1
|
Chen W, Yi Z, Lim LJR, Lim RQR, Zhang A, Qian Z, Huang J, He J, Liu B. Deep learning and remote photoplethysmography powered advancements in contactless physiological measurement. Front Bioeng Biotechnol 2024; 12:1420100. [PMID: 39104628 PMCID: PMC11298756 DOI: 10.3389/fbioe.2024.1420100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
In recent decades, there has been ongoing development in the application of computer vision (CV) in the medical field. As conventional contact-based physiological measurement techniques often restrict a patient's mobility in the clinical environment, the ability to achieve continuous, comfortable and convenient monitoring is thus a topic of interest to researchers. One type of CV application is remote imaging photoplethysmography (rPPG), which can predict vital signs using a video or image. While contactless physiological measurement techniques have an excellent application prospect, the lack of uniformity or standardization of contactless vital monitoring methods limits their application in remote healthcare/telehealth settings. Several methods have been developed to improve this limitation and solve the heterogeneity of video signals caused by movement, lighting, and equipment. The fundamental algorithms include traditional algorithms with optimization and developing deep learning (DL) algorithms. This article aims to provide an in-depth review of current Artificial Intelligence (AI) methods using CV and DL in contactless physiological measurement and a comprehensive summary of the latest development of contactless measurement techniques for skin perfusion, respiratory rate, blood oxygen saturation, heart rate, heart rate variability, and blood pressure.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhe Yi
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Lincoln Jian Rong Lim
- Department of Medical Imaging, Western Health, Footscray Hospital, Footscray, VIC, Australia
- Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Qian Ru Lim
- Department of Hand & Reconstructive Microsurgery, Singapore General Hospital, Singapore, Singapore
| | - Aijie Zhang
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhen Qian
- Institute of Intelligent Diagnostics, Beijing United-Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Jiaxing Huang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jia He
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Liu
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| |
Collapse
|
2
|
Selvaraju V, Spicher N, Wang J, Ganapathy N, Warnecke JM, Leonhardt S, Swaminathan R, Deserno TM. Continuous Monitoring of Vital Signs Using Cameras: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:4097. [PMID: 35684717 PMCID: PMC9185528 DOI: 10.3390/s22114097] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023]
Abstract
In recent years, noncontact measurements of vital signs using cameras received a great amount of interest. However, some questions are unanswered: (i) Which vital sign is monitored using what type of camera? (ii) What is the performance and which factors affect it? (iii) Which health issues are addressed by camera-based techniques? Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement, we conduct a systematic review of continuous camera-based vital sign monitoring using Scopus, PubMed, and the Association for Computing Machinery (ACM) databases. We consider articles that were published between January 2018 and April 2021 in the English language. We include five vital signs: heart rate (HR), respiratory rate (RR), blood pressure (BP), body skin temperature (BST), and oxygen saturation (SpO2). In total, we retrieve 905 articles and screened them regarding title, abstract, and full text. One hundred and four articles remained: 60, 20, 6, 2, and 1 of the articles focus on HR, RR, BP, BST, and SpO2, respectively, and 15 on multiple vital signs. HR and RR can be measured using red, green, and blue (RGB) and near-infrared (NIR) as well as far-infrared (FIR) cameras. So far, BP and SpO2 are monitored with RGB cameras only, whereas BST is derived from FIR cameras only. Under ideal conditions, the root mean squared error is around 2.60 bpm, 2.22 cpm, 6.91 mm Hg, 4.88 mm Hg, and 0.86 °C for HR, RR, systolic BP, diastolic BP, and BST, respectively. The estimated error for SpO2 is less than 1%, but it increases with movements of the subject and the camera-subject distance. Camera-based remote monitoring mainly explores intensive care, post-anaesthesia care, and sleep monitoring, but also explores special diseases such as heart failure. The monitored targets are newborn and pediatric patients, geriatric patients, athletes (e.g., exercising, cycling), and vehicle drivers. Camera-based techniques monitor HR, RR, and BST in static conditions within acceptable ranges for certain applications. The research gaps are large and heterogeneous populations, real-time scenarios, moving subjects, and accuracy of BP and SpO2 monitoring.
