1
|
Martinez-Navarro H, Zhou X, Rodriguez B. Mechanisms and Implications of Electrical Heterogeneity in Cardiac Function in Ischemic Heart Disease. Annu Rev Physiol 2025; 87:25-51. [PMID: 39541224 DOI: 10.1146/annurev-physiol-042022-020541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A healthy heart shows intrinsic electrical heterogeneities that play a significant role in cardiac activation and repolarization. However, cardiac diseases may perturb the baseline electrical properties of the healthy cardiac tissue, leading to increased arrhythmic risk and compromised cardiac functions. Moreover, biological variability among patients produces a wide range of clinical symptoms, which complicates the treatment and diagnosis of cardiac diseases. Ischemic heart disease is usually caused by a partial or complete blockage of a coronary artery. The onset of the disease begins with myocardial ischemia, which can develop into myocardial infarction if it persists for an extended period. The progressive regional tissue remodeling leads to increased electrical heterogeneities, with adverse consequences on arrhythmic risk, cardiac mechanics, and mortality. This review aims to summarize the key role of electrical heterogeneities in the heart on cardiac function and diseases. Ischemic heart disease has been chosen as an example to show how adverse electrical remodeling at different stages may lead to variable manifestations in patients. For this, we have reviewed the dynamic electrophysiological and structural remodeling from the onset of acute myocardial ischemia and reperfusion to acute and chronic stages post-myocardial infarction. The arrhythmic mechanisms, patient phenotypes, risk stratification at different stages, and patient management strategies are also discussed. Finally, we provide a brief review on how computational approaches incorporate human electrophysiological heterogeneity to facilitate basic and translational research.
Collapse
Affiliation(s)
- Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| | - Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| |
Collapse
|
2
|
Roshchevskaya IM, Suslonova OV, Smirnova SL, Ionova EO, Vititnova MB, Tsorin IB, Kryzhanovskii SA. Correlation of the Left Ventricular Systolic Dysfunction and Ventricular Depolarization in a Post-Infarction Model of Chronic Heart Failure. Bull Exp Biol Med 2024; 176:428-432. [PMID: 38488960 DOI: 10.1007/s10517-024-06040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 03/17/2024]
Abstract
The body surface potential mapping of the heart during the period of ventricular depolarization and the inotropic function of the ventricles were studied in rats under conditions of a translational model of post-infarction chronic heart failure developed by us. We revealed a statistically significant (p<0.001) correlation between the left-ventricular ejection fraction and the values of the maximum positive and negative extrema of the cardioelectric field on the body surface of rats with post-infarction chronic heart failure caused by anterior transmural myocardial infarction. The calculated linear regression equations have high predictive efficiency, which makes it possible to use the amplitude characteristics of the heart cardioelectric field as a marker of the development of chronic heart failure.
Collapse
Affiliation(s)
| | - O V Suslonova
- Department of Comparative Cardiology, Federal Research Center Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - S L Smirnova
- Department of Comparative Cardiology, Federal Research Center Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - E O Ionova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - M B Vititnova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - I B Tsorin
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | | |
Collapse
|
3
|
Amoni M, Dries E, Ingelaere S, Vermoortele D, Roderick HL, Claus P, Willems R, Sipido KR. Ventricular Arrhythmias in Ischemic Cardiomyopathy-New Avenues for Mechanism-Guided Treatment. Cells 2021; 10:2629. [PMID: 34685609 PMCID: PMC8534043 DOI: 10.3390/cells10102629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic heart disease is the most common cause of lethal ventricular arrhythmias and sudden cardiac death (SCD). In patients who are at high risk after myocardial infarction, implantable cardioverter defibrillators are the most effective treatment to reduce incidence of SCD and ablation therapy can be effective for ventricular arrhythmias with identifiable culprit lesions. Yet, these approaches are not always successful and come with a considerable cost, while pharmacological management is often poor and ineffective, and occasionally proarrhythmic. Advances in mechanistic insights of arrhythmias and technological innovation have led to improved interventional approaches that are being evaluated clinically, yet pharmacological advancement has remained behind. We review the mechanistic basis for current management and provide a perspective for gaining new insights that centre on the complex tissue architecture of the arrhythmogenic infarct and border zone with surviving cardiac myocytes as the source of triggers and central players in re-entry circuits. Identification of the arrhythmia critical sites and characterisation of the molecular signature unique to these sites can open avenues for targeted therapy and reduce off-target effects that have hampered systemic pharmacotherapy. Such advances are in line with precision medicine and a patient-tailored therapy.
