1
|
Huang Q, Sarkar S, Sen S. Channel Variability in Human Body Communication with External Objects in Body Resonance Region. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039539 DOI: 10.1109/embc53108.2024.10782121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The channel variability of human body communication (HBC) in Electro-Quasistatic (EQS) region and the influence of the parasitic paths by external objects and inter-body coupling have been widely explored. However, channel variability of HBC in the body resonance (BR) region is hardly studied. In the BR region, the wavelength is comparable to the dimension of the human body which starts to resonate and act as an antenna. Electromagnetic (EM) wave patterns are generated from the transmitter dipole and formed on the human body. The external objects causing some parasitic paths influence the patterns and the channel gain. This paper explores the influence of external objects on the HBC channel gain in the BR region for the first time. Firstly, the relevant EM theories and corresponding simulation setup and results are introduced. Following that, the experiment setup and results are described and analyzed. The results show that putting the arms on the table can lead to a notch frequency shift by 77∼100 MHz and channel gain change by -17∼20 dB depending on different angles and frequencies. The channel gain variation before the notch is small, enabling stable high-speed communication.
Collapse
|
2
|
Yang W, Lin S, Gong W, Lin R, Jiang C, Yang X, Hu Y, Wang J, Xiao X, Li K, Li Y, Zhang Q, Ho JS, Liu Y, Hou C, Wang H. Single body-coupled fiber enables chipless textile electronics. Science 2024; 384:74-81. [PMID: 38574120 DOI: 10.1126/science.adk3755] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024]
Abstract
Intelligent textiles provide an ideal platform for merging technology into daily routines. However, current textile electronic systems often rely on rigid silicon components, which limits seamless integration, energy efficiency, and comfort. Chipless electronic systems still face digital logic challenges owing to the lack of dynamic energy-switching carriers. We propose a chipless body-coupled energy interaction mechanism for ambient electromagnetic energy harvesting and wireless signal transmission through a single fiber. The fiber itself enables wireless visual-digital interactions without the need for extra chips or batteries on textiles. Because all of the electronic assemblies are merged in a miniature fiber, this facilitates scalable fabrication and compatibility with modern weaving techniques, thereby enabling versatile and intelligent clothing. We propose a strategy that may address the problems of silicon-based textile systems.
Collapse
Affiliation(s)
- Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Shaomei Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wei Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Biomass Molecular Engineering Center, College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Rongzhou Lin
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Chengmei Jiang
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Xin Yang
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Yunhao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jingjie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiao Xiao
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Yuxin Liu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
3
|
He T, Luo J, Kong Z, Liang X, Lin L, Zhao B, Qi L, Li Y, Wang G, Zhao J. A Re-Configurable Body Channel Transceiver Towards Wearable and Flexible Biomedical Sensor Networks. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1022-1034. [PMID: 37368798 DOI: 10.1109/tbcas.2023.3290085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Body channel communication (BCC) has become a promising candidate in wireless body area networks (WBAN) due to its advantages in energy efficiency and security. However, BCC transceivers face two challenges: diverse application requirements and varying channel conditions. To overcome these challenges, this article proposes a re-configurable architecture for BCC transceivers (TRXs), whose key parameters and communication protocols can be software-defined (SD) according to the requirements. In the proposed TRX, the programmable direct-sampling receiver (RX) is a combination of a programmable low-noise amplifier (LNA) and a fast-convergent successive approaching register analog-to-digital converter (SAR ADC), to achieve simple but energy-efficient data reception. The programmable digital transmitter (TX) is essentially implemented by a 2-bit DAC array to transmit either wide-band carrier-free signals like 4-level pulse amplitude modulation (PAM-4) or non-return-to-zero (NRZ) or narrow-band carrier-based signals like on-off keying (OOK) or frequency shift keying (FSK). The proposed BCC TRX is fabricated in a 180-nm CMOS process. Through an in-vivo experiment, it achieves up to 10-Mbps data rate and 119.2 pJ/bit energy efficiency. Moreover, the TRX is able to communicate under long-distance (1.5 m) and body-shielding conditions by switching its protocols, which shows the potential to be deployed in all categories of WBAN applications.
Collapse
|
4
|
Abstract
Energy-efficient sensing with physically secure communication for biosensors on, around, and within the human body is a major area of research for the development of low-cost health care devices, enabling continuous monitoring and/or secure perpetual operation. When used as a network of nodes, these devices form the Internet of Bodies, which poses challenges including stringent resource constraints, simultaneous sensing and communication, and security vulnerabilities. Another major challenge is to find an efficient on-body energy-harvesting method to support the sensing, communication, and security submodules. Due to limitations in the amount of energy harvested, we require a reduction in energy consumed per unit information, making the use of in-sensor analytics and processing imperative. In this article, we review the challenges and opportunities of low-power sensing, processing, and communication with possible powering modalities for future biosensor nodes. Specifically, we analyze, compare, and contrast (a) different sensing mechanisms such as voltage/current domain versus time domain, (b) low-power, secure communication modalities including wireless techniques and human body communication, and (c) different powering techniques for wearable devices and implants.