Collapse
Affiliation(s)
- Vinothini Selvaraju
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
- Non-Invasive Imaging and Diagnostic Laboratory, Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Nicolai Spicher
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| | - Ju Wang
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| | - Nagarajan Ganapathy
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| | - Joana M. Warnecke
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| | - Steffen Leonhardt
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Ramakrishnan Swaminathan
- Non-Invasive Imaging and Diagnostic Laboratory, Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Thomas M. Deserno
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| |
Collapse
|
3
|
Molinaro N, Schena E, Silvestri S, Bonotti F, Aguzzi D, Viola E, Buccolini F, Massaroni C. Contactless Vital Signs Monitoring From Videos Recorded With Digital Cameras: An Overview. Front Physiol 2022; 13:801709. [PMID: 35250612 PMCID: PMC8895203 DOI: 10.3389/fphys.2022.801709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 01/26/2023] Open
Abstract
The measurement of physiological parameters is fundamental to assess the health status of an individual. The contactless monitoring of vital signs may provide benefits in various fields of application, from healthcare and clinical setting to occupational and sports scenarios. Recent research has been focused on the potentiality of camera-based systems working in the visible range (380-750 nm) for estimating vital signs by capturing subtle color changes or motions caused by physiological activities but invisible to human eyes. These quantities are typically extracted from videos framing some exposed body areas (e.g., face, torso, and hands) with adequate post-processing algorithms. In this review, we provided an overview of the physiological and technical aspects behind the estimation of vital signs like respiratory rate, heart rate, blood oxygen saturation, and blood pressure from digital images as well as the potential fields of application of these technologies. Per each vital sign, we provided the rationale for the measurement, a classification of the different techniques implemented for post-processing the original videos, and the main results obtained during various applications or in validation studies. The available evidence supports the premise of digital cameras as an unobtrusive and easy-to-use technology for physiological signs monitoring. Further research is needed to promote the advancements of the technology, allowing its application in a wide range of population and everyday life, fostering a biometrical holistic of the human body (BHOHB) approach.
Collapse
Affiliation(s)
- Nunzia Molinaro
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sergio Silvestri
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Damiano Aguzzi
- BHOHB – Biometrical Holistic of Human Body S.r.l., Rome, Italy
| | - Erika Viola
- BHOHB – Biometrical Holistic of Human Body S.r.l., Rome, Italy
| | - Fabio Buccolini
- BHOHB – Biometrical Holistic of Human Body S.r.l., Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
4
|
Shao D, Liu C, Tsow F. Noncontact Physiological Measurement Using a Camera: A Technical Review and Future Directions. ACS Sens 2021; 6:321-334. [PMID: 33434004 DOI: 10.1021/acssensors.0c02042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using a camera as an optical sensor to monitor physiological parameters has garnered considerable research interest in biomedical engineering in recent decades. Researchers have explored the use of a camera for monitoring a variety of physiological waveforms, together with the vital signs carried by these waveforms. Most of the obtained waveforms are related to the human respiratory and cardiovascular systems, and in addition of being indicative of overall health, they can also detect early signs of certain diseases. While using a camera for noncontact physiological signal monitoring offers the advantages of low cost and operational ease, it also has the disadvantages such as vulnerability to motion and lack of burden-free calibration solutions in some use cases. This study presents an overview of the existing camera-based methods that have been reported in recent years. It introduces the physiological principles behind these methods, signal acquisition approaches, various types of acquired signals, data processing algorithms, and application scenarios of these methods. It also discusses the technological gaps between the camera-based methods and traditional medical techniques, which are mostly contact-based. Furthermore, we present the manner in which noncontact physiological signal monitoring use has been extended, particularly over the recent years, to more day-to-day aspects of individuals' lives, so as to go beyond the more conventional use case scenarios. We also report on the development of novel approaches that facilitate easier measurement of less often monitored and recorded physiological signals. These have the potential of ushering a host of new medical and lifestyle applications. We hope this study can provide useful information to the researchers in the noncontact physiological signal measurement community.