Collapse
Affiliation(s)
- Matthew Amoni
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Eef Dries
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| | - Sebastian Ingelaere
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dylan Vermoortele
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (D.V.); (P.C.)
| | - H. Llewelyn Roderick
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| | - Piet Claus
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (D.V.); (P.C.)
| | - Rik Willems
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Karin R. Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| |
Collapse
|
4
|
Chinyere IR, Moukabary T, Hutchinson MD, Lancaster JJ, Juneman E, Goldman S. Progression of infarct-mediated arrhythmogenesis in a rodent model of heart failure. Am J Physiol Heart Circ Physiol 2021; 320:H108-H116. [PMID: 33164577 PMCID: PMC7847079 DOI: 10.1152/ajpheart.00639.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
Heart failure (HF) post-myocardial infarction (MI) presents with increased vulnerability to monomorphic ventricular tachycardia (mmVT). To appropriately evaluate new therapies for infarct-mediated reentrant arrhythmia in the preclinical setting, chronologic characterization of the preclinical animal model pathophysiology is critical. This study aimed to evaluate the rigor and reproducibility of mmVT incidence in a rodent model of HF. We hypothesize a progressive increase in the incidence of mmVT as the duration of HF increases. Adult male Sprague-Dawley rats underwent permanent left coronary artery ligation or SHAM surgery and were maintained for either 6 or 10 wk. At end point, SHAM and HF rats underwent echocardiographic and invasive hemodynamic evaluation. Finally, rats underwent electrophysiologic (EP) assessment to assess susceptibility to mmVT and define ventricular effective refractory period (ERP). In 6-wk HF rats (n = 20), left ventricular (LV) ejection fraction (EF) decreased (P < 0.05) and LV end-diastolic pressure (EDP) increased (P < 0.05) compared with SHAM (n = 10). Ten-week HF (n = 12) revealed maintenance of LVEF and LVEDP (P > 0.05), (P > 0.05). Electrophysiology studies revealed an increase in incidence of mmVT between SHAM and 6-wk HF (P = 0.0016) and ERP prolongation (P = 0.0186). The incidence of mmVT and ventricular ERP did not differ between 6- and 10-wk HF (P = 1.0000), (P = 0.9831). Findings from this rodent model of HF suggest that once the ischemia-mediated infarct stabilizes, proarrhythmic deterioration ceases. Within the 6- and 10-wk period post-MI, no echocardiographic, invasive hemodynamic, or electrophysiologic changes were observed, suggesting stable HF. This is the necessary context for the evaluation of experimental therapies in rodent HF.NEW & NOTEWORTHY Rodent model of ischemic cardiomyopathy exhibits a plateau of inducible monomorphic ventricular tachycardia incidence between 6 and 10 wk postinfarction.
