1
|
Friis SJ, Hansen TS, Olesen C, Poulsen M, Gregersen H, Vinge Nygaard J. Experimental and numerical study of solid needle insertions into human stomach tissue. J Mech Behav Biomed Mater 2025; 162:106832. [PMID: 39591721 DOI: 10.1016/j.jmbbm.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
PURPOSE Oral drug delivery is the Holy Grail in the field of drug delivery. However, poor bioavailability limits the oral intake of macromolecular drugs. Oral devices may overcome this limitation, but a knowledge gap exists on the device-tissue interaction. This study focuses on needle insertion into the human stomach experimentally and numerically. This will guide early stages of device development. METHODS Needle insertions were done into excised human gastric tissue with sharp and blunt needles at velocities of 0.0001 and 0.1 m/s. Parameters for constitutive models were determined from tensile visco-hyperelastic biomechanical tests. The computational setup modeled four different needle shape indentations at five velocities from 0.0001 to 5 m/s. RESULTS From experiments, peak forces at 0.1 and 0.0001 m/s were 0.995 ± 0.296 N and 1.281 ± 0.670 N (blunt needle) and 0.325 ± 0.235 N and 0.362 ± 0.119 N (sharp needle). The needle geometry significantly influenced peak forces (p < 0.05). A Yeoh-Prony series combination was fitted to the tensile visco-hyperelastic biomechanical data and used for the numerical model with excellent fit (R2 = 0.973). Both needle geometry and insertion velocity influenced the stress contour and displacement magnitudes as well as energy curves. CONCLUSION This study contributes to a better understanding of needle insertion into the stomach wall. The numerical model demonstrated agreement with experimental data providing a good approach to early device iterations. Findings in this study showed that insertion velocity and needle shape affect tissue mechanical outcomes.
Collapse
Affiliation(s)
- Sif Julie Friis
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Camilla Olesen
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus, Denmark
| | - Mette Poulsen
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego, CA, United States
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Friis SJ, Hansen TS, Poulsen M, Gregersen H, Brüel A, Vinge Nygaard J. Biomechanical properties of the stomach: A comprehensive comparative analysis of human and porcine gastric tissue. J Mech Behav Biomed Mater 2023; 138:105614. [PMID: 36527978 DOI: 10.1016/j.jmbbm.2022.105614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stomach-related disorders impose medical challenges and are associated with significant social and economic costs. The field of biomechanics is promising for understanding tissue behavior and for development of medical treatments and surgical interventions. In gastroenterology, animal models are often used when studies on humans are not possible. Often large animal models with similar anatomical characteristics (size and shape) are preferred. However, it is uncertain if stomachs from humans and large animals have similar mechanical properties. The aim of the present study is to characterize and compare hyper- and viscoelastic properties of porcine and human gastric tissue using tension and radial compression tests. METHODS Hyperelastic and viscoelastic properties were quantified from quasi-static ramp tests and stress relaxation tests. Tension in two directions and radial compression experiments were done on intact stomach wall samples as well as on separated mucosa and muscularis layer samples from porcine and human fundus, corpus and antrum. RESULTS AND CONCLUSIONS Similar hyper- and viscoelastic constitutive models can be used to describe porcine and human gastric tissue. In total, 19 constitutive parameters were compared and results showed significant variations between species. For example, for intact circumferential samples from antrum, the stiffness (a) and relaxation (τ1) were greater for human samples than for porcine samples (p < 0.0001). The constitutive parameters were condition-, region- and layer-dependent and no distinct pattern hereof between species was found. This indicates that different parameters must be used to describe the specific situation. The present work provides insight into porcine and human gastric radial compressive and tensile hyper- and viscoelastic properties, strengthening the inter-species relation of the biomechanical properties. Constitutive relations were established that may aid development and translation of diagnostic or therapeutic devices with computational models.
