1
|
Sushkova OS, Morozov AA, Gabova AV, Sarkisova KY. The Diagnostic Value of EEG Wave Trains for Distinguishing Immature Absence Seizures and Sleep Spindles: Evidence from the WAG/Rij Rat Model. Diagnostics (Basel) 2025; 15:983. [PMID: 40310354 PMCID: PMC12025834 DOI: 10.3390/diagnostics15080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Absence epilepsy is a non-convulsive form of genetic generalized epilepsy characterized by spontaneous bilateral spike-and-wave discharges (SWDs) in EEG. In contrast to grand-mal epilepsy, absence epilepsy without greatly expressed motor and interictal EEG abnormalities is difficult to detect, especially at the early stages. The WAG/Rij rat strain is a well-validated animal model of childhood absence epilepsy. At the early, preclinical stage, precursors or immature SWDs appear. Then, with age, immature discharges gradually turn into mature ones and mature SWDs prevail at the clinical stage. Mature SWDs, with an amplitude several times higher than the background EEG, can be easily distinguished visually. However, the amplitude of immature discharges is significantly lower than that of mature SWDs and is comparable to the amplitude of sleep spindles. Therefore, it is quite a difficult problem to distinguish immature discharges from sleep spindles. The task is further complicated by the fact that absence seizures mainly appear in a state of drowsiness and slow-wave (non-REM) sleep, when a lot of sleep spindles occur. The purpose of the present study was to develop a diagnostic method that allows us to precisely distinguish immature forms of epileptic seizures from background EEG and sleep spindles. Methods: The idea of analyzing wave-train electrical activity is to investigate the wavelet spectrum, find local peculiarities in this spectrum, and estimate generalized time-frequency peculiarities of the signal in terms of the found local peculiarities. Results: The criteria for diagnosis of the immature form of epileptic discharges and sleep spindles have been developed based on the analysis of wave-train activity with the construction of AUC diagrams (area under the curve diagrams). Conclusions: The method of wave-train analysis with the construction of AUC diagrams can be used for extracting the diagnostic features necessary for the diagnosis of absence epilepsy at the early stages of the disease in people with a genetic predisposition.
Collapse
Affiliation(s)
- Olga S. Sushkova
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya St. 11-7, 125009 Moscow, Russia;
| | - Alexei A. Morozov
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya St. 11-7, 125009 Moscow, Russia;
| | - Alexandra V. Gabova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Butlerova St. 5A, 117485 Moscow, Russia; (A.V.G.); (K.Y.S.)
| | - Karine Yu. Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Butlerova St. 5A, 117485 Moscow, Russia; (A.V.G.); (K.Y.S.)
| |
Collapse
|
2
|
Ding L, Zou Q, Zhu J, Wang Y, Yang Y. Dynamical intracranial EEG functional network controllability localizes the seizure onset zone and predicts the epilepsy surgical outcome. J Neural Eng 2025; 22:026015. [PMID: 40009882 DOI: 10.1088/1741-2552/adba8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Objective. Seizure onset zone (SOZ) localization and SOZ resection outcome prediction are critical for the surgical treatment of drug-resistant epilepsy but have mainly relied on manual inspection of intracranial electroencephalography (iEEG) monitoring data, which can be both inaccurate and time-consuming. Therefore, automating SOZ localization and surgical outcome prediction by using appropriate iEEG neural features and machine learning models has become an emerging topic. However, current channel-wise local features, graph-theoretic network features, and system-theoretic network features cannot fully capture the spatial, temporal, and neural dynamical aspects of epilepsy, hindering accurate SOZ localization and surgical outcome prediction.Approach. Here, we develop a method for computing dynamical functional network controllability from multi-channel iEEG signals, which from a control-theoretic viewpoint, has the ability to simultaneously capture the spatial, temporal, functional, and dynamical aspects of epileptic brain networks. We then apply multiple machine learning models to use iEEG functional network controllability for localizing SOZ and predicting surgical outcomes in drug-resistant epilepsy patients and compare with existing neural features. We finally combine iEEG functional network controllability with representative local, graph-theoretic, and system-theoretic features to leverage complementary information for further improving performance.Main results. We find that iEEG functional network controllability at SOZ channels is significantly higher than that of other channels. We further show that machine learning models using iEEG functional network controllability successfully localize SOZ and predict surgical outcomes, significantly outperforming existing local, graph-theoretic, and system-theoretic features. We finally demonstrate that there exists complementary information among different types of neural features and fusing them further improves performance.Significance. Our results suggest that iEEG functional network controllability is an effective feature for automatic SOZ localization and surgical outcome prediction in epilepsy treatment.