Collapse
Affiliation(s)
- Baibhab Chatterjee
- Elmore Family School of Electrical and Computer Engineering and Center for Internet of Bodies (C-IoB), Purdue University, West Lafayette, Indiana, USA;
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
| | - Pedram Mohseni
- Department of Electrical, Computer and Systems Engineering and Institute for Smart, Secure, and Connected Systems (ISSACS), Case Western Reserve University, Cleveland, Ohio, USA
| | - Shreyas Sen
- Elmore Family School of Electrical and Computer Engineering and Center for Internet of Bodies (C-IoB), Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
5
|
Yang D, Maity S, Sen S. Physically Secure Wearable–Wearable Through-Body Interhuman Body Communication. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2021.807051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human body communication (HBC) has recently emerged as an alternative method to connect devices on and around the human body utilizing the electrical conductivity properties of the human body. HBC can be utilized to enable new interaction modalities between computing devices by enhancing the natural interaction of touch. It also provides the inherent benefit of security and energy-efficiency compared to a traditional wireless communication, such as Bluetooth, making it an attractive alternative. However, most state-of-the-art HBC demonstrations show communication between a wearable and an Earth ground–connected device, and there have been very few implementations of HBC systems demonstrating communication between two wearable devices. Also, most of the HBC implementations suffer from the problem of signal leakage out of the body which enables communication even without direct contact with the body. In this article, we present BodyWire which uses an electro-quasistatic HBC (EQS-HBC) technique to enable communication between two wearable devices and also confine the signal to a very close proximity to the body. We characterize the human body channel loss under different environment (office desk, laboratory, and outdoors), posture, and body location conditions to ascertain the effect of each of these on the overall channel loss. The measurement results show that the channel loss varies within a range of 15dB across all different posture, environmental conditions, and body location variation, illustrating the dynamic range of the signal available at the input of any receiver. Leakage measurements are also carried out from the devices to show the distance over which the signal is available away from the body to illustrate the security aspect of HBC and show its effect on the channel loss measurements. For the first time, a through-body interhuman channel loss characterization is presented. Finally, a demonstration of secure interhuman information exchange between two battery-operated wearable devices is shown through the BodyWire prototype, which shows the smallest form factor HBC demonstration according to the authors’ best knowledge.
Collapse
|
6
|
Polachan K, Chatterjee B, Weigand S, Sen S. Human Body-Electrode Interfaces for Wide-Frequency Sensing and Communication: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2152. [PMID: 34443980 PMCID: PMC8401560 DOI: 10.3390/nano11082152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022]
Abstract
Several on-body sensing and communication applications use electrodes in contact with the human body. Body-electrode interfaces in these cases act as a transducer, converting ionic current in the body to electronic current in the sensing and communication circuits and vice versa. An ideal body-electrode interface should have the characteristics of an electrical short, i.e., the transfer of ionic currents and electronic currents across the interface should happen without any hindrance. However, practical body-electrode interfaces often have definite impedances and potentials that hinder the free flow of currents, affecting the application's performance. Minimizing the impact of body-electrode interfaces on the application's performance requires one to understand the physics of such interfaces, how it distorts the signals passing through it, and how the interface-induced signal degradations affect the applications. Our work deals with reviewing these elements in the context of biopotential sensing and human body communication.
Collapse
Affiliation(s)
- Kurian Polachan
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA; (B.C.); (S.S.)
| | - Baibhab Chatterjee
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA; (B.C.); (S.S.)
| | | | - Shreyas Sen
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA; (B.C.); (S.S.)
| |
Collapse
|
7
|
Yang D, Mehrotra P, Weigand S, Sen S. In-the-Wild Interference Characterization and Modelling for Electro-Quasistatic-HBC With Miniaturized Wearables. IEEE Trans Biomed Eng 2021; 68:2858-2869. [PMID: 34010125 DOI: 10.1109/tbme.2021.3082078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The emergence of Human Body Communication (HBC) as an alternative to wireless body area networks (WBAN) has led to the development of small sized, energy efficient and more secure wearable and implantable devices forming a network in and around the body. Previous studies claim that though HBC is comparatively more secure than WBAN, nevertheless, the electromagnetic (EM) radiative nature of HBC in >10 MHz region makes the information susceptible to eavesdropping. Furthermore, interferences may be picked up by the body due to the human body antenna effect in the 40-400 MHz range. Alternatively, electro-quasistatic (EQS) mode of HBC forms an attractive way for covert data transmission in the sub 10 MHz region by allowing the signal to be contained within the body. However, there is a gap in the knowledge about the mechanism and sources of interference in this region (crucial in allowing for proper choice of data transmission band). In this paper, the interference coupling modality in the EQS region is explained along with its possible sources. Interferences seen by the wearable in the actual scenario is a non-trivial problem and a suitable measurement EQS HBC setup is designed to recreate it by employing a wearable sized measurement setup having a small ground plane. For the first time, a human biophysical interference pickup model is proposed and interference measurement results using a wearable device are presented up to 250 kHz in different environmental settings.