Collapse
Affiliation(s)
- Sif Julie Friis
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Mette Poulsen
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego, CA, USA
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Neumann EE, Doherty S, Bena J, Erdemir A. Role of multi-layer tissue composition of musculoskeletal extremities for prediction of in vivo surface indentation response and layer deformations. PLoS One 2023; 18:e0284721. [PMID: 37083580 PMCID: PMC10121013 DOI: 10.1371/journal.pone.0284721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Emergent mechanics of musculoskeletal extremities (surface indentation stiffness and tissue deformation characteristics) depend on the underlying composition and mechanics of each soft tissue layer (i.e. skin, fat, and muscle). Limited experimental studies have been performed to explore the layer specific relationships that contribute to the surface indentation response. The goal of this study was to examine through statistical modeling how the soft tissue architecture contributed to the aggregate mechanical surface response across 8 different sites of the upper and lower extremities. A publicly available dataset was used to examine the relationship of soft tissue thickness (fat and muscle) to bulk tissue surface compliance. Models required only initial tissue layer thicknesses, making them usable in the future with only a static ultrasound image. Two physics inspired models (series of linear springs), which allowed reduced statistical representations (combined locations and location specific), were explored to determine the best predictability of surface compliance and later individual layer deformations. When considering the predictability of the experimental surface compliance, the physics inspired combined locations model showed an improvement over the location specific model (percent difference of 25.4 +/- 27.9% and 29.7 +/- 31.8% for the combined locations and location specific models, respectively). While the statistical models presented in this study show that tissue compliance relies on the individual layer thicknesses, it is clear that there are other variables that need to be accounted for to improve the model. In addition, the individual layer deformations of fat and muscle tissues can be predicted reasonably well with the physics inspired models, however additional parameters may improve the robustness of the model outcomes, specifically in regard to capturing subject specificity.
Collapse
Affiliation(s)
- Erica E Neumann
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Sean Doherty
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - James Bena
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States of America
| | - Ahmet Erdemir
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| |
Collapse
|
4
|
Patel B, Gizzi A, Hashemi J, Awakeem Y, Gregersen H, Kassab G. Biomechanical constitutive modeling of the gastrointestinal tissues: a systematic review. MATERIALS & DESIGN 2022; 217:110576. [PMID: 35935127 PMCID: PMC9351365 DOI: 10.1016/j.matdes.2022.110576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The gastrointestinal (GI) tract is a continuous channel through the body that consists of the esophagus, the stomach, the small intestine, the large intestine, and the rectum. Its primary functions are to move the intake of food for digestion before storing and ultimately expulsion of feces. The mechanical behavior of GI tissues thus plays a crucial role for GI function in health and disease. The mechanical properties are characterized by a biomechanical constitutive model, which is a mathematical representation of the relation between load and deformation in a tissue. Hence, validated biomechanical constitutive models are essential to characterize and simulate the mechanical behavior of the GI tract. Here, a systematic review of these constitutive models is provided. This review is limited to studies where a model of the strain energy function is proposed to characterize the stress-strain relation of a GI tissue. Several needs are identified for more advanced modeling including: 1) Microstructural models that provide actual structure-function relations; 2) Validation of coupled electro-mechanical models accounting for active muscle contractions; 3) Human data to develop and validate models. The findings from this review provide guidelines for using existing constitutive models as well as perspective and directions for future studies.
Collapse
Affiliation(s)
- Bhavesh Patel
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, Via A. del Portillo 21, 00128 Rome, IT
| | - Javad Hashemi
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Yousif Awakeem
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Hans Gregersen
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Ghassan Kassab
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| |
Collapse
|
5
|
Chen S, Grimm MJ. Childbirth Computational Models: Characteristics and Applications. J Biomech Eng 2021; 143:050801. [PMID: 33269787 DOI: 10.1115/1.4049226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/08/2022]
Abstract
The biomechanical process of childbirth is necessary to usher in new lives-but it can also result in trauma. This physically intense process can put both the mother and the child at risk of injuries and complications that have life-long impact. Computational models, as a powerful tool to simulate and explore complex phenomena, have been used to improve our understanding of childbirth processes and related injuries since the 1990s. The goal of this paper is to review and summarize the breadth and current state of the computational models of childbirth in the literature-focusing on those that investigate the mechanical process and effects. We first summarize the state of critical characteristics that have been included in computational models of childbirth (i.e., maternal anatomy, fetal anatomy, cardinal movements, and maternal soft tissue mechanical behavior). We then delve into the findings of the past studies of birth processes and mechanical injuries in an effort to bridge the gap between the theoretical, numerical assessment and the empirical, clinical observations and practices. These findings are from applications of childbirth computational models in four areas: (1) the process of childbirth itself, (2) maternal injuries, (3) fetal injuries, and (4) protective measures employed by clinicians during delivery. Finally, we identify some of the challenges that computational models still face and suggest future directions through which more biofidelic simulations of childbirth might be achieved, with the goal that advancing models may provide more efficient and accurate, patient-specific assessment to support future clinical decision-making.