Collapse
Affiliation(s)
- Ikeotunye Royal Chinyere
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- MD-PhD Program, College of Medicine, University of Arizona, Tucson, Arizona
| | - Talal Moukabary
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | - Mathew D Hutchinson
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | | | - Elizabeth Juneman
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Chinyere IR, Hutchinson M, Moukabary T, Koevary JW, Juneman E, Goldman S, Lancaster JJ. Modulating the Infarcted Ventricle's Refractoriness with an Epicardial Biomaterial. J Investig Med 2020; 69:364-370. [PMID: 33115956 DOI: 10.1136/jim-2020-001486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 11/03/2022]
Abstract
Patients diagnosed with heart failure with reduced ejection fraction (HFrEF) are at increased risk of monomorphic ventricular tachycardia (VT) and ventricular fibrillation. The presence of myocardial fibrosis provides both anatomical and functional barriers that promote arrhythmias in these patients. Propagation of VT in a reentrant circuit depends on the presence of excitable myocardium and the refractoriness of the circuit. We hypothesize that myocardial refractoriness can be modulated surgically in a model of HFrEF, leading to decreased susceptibility to VT.Male Sprague-Dawley rats were infarcted via permanent left coronary artery ligation. At 3 weeks post-infarction, engineered grafts composed of human dermal fibroblasts cultured into a polyglactin-910 biomaterial were implanted onto the epicardium to cover the area of infarction. Three weeks post-graft treatment, all rats underwent a terminal electrophysiologic study to compare monophasic action potential electroanatomic maps and susceptibility to inducible monomorphic VT.HFrEF rats (n=29) demonstrated a longer (p=0.0191) ventricular effective refractory period (ERP) and a greater (p=0.0394) VT inducibility compared with sham (n=7). HFrEF rats treated with the graft (n=12) exhibited no change in capture threshold (p=0.3220), but had a longer ventricular ERP (p=0.0029) compared with HFrEF. No statistically significant change in VT incidence was found between HFrEF rats treated with the graft and untreated HFrEF rats (p=0.0834).Surgical deployment of a fibroblast-containing biomaterial in a rodent ischemic cardiomyopathy model prolonged ventricular ERP as measured by programmed electrical stimulation. This hypothesis-generating study warrants additional studies to further characterize the antiarrhythmic or proarrhythmic effects of this novel surgical therapy.
Collapse
Affiliation(s)
| | - Mathew Hutchinson
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Talal Moukabary
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Jen Watson Koevary
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Elizabeth Juneman
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Steven Goldman
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Jordan J Lancaster
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|
6
|
Chinyere IR, Hutchinson M, Moukabary T, Lancaster J, Goldman S, Juneman E. Monophasic action potential amplitude for substrate mapping. Am J Physiol Heart Circ Physiol 2019; 317:H667-H673. [PMID: 31347917 DOI: 10.1152/ajpheart.00225.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although radiofrequency ablation has revolutionized the management of tachyarrhythmias, the rate of arrhythmia recurrence is a large drawback. Successful substrate identification is paramount to abolishing arrhythmia, and bipolar voltage electrogram's narrow field of view can be further reduced for increased sensitivity. In this report, we perform cardiac mapping with monophasic action potential (MAP) amplitude. We hypothesize that MAP amplitude (MAPA) will provide more accurate infarct sizes than other mapping modalities via increased sensitivity to distinguish healthy myocardium from scar tissue. Using the left coronary artery ligation Sprague-Dawley rat model of ischemic heart failure, we investigate the accuracy of in vivo ventricular epicardial maps derived from MAPA, MAP duration to 90% repolarization (MAPD90), unipolar voltage amplitude (UVA), and bipolar voltage amplitude (BVA) compared with gold standard histopathological measurement of infarct size. Numerical analysis reveals discrimination of healthy myocardium versus scar tissue using MAPD90 (P = 0.0158) and UVA (P < 0.001, n = 21). MAPA and BVA decreased between healthy and border tissue (P = 0.0218 and 0.0015, respectively) and border and scar tissue (P = 0.0037 and 0.0094, respectively). Contrary to our hypothesis, BVA mapping performed most accurately regarding quantifying infarct size. MAPA mapping may have high spatial resolution for myocardial tissue characterization but was quantitatively less accurate than other mapping methods at determining infarct size. BVA mapping's superior utility has been reinforced, supporting its use in translational research and clinical electrophysiology laboratories. MAPA may hold potential value for precisely distinguishing healthy myocardium, border zone, and scar tissue in diseases of disseminated fibrosis such as atrial fibrillation.NEW & NOTEWORTHY Monophasic action potential mapping in a clinically relevant model of heart failure with potential implications for atrial fibrillation management.