Collapse
|
8
|
Datta A, Nath M, Yang D, Sen S. Advanced Biophysical Model to Capture Channel Variability for EQS Capacitive HBC. IEEE Trans Biomed Eng 2021; 68:3435-3446. [PMID: 33872142 DOI: 10.1109/tbme.2021.3074138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human Body Communication (HBC) has come up as a promising alternative to traditional radio frequency (RF) Wireless Body Area Network (WBAN) technologies. This is essentially due to HBC providing a broadband communication channel with enhanced signal security in the physical layer due to lower radiation from the human body as compared to its RF counterparts. An in-depth understanding of the mechanism for the channel loss variability and associated biophysical model needs to be developed before electro-quasistatic (EQS) HBC can be used more frequently in WBAN consumer and medical applications. Recent developments have shown biophysical models that capture the channel response for fixed transmitter and receiver positions on the human body which do not capture the variability in the HBC channel for varying positions of the devices with respect to the body. In this study, we provide a detailed analysis of the change in path loss in a capacitive-HBC channel in the EQS domain. Causes of channel loss variability namely: inter-device coupling and effects of fringe fields due to body's shadowing effects are investigated. FEM based simulation results are used to analyze the channel response of human body for different positions and sizes of the device which are further verified using measurement results to validate the developed biophysical model. Using the biophysical model, we develop a closed form equation for the path loss in a capacitive HBC channel which is then analyzed as a function of the geometric properties of the device and the position with respect to the human body which will help pave the path towards future EQS-HBC WBAN design.
Collapse
|
9
|
Maity S, Nath M, Bhattacharya G, Chatterjee B, Sen S. On the Safety of Human Body Communication. IEEE Trans Biomed Eng 2020; 67:3392-3402. [PMID: 32305887 DOI: 10.1109/tbme.2020.2986464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human Body Communication (HBC) utilizes the electrical conductivity properties of the human body to communicate between devices in and around the body. The increased energy-efficiency and security provided by HBC compared to traditional radio wave based communication makes it a promising alternative to communicate between energy constrained wearable and implantable devices around the body.However, HBC requires electrical signals to be transmitted through the body, which makes it essential to have a thorough analysis of the safety aspects of such transmission. This paper looks into the compliance of the current density and electric/magnetic fields generated in different modalities of HBC with the established safety standards. Circuit and Finite Element Method (FEM) based simulations are carried out to quantitatively find the compliance of current density and fields with the established safety limits. The results show the currents and fields in capacitive HBC are orders of magnitude smaller than the specified limits. However, certain excitation modalties in galvanic HBC can result in current densities and fields exceeding the safety limits around the excitation point on the body near the electrode. A study with 7 human subjects (4 male, 3 female) is carried out over a month, using capacitive HBC.The study monitors the change in 5 vital parameters (Heart Rate, Mean Arterial Pressure, Respiration Rate, Peripheral Capillary Oxygen Saturation, Temperature), while wearing a HBC enabled device. Analysis of the acquired data statistically shows no significant change in any of the vital parameters of the subjects, confirming the results of the simulation study.
Collapse
|
10
|
Robust Intra-Body Communication Using SHA1-CRC Inversion-Based Protection and Error Correction for Securing Electronic Authentication. SENSORS 2020; 20:s20216056. [PMID: 33114354 PMCID: PMC7663128 DOI: 10.3390/s20216056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
Abstract
The explosive increase in the number of IoT devices requires various types of communication methods. This paper presents secure personal authentication using electrostatic coupling Intra-body communication (IBC) based on frequency shift keying (FSK) and error correction. The proposed architecture uses GPIO for a transmitter and analog-to-digital conversion (ADC) for a receiver. We mplemented FSK modulation, demodulation, data protection, and error correction techniques in the MCU software without applying hardware devices. We used the characteristic that the carrier signal is 50% duty square wave for 1-bit error correction and applied a method of randomly inverting SHA1 hash data to protect user authentication data during transmission. The transmitter modulates binary data using a square wave as a carrier signal and transmits data through the human body. The receiver demodulates the signal using ADC and decrypts the demodulated binary data. To determine the carrier frequency from ADC results, we applied a zero-crossing algorithm which is used to detect edge characteristics in image processing. When calculating the threshold value within the zero-crossing algorithm, we implemented an adaptive threshold setting technique utilizing Otsu’s binarization technique. We found that the size of the electrode pad does not affect the signal strength, but the distance between the electrode pad and the skin has a significant effect on the signal strength. Our results show that binary data modulated with a square wave can be successfully transmitted through the human body, and, when 1-bit error correction is applied, the byte error rate on the receiver side is improved around 3.5% compared to not applying it.