Collapse
Affiliation(s)
- Sheng Chen
- Departments of Mechanical and Biomedical Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824
| | - Michele J Grimm
- Departments of Mechanical and Biomedical Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824
| |
Collapse
|
6
|
Trostorf R, Morales-Orcajo E, Siebert T, Böl M. Location- and layer-dependent biomechanical and microstructural characterisation of the porcine urinary bladder wall. J Mech Behav Biomed Mater 2020; 115:104275. [PMID: 33360487 DOI: 10.1016/j.jmbbm.2020.104275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/04/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
The knowledge of the mechanical properties of the urinary bladder wall helps to explain its storage and micturition functions in health and disease studies; however, these properties largely remain unknown, especially with regard to its layer-specific characteristics and microstructure. Consequently, this study entails the assessment of the layer-specific differences in the mechanical properties and microstructure of the bladder wall, especially during loading. Accordingly, ninety-two (n=92) samples of porcine urinary bladder walls were mechanically and histologically analysed. Generally, the bladder wall and different tissue layers exhibit a non-linear stress-stretch relationship. In this study, the load transfer mechanisms were not only associated with the wavy structure of muscular and mucosal layers, but also with the entire bladder wall microstructure. Contextually, an interplay between the mucosal and muscular layers could be identified. Therefore, depending on the region and direction, the mucosal layer exhibited a stiffer mechanical response to equi-biaxial loading than that offered by the muscular layer when deformed to stretch levels higher than λ=1.6 to λ=2.2. For smaller stretches, the mucosal layer evinces no significant mechanical reaction, while the muscular layer bears the load. Owing to the orientation of its muscle fibres, the muscular layer shows an increased degree of anisotropy compared to the mucosal layer. Furthermore, the general incompressibility assumption is analysed for different layers by measuring the change in thickness during loading, which indicated a small volume loss.
Collapse
Affiliation(s)
- Robin Trostorf
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Enrique Morales-Orcajo
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, Stuttgart D-70569, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| |
Collapse
|
7
|
Carniel EL, Albanese A, Fontanella CG, Pavan PG, Prevedello L, Salmaso C, Todros S, Toniolo I, Foletto M. Biomechanics of stomach tissues and structure in patients with obesity. J Mech Behav Biomed Mater 2020; 110:103883. [PMID: 32957190 DOI: 10.1016/j.jmbbm.2020.103883] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Even though bariatric surgery is one of the most effective treatment option of obesity, post-surgical weight loss is not always ensured, especially in the long term, when many patients experience weight regain. Bariatric procedures are largely based on surgeon's expertise and intra-operative decisions, while an integrated in-silico approach could support surgical activity. The effects of bariatric surgery on gastric distension, which activates the neural circuitry promoting satiety, can be considered one of the main factors in the operation success. This aspect can be investigated trough computational modelling based on the mechanical properties of stomach tissues and structure. Mechanical tests on gastric tissues and structure from people with obesity are carried out, as basis for the development of a computational model. The samples are obtained from stomach residuals explanted during laparoscopic sleeve gastrectomy interventions. Uniaxial tensile and stress relaxation tests are performed in different directions and inflation tests are carried out on the entire stomach residual. Experimental results show anisotropic, non-linear elastic and time-dependent behavior. In addition, the mechanical properties demonstrate to be dependent on the sample location within the stomach. Inflation tests confirm the characteristics of time-dependence and non-linear elasticity of the stomach wall. Experimental activities developed provide a unique set of data about the mechanical behavior of the stomach of patients with obesity, considering both tissues and structure. This data set can be adopted for the development of computational models of the stomach, as support to the rational investigation of biomechanical aspects of bariatric surgery.