Collapse
Affiliation(s)
- Dangdang Shao
- Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Francis Tsow
- Biodesign Institute, Arizona State University, Tempe, Arizona 518116, United States
| |
Collapse
|
5
|
Chiera M, Cerritelli F, Casini A, Barsotti N, Boschiero D, Cavigioli F, Corti CG, Manzotti A. Heart Rate Variability in the Perinatal Period: A Critical and Conceptual Review. Front Neurosci 2020; 14:561186. [PMID: 33071738 PMCID: PMC7544983 DOI: 10.3389/fnins.2020.561186] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Neonatal intensive care units (NICUs) greatly expand the use of technology. There is a need to accurately diagnose discomfort, pain, and complications, such as sepsis, mainly before they occur. While specific treatments are possible, they are often time-consuming, invasive, or painful, with detrimental effects for the development of the infant. In the last 40 years, heart rate variability (HRV) has emerged as a non-invasive measurement to monitor newborns and infants, but it still is underused. Hence, the present paper aims to review the utility of HRV in neonatology and the instruments available to assess it, showing how HRV could be an innovative tool in the years to come. When continuously monitored, HRV could help assess the baby’s overall wellbeing and neurological development to detect stress-/pain-related behaviors or pathological conditions, such as respiratory distress syndrome and hyperbilirubinemia, to address when to perform procedures to reduce the baby’s stress/pain and interventions, such as therapeutic hypothermia, and to avoid severe complications, such as sepsis and necrotizing enterocolitis, thus reducing mortality. Based on literature and previous experiences, the first step to efficiently introduce HRV in the NICUs could consist in a monitoring system that uses photoplethysmography, which is low-cost and non-invasive, and displays one or a few metrics with good clinical utility. However, to fully harness HRV clinical potential and to greatly improve neonatal care, the monitoring systems will have to rely on modern bioinformatics (machine learning and artificial intelligence algorithms), which could easily integrate infant’s HRV metrics, vital signs, and especially past history, thus elaborating models capable to efficiently monitor and predict the infant’s clinical conditions. For this reason, hospitals and institutions will have to establish tight collaborations between the obstetric, neonatal, and pediatric departments: this way, healthcare would truly improve in every stage of the perinatal period (from conception to the first years of life), since information about patients’ health would flow freely among different professionals, and high-quality research could be performed integrating the data recorded in those departments.
Collapse
Affiliation(s)
- Marco Chiera
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy.,Research Commission on Manual Therapies and Mind-Body Disciplines, Societ Italiana di Psico Neuro Endocrino Immunologia, Rome, Italy
| | - Francesco Cerritelli
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Alessandro Casini
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Nicola Barsotti
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy.,Research Commission on Manual Therapies and Mind-Body Disciplines, Societ Italiana di Psico Neuro Endocrino Immunologia, Rome, Italy
| | | | - Francesco Cavigioli
- Neonatal Intensive Care Unit, "V. Buzzi" Children's Hospital, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Milan, Italy
| | - Carla G Corti
- Pediatric Cardiology Unit-Pediatric Department, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Milan, Italy
| | - Andrea Manzotti
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy.,Neonatal Intensive Care Unit, "V. Buzzi" Children's Hospital, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Milan, Italy.,Research Department, SOMA, Istituto Osteopatia Milano, Milan, Italy
| |
Collapse
|
6
|
Video-Based Pulse Rate Variability Measurement Using Periodic Variance Maximization and Adaptive Two-Window Peak Detection. SENSORS 2020; 20:s20102752. [PMID: 32408526 PMCID: PMC7294433 DOI: 10.3390/s20102752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
Many previous studies have shown that the remote photoplethysmography (rPPG) can measure the Heart Rate (HR) signal with very high accuracy. The remote measurement of the Pulse Rate Variability (PRV) signal is also possible, but this is much more complicated because it is then necessary to detect the peaks on the temporal rPPG signal, which is usually quite noisy and has a lower temporal resolution than PPG signals obtained by contact equipment. Since the PRV signal is vital for various applications such as remote recognition of stress and emotion, the improvement of PRV measurement by rPPG is a critical task. Contact based PRV measurement has already been investigated, but the research on remotely measured PRV is very limited. In this paper, we propose to use the Periodic Variance Maximization (PVM) method to extract the rPPG signal and event-related Two-Window algorithm to improve the peak detection for PRV measurement. We have made several contributions. Firstly, we show that the newly proposed PVM method and Two-Window algorithm can be used for PRV measurement in the non-contact scenario. Secondly, we propose a method to adaptively determine the parameters of the Two-Window method. Thirdly, we compare the algorithm with other attempts for improving the non-contact PRV measurement such as the Slope Sum Function (SSF) method and the Local Maximum method. We calculated several features and compared the accuracy based on the ground truth provided by contact equipment. Our experiments showed that this algorithm performed the best of all the algorithms.