Collapse
|
11
|
Wireless Body Sensor Communication Systems Based on UWB and IBC Technologies: State-of-the-Art and Open Challenges. SENSORS 2020; 20:s20123587. [PMID: 32630376 PMCID: PMC7349302 DOI: 10.3390/s20123587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022]
Abstract
In recent years there has been an increasing need for miniature, low-cost, commercially accessible, and user-friendly sensor solutions for wireless body area networks (WBAN), which has led to the adoption of new physical communication interfaces providing distinctive advantages over traditional wireless technologies. Ultra-wideband (UWB) and intrabody communication (IBC) have been the subject of intensive research in recent years due to their promising characteristics as means for short-range, low-power, and low-data-rate wireless interfaces for interconnection of various sensors and devices placed on, inside, or in the close vicinity of the human body. The need for safe and standardized solutions has resulted in the development of two relevant standards, IEEE 802.15.4 (for UWB) and IEEE 802.15.6 (for UWB and IBC), respectively. This paper presents an in-depth overview of recent studies and advances in the field of application of UWB and IBC technologies for wireless body sensor communication systems.
Collapse
|
12
|
Zhao B, Mao J, Zhao J, Yang H, Lian Y. The Role and Challenges of Body Channel Communication in Wearable Flexible Electronics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:283-296. [PMID: 31940549 DOI: 10.1109/tbcas.2020.2966285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flexible electronics are compatible with film substrates that are soft and stretchable, resulting in conformal integration with human body. Integrated with various sensors and communication ICs, wearable flexible electronics are able to effectively track human vital signs without affecting the body activities. Such a wearable flexible system contains a sensor, a front-end amplifier (FEA), an analog-to-digital converter (ADC), a micro-controller unit (MCU), a radio, a power management unit (PMU), where the radio is the design bottleneck due to its high power consumption. Different from conventional wireless communications, body channel communication (BCC) uses the human body surface as the signal transmission medium resulting in less signal loss and low power consumption. However, there are some design challenges in BCC, including body channel model, backward loss, variable contact impedance, stringent spectral mask, crystalless design, body antenna effect, etc. In this paper, we conduct a survey on BCC transceiver, and analyze its potential role and challenges in wearable flexible electronics.
Collapse
|
13
|
Krhac K, Sayrafian K, Noetscher G, Simunic D. A Simulation Platform to Study the Human Body Communication Channel. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4040-4043. [PMID: 31946758 DOI: 10.1109/embc.2019.8857883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human Body Communication (HBC) is an attractive low complexity technology with promising applications in wearable biomedical sensors. In this paper, a simple parametric model based on the finite-element method (FEM) using a full human body model is developed to virtually emulate and examine the HBC channel. FEM allows better modeling and quantification of the underlying physical phenomena including the impact of the human body for the desired applications. By adjusting the parameters of the model, a good match with the limited measurement results in the literature is observed. Having a flexible and customizable simulation platform could be very helpful to better understand the communication medium for capacitively coupled electrodes in HBC. This knowledge, in turn, leads to better transceiver design for given applications. The platform presented here can also be extended to study communication channel characteristics when the HBC mechanism is used by an implant device.
Collapse
|
14
|
Investigation and Modeling of Multi-Node Body Channel Wireless Power Transfer. SENSORS 2019; 20:s20010156. [PMID: 31881769 PMCID: PMC6982922 DOI: 10.3390/s20010156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 11/16/2022]
Abstract
Insufficient power supply is a huge challenge for wireless body area network (WBAN). Body channel wireless power transfer (BC-WPT) is promising to realize multi-node high-efficiency power transmission for miniaturized WBAN nodes. However, the behavior of BC-WPT, especially in the multi-node scenario, is still lacking in research. In this paper, the inter-degeneration mechanism of a multi-node BC-WPT is investigated based on the intuitive analysis of the existing circuit model. Co-simulation in the Computer Simulation Technology (CST) and Cadence platform and experiments in a general indoor environment verify this mechanism. Three key factors, including the distance between the source and the harvester, frequency of the source, and area of the ground electrodes, are taken into consideration, resulting in 15 representative cases for simulation and experiments studies. Based on the simulation parameters, an empirical circuit model to accurately predict the received power of multiple harvesters is established, which fits well with the measurement results, and can further provide guidelines for designs and research on multi-node BC-WPT systems.