Collapse
Affiliation(s)
- Ikeotunye Royal Chinyere
- Sarver Heart Center, University of Arizona, Tucson, Arizona.,MD/PhD Program, College of Medicine, University of Arizona, Tucson, Arizona
| | - Mathew Hutchinson
- Sarver Heart Center, University of Arizona, Tucson, Arizona.,Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | | | | | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Elizabeth Juneman
- Sarver Heart Center, University of Arizona, Tucson, Arizona.,Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| |
Collapse
|
7
|
Lancaster JJ, Sanchez P, Repetti GG, Juneman E, Pandey AC, Chinyere IR, Moukabary T, LaHood N, Daugherty SL, Goldman S. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Patch in Rats With Heart Failure. Ann Thorac Surg 2019; 108:1169-1177. [PMID: 31075250 DOI: 10.1016/j.athoracsur.2019.03.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/06/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND To treat chronic heart failure (CHF), we developed a robust, easy to handle bioabsorbable tissue-engineered patch embedded with human neonatal fibroblasts and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). This patch was implanted on the epicardial surface of the heart covering the previously infarcted tissue. METHODS Sprague-Dawley rats (6-8 weeks old) underwent sham surgery (n = 12) or left coronary artery ligation (n = 45). CHF rats were randomized 3 weeks after ligation to CHF control with sham thoracotomy (n = 21), or a fibroblasts/hiPSC-CMs patch (n = 24) was implanted. All sham surgery rats also underwent a sham thoracotomy. At 3 weeks after randomization, hemodynamics, echocardiography, electrophysiologic, and cell survival studies were performed. RESULTS Patch-treated rats had decreased (P < .05) left ventricular-end diastolic pressure and the time constant of left ventricular relaxation (Tau), increased anterior wall thickness in diastole, and improved echocardiography-derived indices of diastolic function (E/e' [ratio of early peak flow velocity to early peak LV velocity] and e'/a' [ratio of early to late peak left ventricular velocity]). All rats remained in normal sinus rhythm, with no dysrhythmias. Rats treated with the patch showed improved electrical activity. Transplanted hiPSC-CMs were present at 7 days but not detected at 21 days after implantation. The patch increased (P < .05) gene expression of vascular endothelial growth factor, angiopoietin 1, gap junction α-1 protein (connexin 43), β-myosin heavy 7, and insulin growth factor-1 expression in the infarcted heart. CONCLUSIONS Epicardial implantation of a fibroblasts/hiPSC-CMs patch electrically enhanced conduction, lowered left ventricular end-diastolic pressure, and improved diastolic function in rats with CHF. These changes were associated with increases in cytokine expression.
Collapse
Affiliation(s)
- Jordan J Lancaster
- Sarver Heart Center, University of Arizona, Tucson, Arizona; Division of Cardiology, Department of Medicine, Tucson Veterans Affairs Medical Center, Tucson, Arizona; Department of Physiology, University of Arizona, Tucson, Arizona.
| | - Pablo Sanchez
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| | | | - Elizabeth Juneman
- Sarver Heart Center, University of Arizona, Tucson, Arizona; Division of Cardiology, Department of Medicine, Tucson Veterans Affairs Medical Center, Tucson, Arizona
| | | | - Ikeotunye R Chinyere
- Sarver Heart Center, University of Arizona, Tucson, Arizona; Department of Physiology, University of Arizona, Tucson, Arizona
| | | | - Nicole LaHood
- Sarver Heart Center, University of Arizona, Tucson, Arizona; Division of Cardiology, Department of Medicine, Tucson Veterans Affairs Medical Center, Tucson, Arizona
| | - Sherry L Daugherty
- Sarver Heart Center, University of Arizona, Tucson, Arizona; Division of Cardiology, Department of Medicine, Tucson Veterans Affairs Medical Center, Tucson, Arizona
| | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, Arizona; Division of Cardiology, Department of Medicine, Tucson Veterans Affairs Medical Center, Tucson, Arizona
| |
Collapse
|
8
|