Collapse
|
7
|
Maki Y, Monno Y, Yoshizaki K, Tanaka M, Okutomi M. Inter-Beat Interval Estimation from Facial Video Based on Reliability of BVP Signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6525-6528. [PMID: 31947336 DOI: 10.1109/embc.2019.8857081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inter-beat interval (IBI) and heart rate variability (HRV) are important cardiac parameters that provide physiological and emotional states of a person. In this paper, we present a framework for accurate IBI and HRV estimation from a facial video based on the reliability of extracted blood volume pulse (BVP) signals. Our framework first extracts candidate BVP signals from randomly sampled multiple face patches. The BVP signals are then assessed based on a reliability metric to select the most reliable BVP signal, from which IBI and HRV are calculated. In experiments, we evaluate three reliability metrics and demonstrate that our framework can estimate IBI and HRV more accurately than a conventional single face region-based framework.
Collapse
|
8
|
Antink CH, Lyra S, Paul M, Yu X, Leonhardt S. A Broader Look: Camera-Based Vital Sign Estimation across the Spectrum. Yearb Med Inform 2019; 28:102-114. [PMID: 31419822 PMCID: PMC6697643 DOI: 10.1055/s-0039-1677914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Camera-based vital sign estimation allows the contactless assessment of important physiological parameters. Seminal contributions were made in the 1930s, 1980s, and 2000s, and the speed of development seems ever increasing. In this suivey, we aim to overview the most recent works in this area, describe their common features as well as shortcomings, and highlight interesting "outliers". METHODS We performed a comprehensive literature research and quantitative analysis of papers published between 2016 and 2018. Quantitative information about the number of subjects, studies with healthy volunteers vs. pathological conditions, public datasets, laboratory vs. real-world works, types of camera, usage of machine learning, and spectral properties of data was extracted. Moreover, a qualitative analysis of illumination used and recent advantages in terms of algorithmic developments was also performed. RESULTS Since 2016, 116 papers were published on camera-based vital sign estimation and 59% of papers presented results on 20 or fewer subjects. While the average number of participants increased from 15.7 in 2016 to 22.9 in 2018, the vast majority of papers (n=100) were on healthy subjects. Four public datasets were used in 10 publications. We found 27 papers whose application scenario could be considered a real-world use case, such as monitoring during exercise or driving. These include 16 papers that dealt with non-healthy subjects. The majority of papers (n=61) presented results based on visual, red-green-blue (RGB) information, followed by RGB combined with other parts of the electromagnetic spectrum (n=18), and thermography only (n=12), while other works (n=25) used other mono- or polychromatic non-RGB data. Surprisingly, a minority of publications (n=39) made use of consumer-grade equipment. Lighting conditions were primarily uncontrolled or ambient. While some works focused on specialized aspects such as the removal of vital sign information from video streams to protect privacy or the influence of video compression, most algorithmic developments were related to three areas: region of interest selection, tracking, or extraction of a one-dimensional signal. Seven papers used deep learning techniques, 17 papers used other machine learning approaches, and 92 made no explicit use of machine learning. CONCLUSION Although some general trends and frequent shortcomings are obvious, the spectrum of publications related to camera-based vital sign estimation is broad. While many creative solutions and unique approaches exist, the lack of standardization hinders comparability of these techniques and of their performance. We believe that sharing algorithms and/ or datasets will alleviate this and would allow the application of newer techniques such as deep learning.