Collapse
|
15
|
Mehrotra P, Maity S, Sen S. An Improved Update Rate CDR for Interference Robust Broadband Human Body Communication Receiver. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:868-879. [PMID: 31514152 DOI: 10.1109/tbcas.2019.2940746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Broadband Human Body Communication (HBC) enables energy efficient communication between body area network devices by utilizing the electrical conductivity property of the human body. However, environmental interference remains a primary bottleneck in its implementation. An integrating front-end receiver with resettable integration followed by periodic sampling can be utilized to enable interference robust broadband HBC. However, as required in all broadband communication systems, a Clock Data Recovery (CDR) loop is necessary to correctly sample the received data at the appropriate instant. The CDR is required to be sensitive to the clock-data phase mismatch at the receiver end and take corrective action for reducing it, similar to the CDR of a traditional receiver. In addition to that, the CDR for a broadband HBC receiver also requires to be tolerant to environmental interference. This paper analyzes the traditional Baud Rate CDR for an integrating front-end receiver and proposes a modified integrating CDR architecture with a higher update rate. Simulation results show 2.5X higher clock data frequency offset tolerance of the proposed CDR compared to the traditional Baud Rate CDR, >1.25X higher clock data frequency offset tolerance in presence of interference and >10% interference frequency offset tolerance with respect to the integration clock. The proposed CDR is also implemented in a Xilinx Spartan-3E FPGA board to validate its closed loop functionality in real time.
Collapse
|
16
|
Nishida Y, Sasaki K, Yamamoto K, Muramatsu D, Koshiji F. Equivalent Circuit Model Viewed From Receiver Side in Human Body Communication. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:746-755. [PMID: 31135370 DOI: 10.1109/tbcas.2019.2918323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human body communication (HBC) is a signal transmission method that uses the human body as a part of the transmission path. The incoming signal through the receiver electrode can be modeled as a signal from a signal source, which consists of the equivalent signal source voltage and output impedance. These values are important parameters for analyzing the transmission characteristics of HBC as well as for designing the front-end circuit of the receiver. In this paper, an equivalent circuit model of signal transmission from a transmitter on the human body to an off-body receiver touched by a finger was constructed. The ground electrode of the transmitter was in contact with the human body. This is a different configuration compared to capacitive HBC configurations that leave the ground electrode floating. The relationship between the received signal voltage and the distance between the transmitter's electrodes, the size of the receiver ground, and the transmitter-receiver distance were evaluated. Results were analyzed by using the equivalent circuit model. The transmitter-receiver distance and the distance between the transmitter's electrodes were both independently related to the equivalent signal source voltage. The receiver ground size which was related to the capacitive coupling between the receiver ground and the human body was related to the equivalent output impedance.
Collapse
|
17
|
Zhao J, Sun W, Mao J, Huang Y, Zhao B, Liu Y, Yang H. An Auto Loss Compensation System for Capacitive-Coupled Body Channel Communication. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:756-765. [PMID: 31226086 DOI: 10.1109/tbcas.2019.2923780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper proposes an auto loss compensation (ALC) system to attenuate the time-variant path loss for capacitive-coupled body channel communication (CC-BCC). The system employs a time-division gradient indicator to continuously monitor the compensation conditions, and dynamically adjust the compensation inductor through a proportional integral (PI) controller. With the closed-loop topology, the proposed ALC system has two major advantages: first, the path loss induced by the backward coupling effect can be compensated without calibration; second, this system can dynamically attenuate the path loss, even when the channel characteristics vary with time. The simulation and experimental results show that the proposed ALC system can significantly attenuate the backward path loss, especially under wearable and motion scenarios.
Collapse
|
18
|
Maity S, Jiang X, Sen S. Theoretical Analysis of AM and FM Interference Robustness of Integrating DDR Receiver for Human Body Communication. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:566-578. [PMID: 30990439 DOI: 10.1109/tbcas.2019.2911475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Prolific growth of miniaturized devices has led to widespread use of wearable devices and physiological sensors. The state-of-art technique for connecting these devices and sensors is through wireless radio waves. However, wireless body area wireless body area network (WBAN) suffers from limited security (wireless signals from energy-constrained sensors can be snooped by nearby attackers), poor energy-efficiency (up conversion and down conversion), and self-interference. Human body communication (HBC), which uses human body as a conducting medium, has emerged as a new alternative physical layer for WBAN, as it can enable communication with better energy efficiency and enhanced security. Broadband (BB) HBC uses the human body channel as a broadband communication medium and can enable higher energy efficiency compared to narrowband HBC. However, due to the antenna effect of human body, ambient interferences get picked up from the environment, proving to be one of the primary bottlenecks for BB-HBC systems. In this paper, we analyze the performance of an integrating dual data rate (I-DDR) receiver, which enables interference robust BB-HBC, under continuous wave (CW), amplitude modulated (AM), and frequency modulated (FM) interferences. Theoretical derivations along with simulations provide key insights into the behavior of I-DDR receiver under different interference scenarios, highlighting the efficacy (>22 dB improvement in SIR tolerance for both FM and AM) of the technique. Finally, measurements are carried out by applying the I-DDR principle on signals transmitted through the human body and captured on an oscilloscope. Measurements from an I-DDR receiver fabricated in TSMC 65 nm technology shows <10-4 BER in presence of CW, AM, and FM interference with -21 dB SIR further demonstrating the efficacy of the I-DDR method in interference rejection.