Cheema MN, Nazir A, Sheng B, Li P, Qin J, Kim J, Feng DD. Image-Aligned Dynamic Liver Reconstruction Using Intra-Operative Field of Views for Minimal Invasive Surgery. IEEE Trans Biomed Eng 2018; 66:2163-2173. [PMID: 30507524 DOI: 10.1109/tbme.2018.2884319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During hepatic minimal invasive surgery (MIS), 3-D reconstruction of a liver surface by interpreting the geometry of its soft tissues is achieving attractions. One of the major issues to be addressed in MIS is liver deformation. Moreover, it severely inhibits free sight and dexterity of tissue manipulation, which causes its intra-operative morphology and soft tissue motion altered as compared to its pre-operative shape. While many applications focus on 3-D reconstruction of rigid or semi-rigid scenes, the techniques applied in hepatic MIS must be able to cope with a dynamic and deformable environment. We propose an efficient technique for liver surface reconstruction based on the structure from motion to handle liver deformation. The reconstructed liver will assist surgeons to visualize liver surface more efficiently with better depth perception. We use the intra-operative field of views to generate 3-D template mesh from a dense keypoint cloud. We estimate liver deformation by finding best correspondence between 3-D templates and reconstruct a liver image to calculate translation and rotational motions. Our technique then finely tunes deformed surface by adding smoothness using shading cues. Up till now, this technique is not used for solving the human liver deformation problem. Our approach is tested and validated with synthetic as well as real in vivo data, which reveal that the reconstruction accuracy can be enhanced using our approach even in challenging laparoscopic environments.
Collapse
|
9
|
Mendonca Costa C, Plank G, Rinaldi CA, Niederer SA, Bishop MJ. Modeling the Electrophysiological Properties of the Infarct Border Zone. Front Physiol 2018; 9:356. [PMID: 29686626 PMCID: PMC5900020 DOI: 10.3389/fphys.2018.00356] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 12/28/2022] Open
Abstract
Ventricular arrhythmias (VA) in patients with myocardial infarction (MI) are thought to be associated with structural and electrophysiological remodeling within the infarct border zone (BZ). Personalized computational models have been used to investigate the potential role of the infarct BZ in arrhythmogenesis, which still remains incompletely understood. Most recent models have relied on experimental data to assign BZ properties. However, experimental measurements vary significantly resulting in different computational representations of this region. Here, we review experimental data available in the literature to determine the most prominent properties of the infarct BZ. Computational models are then used to investigate the effect of different representations of the BZ on activation and repolarization properties, which may be associated with VA. Experimental data obtained from several animal species and patients with infarct show that BZ properties vary significantly depending on disease's stage, with the early disease stage dominated by ionic remodeling and the chronic stage by structural remodeling. In addition, our simulations show that ionic remodeling in the BZ leads to large repolarization gradients in the vicinity of the scar, which may have a significant impact on arrhythmia simulations, while structural remodeling plays a secondary role. We conclude that it is imperative to faithfully represent the properties of regions of infarction within computational models specific to the disease stage under investigation in order to conduct in silico mechanistic investigations.
Collapse
Affiliation(s)
- Caroline Mendonca Costa
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gernot Plank
- Department of Biophysics, Medical University of Graz, Graz, Austria
| | | | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Electrical and mechanical alternans during ventricular tachycardia with moderate chronic heart failure. J Electrocardiol 2017; 51:33-37. [PMID: 29129349 DOI: 10.1016/j.jelectrocard.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 11/20/2022]
Abstract
A chronic heart failure (CHF) rat underwent epicardial programmed electrical stimulation (PES). Ventricular tachycardia (VT) developed during PES. Mechanical alternans was noted despite fixed tachycardia cycle length. Anti-tachycardia pacing attempts initiated a second VT that generated pulse intermittently and then degenerated into pulseless VT with electrical alternans.To our knowledge electrical and mechanical alternans have not been recorded in animal models of CHF during VT. The distinct events of mechanical alternans and electrical alternans may be indicative of progressively worsened calcium handling in the compromised cardiomyocytes.Although ion channel differences between rodents and humans exist, this work attempts to demonstrate this rat model's usefulness in understanding cardiac electrophysiology in CHF.
Collapse
|