Collapse
Affiliation(s)
- Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, Italy.
| | - Alice Albanese
- IFSO Bariatric Center of Excellence, Policlinico Universitario, University of Padova, Italy
| | - Chiara Giulia Fontanella
- Centre for Mechanics of Biological Materials, University of Padova, Italy; Department of Civil, Environmental and Architectural Engineering, University of Padova, Italy
| | - Piero Giovanni Pavan
- Department of Industrial Engineering, University of Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Luca Prevedello
- IFSO Bariatric Center of Excellence, Policlinico Universitario, University of Padova, Italy
| | - Claudia Salmaso
- Department of Industrial Engineering, University of Padova, Italy
| | - Silvia Todros
- Department of Industrial Engineering, University of Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Ilaria Toniolo
- Department of Industrial Engineering, University of Padova, Italy
| | - Mirto Foletto
- Centre for Mechanics of Biological Materials, University of Padova, Italy; IFSO Bariatric Center of Excellence, Policlinico Universitario, University of Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| |
Collapse
|
8
|
Dargar S, Kruger U, De S. In vivo Layer-specific Mechanical Characterization of Porcine Stomach Tissue using Ultrasound Elastography. J Biomech Eng 2019; 141:2729411. [PMID: 30901383 DOI: 10.1115/1.4043259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Indexed: 12/14/2022]
Abstract
This paper presents in vivo mechanical characterization of the muscularis, submucosa and mucosa of the porcine stomach wall under large deformation loading. This is important for the development of gastrointestinal pathology-specific surgical intervention techniques. The study is based on testing the cardiac and fundic glandular stomach regions using a custom-developed compression elastography setup. Particular attention has been paid to elucidate the heterogeneity and anisotropy of tissue response. A Fung hyperelastic material model has been used to model the mechanical response of each tissue layer. A univariate analysis comparing the initial shear moduli of the three layers indicates that the muscularis (5.69±4.06 kPa) is the stiffest followed by the submucosa (3.04±3.32 kPa) and the mucosa (0.56±0.28 kPa). The muscularis is found to be strongly distinguishable from the mucosa tissue in the cardiac and fundic region based on a multivariate discriminant analysis. The cardiac muscularis is observed to be stiffer than the fundic muscularis tissue (shear moduli of 7.96±3.82 kPa vs. 3.42±2.96 kPa), more anisotropic (anisotropic parameter of 2.21±0.77 vs. 1.41±0.38), and strongly distinguishable from its fundic counterpart. Finally, a univariate comparison of the in vivo and ex vivo initial shear moduli for each layer shows that the muscularis and submucosa tissues are softer while in vivo, but the mucosa tissue is stiffer while in vivo. The mechanical properties highlight the inhomogeneity and anisotropy of multilayer stomach tissue.
Collapse
Affiliation(s)
- Saurabh Dargar
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Uwe Kruger
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Suvranu De
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Mechanical, Aerospace, and Nuclear Engineering, , Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
9
|
Ye H, Rahul, Dargar S, Kruger U, De S. Ultrasound elastography reliably identifies altered mechanical properties of burned soft tissues. Burns 2018; 44:1521-1530. [PMID: 29859811 DOI: 10.1016/j.burns.2018.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/24/2018] [Accepted: 04/25/2018] [Indexed: 10/16/2022]
Abstract
Although burn injury to the skin and subcutaneous tissues is common in both civilian and military scenarios, a significant knowledge gap exists in quantifying changes in tissue properties as a result of burns. In this study, we present a noninvasive technique based on ultrasound elastography which can reliably assess altered nonlinear mechanical properties of a burned tissue. In particular, ex vivo porcine skin tissues have been exposed to four different burn conditions: (i) 200°F for 10s, (ii) 200°F for 30s, (iii) 450°F for 10s, and (iv) 450°F for 30s. A custom-developed instrument including a robotically controlled ultrasound probe and force sensors has been used to compress the tissue samples to compute two parameters (C10 and C20) of a reduced second-order polynomial hyperelastic material model. The results indicate that while the linear model parameter (C10) does not show a statistically significant difference between the test conditions, the nonlinear model parameter (C20) reliably identifies three (ii-iv) of the four cases (p<0.05) when comparing burned with unburned tissues with a classification accuracy of 60-87%. Additionally, softening of the tissue is observed because of the change in structure of the collagen fibers. The ultrasound elastography-based technique has potential for application under in vivo conditions, which is left for future work.
Collapse
Affiliation(s)
- Hanglin Ye
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rahul
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Saurabh Dargar
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Uwe Kruger
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA; The Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Suvranu De
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|