Collapse
|
19
|
Alazzawi Y, Aono K, Scheller EL, Chakrabartty S. Exploiting Self-Capacitances for Wireless Power Transfer. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:425-434. [PMID: 30794517 PMCID: PMC6503679 DOI: 10.1109/tbcas.2019.2900433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conventional approaches for wireless power transfer rely on the mutual coupling (near-field or far-field) between the transmitter and receiver transducers. As a result, the power-transfer efficiency of these approaches scales non-linearly with the cross-sectional area of the transducers and with the relative distance and respective alignment between the transducers. In this paper, we show that when the operational power-budget requirements are in the order of microwatts, a self-capacitance (SC)-based power delivery has significant advantages in terms of the power transfer-efficiency, receiver form-factor, and system scalability when compared to other modes of wireless power transfer (WPT) methods. We present a simple and a tractable equivalent circuit model that can be used to study the effect of different parameters on the SC-based WPT. In this paper, we have experimentally verified the validity of the circuit using a cadaver mouse model. We also demonstrate the feasibility of a hybrid telemetry system where the microwatts of power, which can be harvested from SC-based WPT approach, is used for back-scattering a radio-frequency (RF) signal and is used for remote sensing of in vivo physiological parameters such as temperature. The functionality of the hybrid system has also been verified using a cadaver mouse model housed in a cage that was retrofitted with 915 MHz RF back-scattering antennas. We believe that the proposed remote power-delivery and hybrid telemetry approach would be useful in remote activation of wearable devices and in the design of energy-efficient animal cages used for long-term monitoring applications.
Collapse
|
20
|
Das D, Maity S, Chatterjee B, Sen S. Enabling Covert Body Area Network using Electro-Quasistatic Human Body Communication. Sci Rep 2019; 9:4160. [PMID: 30858385 PMCID: PMC6411898 DOI: 10.1038/s41598-018-38303-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022] Open
Abstract
Radiative communication using electro-magnetic (EM) fields amongst the wearable and implantable devices act as the backbone for information exchange around a human body, thereby enabling prime applications in the fields of connected healthcare, electroceuticals, neuroscience, augmented and virtual reality. However, owing to such radiative nature of the traditional wireless communication, EM signals propagate in all directions, inadvertently allowing an eavesdropper to intercept the information. In this context, the human body, primarily due to its high water content, has emerged as a medium for low-loss transmission, termed human body communication (HBC), enabling energy-efficient means for wearable communication. However, conventional HBC implementations suffer from significant radiation which also compromises security. In this article, we present Electro-Quasistatic Human Body Communication (EQS-HBC), a method for localizing signals within the body using low-frequency carrier-less (broadband) transmission, thereby making it extremely difficult for a nearby eavesdropper to intercept critical private data, thus producing a covert communication channel, i.e. the human body. This work, for the first time, demonstrates and analyzes the improvement in private space enabled by EQS-HBC. Detailed experiments, supported by theoretical modeling and analysis, reveal that the quasi-static (QS) leakage due to the on-body EQS-HBC transmitter-human body interface is detectable up to <0.15 m, whereas the human body alone leaks only up to ~0.01 m, compared to >5 m detection range for on-body EM wireless communication, highlighting the underlying advantage of EQS-HBC to enable covert communication.
Collapse
Affiliation(s)
- Debayan Das
- Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN, 47907, USA.
| | - Shovan Maity
- Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN, 47907, USA
| | - Baibhab Chatterjee
- Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN, 47907, USA
| | - Shreyas Sen
- Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Maity S, He M, Nath M, Das D, Chatterjee B, Sen S. Bio-Physical Modeling, Characterization, and Optimization of Electro-Quasistatic Human Body Communication. IEEE Trans Biomed Eng 2018; 66:1791-1802. [PMID: 30403618 DOI: 10.1109/tbme.2018.2879462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human body communication (HBC) has emerged as an alternative to radio wave communication for connecting low power, miniaturized wearable, and implantable devices in, on, and around the human body. HBC uses the human body as the communication channel between on-body devices. Previous studies characterizing the human body channel has reported widely varying channel response much of which has been attributed to the variation in measurement setup. This calls for the development of a unifying bio-physical model of HBC, supported by in-depth analysis and an understanding of the effect of excitation, termination modality on HBC measurements. This paper characterizes the human body channel up to 1 MHz frequency to evaluate it as a medium for the broadband communication. The communication occurs primarily in the electro-quasistatic (EQS) regime at these frequencies through the subcutaneous tissues. A lumped bio-physical model of HBC is developed, supported by experimental validations that provide insight into some of the key discrepancies found in previous studies. Voltage loss measurements are carried out both with an oscilloscope and a miniaturized wearable prototype to capture the effects of non-common ground. Results show that the channel loss is strongly dependent on the termination impedance at the receiver end, with up to 4 dB variation in average loss for different termination in an oscilloscope and an additional 9 dB channel loss with wearable prototype compared to an oscilloscope measurement. The measured channel response with capacitive termination reduces low-frequency loss and allows flat-band transfer function down to 13 KHz, establishing the human body as a broadband communication channel. Analysis of the measured results and the simulation model shows that instruments with 50 Ω input impedance (Vector Network Analyzer, Spectrum Analyzer) provides pessimistic estimation of channel loss at low frequencies. Instead, high impedance and capacitive termination should be used at the receiver end for accurate voltage mode loss measurements of the HBC channel at low frequencies. The experimentally validated bio-physical model shows that capacitive voltage mode termination can improve the low frequency loss by up to 50 dB, which helps broadband communication significantly.