Collapse
Affiliation(s)
- Ling Ding
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
| | - Qingyu Zou
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Hangzhou 310058, People's Republic of China
| | - Yueming Wang
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yuxiao Yang
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
- State Key Laboratory of Brain-machine Intelligence, Hangzhou 310058, People's Republic of China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Hangzhou 310058, People's Republic of China
| |
Collapse
|
3
|
Byeon H, Mahajan U, Kumar A, Rama Krishna V, Soni M, Bansal M. EEG signal based brain stimulation model to detect epileptic neurological disorders. NEUROSCIENCE INFORMATICS 2025; 5:100186. [DOI: 10.1016/j.neuri.2025.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
|
4
|
Abdallah T, Jrad N, El Hajjar S, Abdallah F, Humeau-Heurtier A, El Howayek E, Van Bogaert P. Deep Clustering for Epileptic Seizure Detection. IEEE Trans Biomed Eng 2025; 72:480-492. [PMID: 39255079 DOI: 10.1109/tbme.2024.3458177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurrent epileptic seizures, which are often unpredictable and increase mortality and morbidity risks. OBJECTIVE The objective of this study is to address the challenges of EEG-based epileptic seizure detection by introducing a novel methodology, Deep Embedded Gaussian Mixture (DEGM). METHODS The DEGM method begins with a deep autoencoder (DAE) for embedding the input EEG data, followed by Singular Value Decomposition (SVD) to enhance the representational quality of the embedding while achieving dimensionality reduction. A Gaussian Mixture Model (GMM) is then employed for clustering purposes. Unlike conventional supervised machine learning and deep learning techniques, DEGM leverages deep clustering (DC) algorithms for more effective seizure detection. RESULTS Empirical results from two real-world epileptic datasets demonstrate the notable performance of DEGM. The method's effectiveness is particularly remarkable given the substantial size of the datasets, showcasing its ability to handle large-scale EEG data efficiently. CONCLUSION In conclusion, the DEGM methodology provides a novel and effective approach for EEG-based epileptic seizure detection, addressing key challenges such as data variability and artifact contamination. SIGNIFICANCE By combining deep autoencoders, SVD, and GMM, DEGM achieves superior clustering performance compared to existing methods, representing a significant advancement in biomedical research and clinical applications for epilepsy. Its robust performance on large datasets underscores its potential for improving seizure detection accuracy, ultimately contributing to better patient outcomes.
Collapse
|
5
|
Espinoso A, Leguia MG, Rummel C, Schindler K, Andrzejak RG. The part and the whole: how single nodes contribute to large-scale phase-locking in functional EEG networks. Clin Neurophysiol 2024; 168:178-192. [PMID: 39406673 DOI: 10.1016/j.clinph.2024.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 09/13/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE The application of signal analysis techniques to electroencephalographic (EEG) recordings from epilepsy patients shows that epilepsy involves not only altered neuronal synchronization but also the reorganization of functional EEG networks. This study aims to assess the large-scale phase-locking of such functional networks and how individual network nodes contribute to this collective dynamics. METHODS We analyze the EEG recorded before, during and after seizures from sixteen patients with pharmacoresistant focal-onset epilepsy. The data is filtered to low (4-30 Hz) and high (80-150 Hz) frequencies. We define the multivariate phase-locking measure and the univariate phase-locking contribution measure. Surrogate signals are used to estimate baseline results expected under the null hypothesis that the EEG is a correlated linear stochastic process. RESULTS On average, nodes from inside and outside the seizure onset zone (SOZ) increase and decrease, respectively, the large-scale phase-locking. This difference becomes most evident in a joint analysis of low and high frequencies. CONCLUSIONS Nodes inside and outside the SOZ play opposite roles for the large-scale phase-locking in functional EEG network in epilepsy patients. SIGNIFICANCE The application of the phase-locking contribution measure to EEG recordings from epilepsy patients can potentially help in localizing the SOZ.
