to 9.8 and 1.2 mm/s. For experimental signals, the BVE algorithm resulted in 19.2 1.7 of direction error and 2.0 0.2 mm/s of speed error, when compared to the standard marking-and-grouping method. CONCLUSION Gastric slow wave wavefront velocities were estimated rapidly using the BVE algorithm with minimal errors. SIGNIFICANCE The BVE algorithm enables the ability to estimate wavefront velocities in HR recordings in an efficient manner.
Collapse
|
5
|
Han H, Cheng LK, Avci R, Paskaranandavadivel N. Detection of Slow Wave Propagation Direction Using Bipolar High-Resolution Recordings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:837-840. [PMID: 33018115 DOI: 10.1109/embc44109.2020.9175303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gastric motility is in part coordinated by bio-electrical slow waves. The wavefront orientation of the slow wave contains vital physiological information about the motility condition of the gastrointestinal system. Dysmotility was shown to be associated with dysrhythmic propagation of the slow wave. The most commonly used method to detect wavefront orientation is computationally expensive because of the involvement of activation time identification. The information of local directionality contained in bipolar slow wave recordings could be used to detect the wavefront orientation. An algorithm called bipolar direction detection was developed to utilize the information contained in the bipolar slow wave recordings. Bipolar recordings were constructed by subtracting the unipolar in vivo recordings of directional electrode pairs. Then, time delay information was used to detect the wavefront direction. The algorithm was verified using synthetic data and validated using experimental data. Ten high-resolution in vivo slow wave signals from 5 pigs were recorded for a duration of 2 minutes. The performance was compared against the semi-automated approach, resulting in an average angle error of 20° for the experimental data. The algorithm was able to detect slow wave wavefront orientation with minimal errors rapidly.Clinical relevance-The ability to rapidly detect slow wave propagation direction will enable effective analysis of large data sets, through which we can obtain a better understanding of functional motility disorders and help with diagnosis and treatment.
Collapse
|
6
|
Hashimoto M, Taguchi Y. Circular pyramidal kirigami microscanner with millimeter-range low-power lens drive. OPTICS EXPRESS 2020; 28:17457-17467. [PMID: 32679953 DOI: 10.1364/oe.394908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
This paper proposes an electrothermally-actuated circular pyramidal kirigami microscanner with a millimeter-range low-power lens drive for endoscopic biomedical applications. A variation of Japanese origami art, kirigami involves creation of out-of-plane structures by paper cutting and folding. The proposed microscanner is composed of freestanding kirigami film on which the spiral-curved thermal bimorphs are strategically placed. The kirigami microscanner is electrothermally transformed into an out-of-plane circular multistep pyramid by Joule heating. The circular pyramidal kirigami microscanner on a small footprint of 4.5 mm × 4.5 mm was fabricated by microelectromechanical system processes. A large four-step pyramidal actuation was successfully demonstrated, and a large 1.1-mm lens travel range at only 128 mW was achieved.
Collapse
|
7
|
Paskaranandavadivel N, Angeli TR, Manson T, Stocker A, McElmurray L, O'Grady G, Abell T, Cheng LK. Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity. Physiol Meas 2019; 40:025011. [PMID: 30754026 DOI: 10.1088/1361-6579/ab0668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Bioelectrial signals known as slow waves play a key role in coordinating gastric motility. Slow wave dysrhythmias have been associated with a number of functional motility disorders. However, there have been limited human recordings obtained in the consious state or over an extended period of time. This study aimed to evaluate a robust ambulatory recording platform. APPROACH A commercially available multi-sensor recording system (Shimmer3, ShimmerSensing) was applied to acquire slow wave information from the stomach of six humans and four pigs. First, acute experiments were conducted in pigs to verify the accuracy of the recording module by comparing to a standard widely employed electrophysiological mapping system (ActiveTwo, BioSemi). Then, patients with medically refractory gastroparesis undergoing temporary gastric stimulator implantation were enrolled and gastric slow waves were recorded from mucosally-implanted electrodes for 5 d continuously. Accelerometer data was also collected to exclude data segments containing excessive patient motion artefact. MAIN RESULTS Slow wave signals and activation times from the Shimmer3 module were closely comparable to a standard electrophysiological mapping system. Slow waves were able to be recorded continuously for 5 d in human subjects. Over the 5 d, slow wave frequency was 2.8 ± 0.6 cpm and amplitude was 0.2 ± 0.3 mV. SIGNIFICANCE A commercial multi-sensor recording module was validated for recording electrophysiological slow waves for 5 d, including in ambulatory patients. Multiple modules could be used simultaneously in the future to track the spatio-temporal propagation of slow waves. This framework can now allow for patho-electrophysiological studies to be undertaken to allow symptom correlation with dysrhythmic slow wave events.