Collapse
Affiliation(s)
- Christoph Hoog Antink
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Michael Paul
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Xinchi Yu
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Steffen Leonhardt
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Harford M, Catherall J, Gerry S, Young JD, Watkinson P. Availability and performance of image-based, non-contact methods of monitoring heart rate, blood pressure, respiratory rate, and oxygen saturation: a systematic review. Physiol Meas 2019; 40:06TR01. [PMID: 31051494 DOI: 10.1088/1361-6579/ab1f1d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Over the last 15 years, developments in camera technology have coincided with increased availability and affordability. This has led to an increasing interest in using these technologies in healthcare settings. Image-based monitoring methods potentially allow multiple vital signs to be measured concurrently using a non-contact sensor. We have undertaken a systematic review of the current availability and performance of these monitoring methods. APPROACH A multiple database search was conducted using MEDLINE, Embase, CINAHL, Cochrane Library, OpenGrey, IEEE Xplore Library and ACM Digital Library to July 2018. We included studies comparing image-based heart rate, respiratory rate, oxygen saturation and blood pressure monitoring methods against one or more validated reference device(s). Each included study was assessed using the modified GRRAS criteria for reporting bias. MAIN RESULTS Of 30 279 identified studies, 161 were included in the final analysis. Twenty studies (20/161, 12%) were carried out on patients in clinical settings, while the remainder were conducted in academic settings using healthy volunteer populations. The 18-40 age group was best represented across the identified studies. One hundred and twenty studies (120/161, 75%) estimated heart rate, followed by 62 studies (62/161, 39%) estimating respiratory rate. Fewer studies focused on oxygen saturation (11/161, 7%) or blood pressure (6/161, 4%) estimation. Fifty-one heart rate studies (51/120, 43%) and 24 respiratory rate studies (24/62, 39%) used Bland-Altman analysis to report their results. Of the heart rate studies, 28 studies (28/51, 55%) showed agreement within industry standards of [Formula: see text]5 beats per minute. Only two studies achieved this within clinical settings. Of the respiratory rate studies, 13 studies (13/24, 54%) showed agreement within industry standards of [Formula: see text]3 breaths per minute, but only one study achieved this in a clinical setting. Statistical analysis was heterogeneous across studies with frequent inappropriate use of correlation. The majority of studies (99/161, 61%) monitored subjects for under 5 min. Three studies (3/161, 2%) monitored subjects for over 60 min, all of which were conducted in hospital settings. SIGNIFICANCE Heart rate and respiratory rate monitoring using video images is currently possible and performs within clinically acceptable limits under experimental conditions. Camera-derived estimates were less accurate in the proportion of studies conducted in clinical settings. We would encourage thorough reporting of the population studied, details of clinically relevant aspects of methodology, and the use of appropriate statistical methods in future studies. Systematic review registration: PROSPERO CRD42016029167 Protocol: https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-017-0615-3.
Collapse
Affiliation(s)
- M Harford
- Kadoorie Centre for Critical Care Research and Education, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Abstract
Camera-based remote photoplethysmography technology (remote-PPG) has shown great potential for contactless pulse-rate monitoring. However, remote-PPG systems typically analyze face images, which may restrict applications in view of privacy-preserving regulations such as the recently announced General Data Protection Regulation in the European Union. In this paper, we investigate the case of using single-element sensing as an input for remote-PPG extraction, which prohibits facial analysis and thus evades privacy issues. It also improves the efficiency of data storage and transmission. In contrast to known remote-PPG solutions using skin-selection techniques, the input signals in a single-element setup will contain a non-negligible degree of signal components associated with non-skin areas. Current remote-PPG extraction methods based on physiological and optical properties of skin reflections are therefore no longer valid. A new remote-PPG method, named Soft Signature based extraction (SoftSig), is proposed to deal with this situation by softening the dependence of pulse extraction on prior knowledge. A large scale experiment validates the concept of single-element remote-PPG monitoring and shows the improvement of SoftSig over general purpose solutions.
Collapse
|