Collapse
|
22
|
Electromagnetic Field Analysis of Signal Transmission Path and Electrode Contact Conditions in Human Body Communication. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human body communication (HBC) is a wireless communication method that uses the human body as part of the transmission medium. Electrodes are used instead of antennas, and the signal is transmitted by the electric current through the human body and by the capacitive coupling outside the human body. In this study, direction of electric field lines and direction of electric current through the human body were analyzed by the finite-difference time-domain method to clarify the signal path, which is not readily apparent from electric field strength distribution. Signal transmission from a transmitter on the subject’s wrist to an off-body receiver touched by the subject was analyzed for two types of transmitter electrode settings. When both the signal and ground electrodes were put in contact with the human body, the major return path consisted of capacitive coupling between the receiver ground and the human body, and the electric current through the human body that flowed back to the ground electrode of the transmitter. When the ground electrode was floating, the only return path was through the capacitive coupling of the floating ground. These results contribute to the better understanding of signal transmission mechanism of HBC and will be useful for developing HBC applications.
Collapse
|
23
|
Asan NB, Hassan E, Velander J, Mohd Shah SR, Noreland D, Blokhuis TJ, Wadbro E, Berggren M, Voigt T, Augustine R. Characterization of the Fat Channel for Intra-Body Communication at R-Band Frequencies. SENSORS 2018; 18:s18092752. [PMID: 30134629 PMCID: PMC6165426 DOI: 10.3390/s18092752] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 11/16/2022]
Abstract
In this paper, we investigate the use of fat tissue as a communication channel between in-body, implanted devices at R-band frequencies (1.7–2.6 GHz). The proposed fat channel is based on an anatomical model of the human body. We propose a novel probe that is optimized to efficiently radiate the R-band frequencies into the fat tissue. We use our probe to evaluate the path loss of the fat channel by studying the channel transmission coefficient over the R-band frequencies. We conduct extensive simulation studies and validate our results by experimentation on phantom and ex-vivo porcine tissue, with good agreement between simulations and experiments. We demonstrate a performance comparison between the fat channel and similar waveguide structures. Our characterization of the fat channel reveals propagation path loss of ∼0.7 dB and ∼1.9 dB per cm for phantom and ex-vivo porcine tissue, respectively. These results demonstrate that fat tissue can be used as a communication channel for high data rate intra-body networks.
Collapse
Affiliation(s)
- Noor Badariah Asan
- Microwaves in Medical Engineering Group, Solid State Electronics, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, P.O. Box 534, 751 21 Uppsala, Sweden; (J.V.); (S.R.M.S.)
- Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100, Malaysia
- Correspondence: (N.B.A.); (R.A.); Tel.: +46-7283-83313 (N.B.A.); +46-7639-78738 (R.A.)
| | - Emadeldeen Hassan
- Department of Computing Science, Umeå University, 901 87 Umeå, Sweden; (E.H.); (D.N.); (E.W.); (M.B.)
- Department of Electronics and Electrical Communications, Menoufia University, Menouf 32952, Egypt
| | - Jacob Velander
- Microwaves in Medical Engineering Group, Solid State Electronics, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, P.O. Box 534, 751 21 Uppsala, Sweden; (J.V.); (S.R.M.S.)
| | - Syaiful Redzwan Mohd Shah
- Microwaves in Medical Engineering Group, Solid State Electronics, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, P.O. Box 534, 751 21 Uppsala, Sweden; (J.V.); (S.R.M.S.)
| | - Daniel Noreland
- Department of Computing Science, Umeå University, 901 87 Umeå, Sweden; (E.H.); (D.N.); (E.W.); (M.B.)
| | - Taco J. Blokhuis
- Department of Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Eddie Wadbro
- Department of Computing Science, Umeå University, 901 87 Umeå, Sweden; (E.H.); (D.N.); (E.W.); (M.B.)
| | - Martin Berggren
- Department of Computing Science, Umeå University, 901 87 Umeå, Sweden; (E.H.); (D.N.); (E.W.); (M.B.)
| | - Thiemo Voigt
- Department of Information Technology, Uppsala University, 752 36 Uppsala, Sweden;
| | - Robin Augustine
- Microwaves in Medical Engineering Group, Solid State Electronics, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, P.O. Box 534, 751 21 Uppsala, Sweden; (J.V.); (S.R.M.S.)