Collapse
Affiliation(s)
- Niranchan Paskaranandavadivel
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
8
|
O'Grady G, Angeli TR, Paskaranandavadivel N, Erickson JC, Wells CI, Gharibans AA, Cheng LK, Du P. Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract. IEEE Rev Biomed Eng 2018; 12:287-302. [PMID: 30176605 DOI: 10.1109/rbme.2018.2867555] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last two decades, high-resolution (HR) mapping has emerged as a powerful technique to study normal and abnormal bioelectrical events in the gastrointestinal (GI) tract. This technique, adapted from cardiology, involves the use of dense arrays of electrodes to track bioelectrical sequences in fine spatiotemporal detail. HR mapping has now been applied in many significant GI experimental studies informing and clarifying both normal physiology and arrhythmic behaviors in disease states. This review provides a comprehensive and critical analysis of current methodologies for HR electrical mapping in the GI tract, including extracellular measurement principles, electrode design and mapping devices, signal processing and visualization techniques, and translational research strategies. The scope of the review encompasses the broad application of GI HR methods from in vitro tissue studies to in vivo experimental studies, including in humans. Controversies and future directions for GI mapping methodologies are addressed, including emerging opportunities to better inform diagnostics and care in patients with functional gut disorders of diverse etiologies.
Collapse
|
9
|
Mayne TP, Paskaranandavadivel N, Erickson JC, OGrady G, Cheng LK, Angeli TR. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique. IEEE Trans Biomed Eng 2018; 65:319-326. [PMID: 29364117 PMCID: PMC5902405 DOI: 10.1109/tbme.2017.2764945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. METHODS The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. RESULTS Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. CONCLUSION AND SIGNIFICANCE These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.
Collapse
|
10
|
Paskaranandavadivel N, Angeli T, Stocker A, McElmurray L, O'Grady G, Abell T, Cheng LK. Ambulatory gastric mucosal slow wave recording for chronic experimental studies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:755-758. [PMID: 29059982 DOI: 10.1109/embc.2017.8036934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dysrhythmic bioelectric slow wave activity have been implicated in major functional motility disorders such as gastroparesis and chronic unexplained nausea and vomiting, but its correlation to symptoms is still unclear. For patients with severe gastroparesis, high-frequency gastric stimulation is offered as a therapy in some centers. Temporary gastric electrical stimulation has also been proposed an approach to screen patients who would benefit from the implantation of a permanent stimulator. In this study we introduced novel methods for recording slow wave activity from the gastric mucosa during the entire temporary stimulation phase of 5 days, in 3 patients. An ambulatory recording system was applied to record 3 channels of mucosal slow wave activity, as well as three axis accelerometer data to monitor when the patient was mobile. Techniques were developed to detect large movements and these time periods were excluded from analyses of mucosal slow waves. The frequency and amplitude of the slow waves was calculated in a 5 min segment, with 75% overlap, for the entire duration. In feasibility studies, the slow wave frequency and amplitude for the patients were 3.0±0.96 cpm and 1.43±1.75 mV. Large variations in slow wave amplitude were seen in comparsion to slow wave frequency, which were concordant with previous studies. The use of the ambulatory system will allow for investigation of pathophysiology, correlation of electrophysiology data to patient symptoms and to determine the effects of post-prandial and noctural slow wave patterns. We anticipate that future use of slow wave information alongside patient symptoms may allow improved selection of patients for stimulaton techniques.
Collapse
|
11
|
Paskaranandavadivel N, Alighaleh S, O'Grady G, Cheng LK. Suppression of ventilation artifacts for gastrointestinal slow wave recordings. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) 2017; 2017:2769-2772. [PMID: 29060472 DOI: 10.1109/embc.2017.8037431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Angeli TR, Du P, Paskaranandavadivel N, Sathar S, Hall A, Asirvatham SJ, Farrugia G, Windsor JA, Cheng LK, O'Grady G. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface. Neurogastroenterol Motil 2017; 29:10.1111/nmo.13010. [PMID: 28035728 PMCID: PMC5393964 DOI: 10.1111/nmo.13010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. METHODS Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. KEY RESULTS Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. CONCLUSIONS & INFERENCES High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool.
Collapse
Affiliation(s)
- Timothy R. Angeli
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | | | - Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Andrew Hall
- Department of Surgery, University of Auckland, New Zealand
| | | | - Gianrico Farrugia
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Leo K. Cheng
- Auckland Bioengineering Institute, University of Auckland, New Zealand., Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, New Zealand., Department of Surgery, University of Auckland, New Zealand
| |
Collapse
|