- Correspondence: (N.B.A.); (R.A.); Tel.: +46-7283-83313 (N.B.A.); +46-7639-78738 (R.A.)
| |
Collapse
|
24
|
Mao J, Yang H, Lian Y, Zhao B. A Five-Tissue-Layer Human Body Communication Circuit Model Tunable to Individual Characteristics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:303-312. [PMID: 29570058 DOI: 10.1109/tbcas.2018.2798410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human body communication (HBC) has several advantages over traditional wireless communications due to the high conductivity of human body. An accurate body channel model plays a vital role in optimizing the performance and power of HBC transceivers. In this paper, we present a body channel model with three distinct features. First, it takes into account all five body tissue layers resulting better accuracy; second, it adapts to different individuals with the proposed layer thickness estimation technique; third, it counts in the variation of backward coupling capacitance versus different postures. These new features significantly improve the model accuracy. Measurement results show that the proposed model achieves a maximum error of 2.21% in path loss for different human subjects.
Collapse
|
25
|
Ghoreishizadeh SS, Haci D, Liu Y, Donaldson N, Constandinou TG. Four-Wire Interface ASIC for a Multi-Implant Link. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS : A PUBLICATION OF THE IEEE CIRCUITS AND SYSTEMS SOCIETY 2017; 64:3056-3067. [PMID: 30450492 PMCID: PMC6054037 DOI: 10.1109/tcsi.2017.2731659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 05/21/2023]
Abstract
This paper describes an on-chip interface for recovering power and providing full-duplex communication over an AC-coupled 4-wire lead between active implantable devices. The target application requires two modules to be implanted in the brain (cortex) and upper chest; connected via a subcutaneous lead. The brain implant consists of multiple identical "optrodes" that facilitate a bidirectional neural interface (electrical recording and optical stimulation), and the chest implant contains the power source (battery) and processor module. The proposed interface is integrated within each optrode ASIC allowing full-duplex and fully-differential communication based on Manchester encoding. The system features a head-to-chest uplink data rate (up to 1.6 Mbps) that is higher than that of the chest-to-head downlink (100 kbps), which is superimposed on a power carrier. On-chip power management provides an unregulated 5-V dc supply with up to 2.5-mA output current for stimulation, and two regulated voltages (3.3 and 3 V) with 60-dB power supply rejection ratio for recording and logic circuits. The 4-wire ASIC has been implemented in a 0.35-[Formula: see text] CMOS technology, occup-ying a 1.5-mm2 silicon area, and consumes a quiescent current of [Formula: see text]. The system allows power transmission with measured efficiency of up to 66% from the chest to the brain implant. The downlink and uplink communication are successfully tested in a system with two optrodes and through a 4-wire implantable lead.
Collapse
Affiliation(s)
- Sara S. Ghoreishizadeh
- Department of Electrical and Electronic
EngineeringImperial College LondonLondonSW7 2AZU.K.
| | - Dorian Haci
- Department of Electrical and Electronic
EngineeringImperial College LondonLondonSW7 2AZU.K.
| | - Yan Liu
- Department of Electrical and Electronic
EngineeringImperial College LondonLondonSW7 2AZU.K.
| | - Nick Donaldson
- Department of Medical Physics and Biomedical
EngineeringUniversity College LondonLondonWC1E 6BTU.K.
| | | |
Collapse
|
26
|
An Energy Efficient Technique Using Electric Active Shielding for Capacitive Coupling Intra-Body Communication. SENSORS 2017; 17:s17092056. [PMID: 28885546 PMCID: PMC5621024 DOI: 10.3390/s17092056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 11/28/2022]
Abstract
Capacitive coupling intra-body communication (CC-IBC) has become one of the candidates for healthcare sensor networks due to its positive prevailing features of energy efficiency, transmission rate and security. Under the CC-IBC scheme, some of the electric field emitted from signal (SIG) electrode of the transmitter will couple directly to the ground (GND) electrode, acting equivalently as an internal impedance of the signal source and inducing considerable energy losses. However, none of the previous works have fully studied the problem. In this paper, the underlying theory of such energy loss is investigated and quantitatively evaluated using conventional parameters. Accordingly, a method of electric active shielding is proposed to reduce the displacement current across the SIG-GND electrodes, leading to less power loss. In addition, the variation of such loss in regard to frequency range and positions on human body was also considered. The theory was validated by finite element method simulation and experimental measurement. The prototype result shows that the receiving power has been improved by approximate 5.5 dBm while the total power consumption is maximally 9 mW less using the proposed technique, providing an energy efficient option in physical layer for wearable and implantable healthcare sensor networks.
Collapse
|