Collapse
Affiliation(s)
- Anaïs Espinoso
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain.
| | - Marc G Leguia
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; European Campus Rottal-Inn, Technische Hochschule Deggendorf, Max-Breiherr-Strasse 32, D-84347 Pfarrkirchen, Germany
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph G Andrzejak
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain
| |
Collapse
|
6
|
Kuang Z, Guo L, Wang J, Zhao J, Wang L, Geng K. Seizure Onset Zone Detection Based on Convolutional Neural Networks and EEG Signals. Brain Sci 2024; 14:1090. [PMID: 39595852 PMCID: PMC11592383 DOI: 10.3390/brainsci14111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The localization of seizure onset zones (SOZs) is a critical step before the surgical treatment of epilepsy. METHODS AND RESULTS In this paper, we propose an SOZ detection method based on convolutional neural networks and EEG signals. This method aims to locate SOZs through the seizure status of each channel in multi-channel EEG signals. First, we preprocess the data with filtering, segmentation, resampling, and standardization to ensure their quality and consistency. Then, the single-channel UCI epilepsy seizure recognition dataset is used to train and test the convolutional neural network (CNN) model, achieving an accuracy of 98.70%, a sensitivity of 97.53%, and a specificity of 98.98%. Next, the multi-channel clinical EEG dataset collected by a hospital is divided into 21 single-channel site datasets and input into the model for detection, and then the seizure results of 21 sites per second are obtained. Finally, the seizure sites are visualized through the international 10-20 system electrode distribution map, diagrams of the change process of the seizure sites during seizures are drawn, and patients' SOZs are located. CONCLUSIONS Our proposed method well classifies seizure and non-seizure data and successfully locates SOZs by detecting the seizure results of 21 sites through a single-channel model. This study can effectively assist doctors in locating the SOZs of patients and provide help for the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Zhejun Kuang
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Liming Guo
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Jingrui Wang
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Jian Zhao
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Liu Wang
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Kangwei Geng
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| |
Collapse
|
7
|
Li Z, Gao Z, Chang C, Gao Z. Anticonvulsive Effect of Glucosyl Xanthone Mangiferin on Pentylenetetrazol (PTZ)-Induced Seizure-Provoked Mice. Appl Biochem Biotechnol 2024; 196:2161-2175. [PMID: 37486538 DOI: 10.1007/s12010-023-04651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Anxiety and depression are major side effects induced by currently available antiepileptic drugs; apart from this, they also diminish intelligence and language skills which cause hepatic failure, anemia, etc. Hence, in this study, we assessed antiepileptic effect of a phytochemical mangiferin. Epilepsy, a prevalent non communicable neurological disorder, affects infants and older population throughout the world. Epilepsy-induced comorbidities are more severe and if not treated cautiously lead to disability and even worse cases, mortality. The onset and duration of convulsion were observed. Seizure severity score was assessed by provoking kindling with 35 mg/kg PTZ. Prooxidants and antioxidants were measured to assess the antioxidant effect of mangiferin. Inflammatory markers were measured to determine the anti-inflammatory effect of mangiferin. The levels of neurotransmitters and ATPases were quantified to evaluate the neuroprotective effect of mangiferin. Mangiferin significantly decreased the onset and duration convulsion. It also decreased the seizure severity score, locomotor activity, and immobilization effectively. The excitatory neurotransmitter was reduced, and inhibitory neurotransmitter was increased in mice treated with mangiferin. Overall, our results confirm that mangiferin efficiently protects mice from PTZ-induced seizures. It can be subjected to further research to be prescribed as a potent antiepileptic drug.
Collapse
Affiliation(s)
- Zhaoxia Li
- Department of Pediatric, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Zhiliang Gao
- Department of Pediatric, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, 256600, China
| | - Cong Chang
- Department of Rehabilitation Medicine, Binzhou Municipal Hospital, Binzhou, 256600, China
| | - Zhuanglei Gao
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
8
|
Ingolfsson TM, Benatti S, Wang X, Bernini A, Ducouret P, Ryvlin P, Beniczky S, Benini L, Cossettini A. Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradient-boosted tree classifiers. Sci Rep 2024; 14:2980. [PMID: 38316856 PMCID: PMC10844293 DOI: 10.1038/s41598-024-52551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Electroencephalography (EEG) is widely used to monitor epileptic seizures, and standard clinical practice consists of monitoring patients in dedicated epilepsy monitoring units via video surveillance and cumbersome EEG caps. Such a setting is not compatible with long-term tracking under typical living conditions, thereby motivating the development of unobtrusive wearable solutions. However, wearable EEG devices present the challenges of fewer channels, restricted computational capabilities, and lower signal-to-noise ratio. Moreover, artifacts presenting morphological similarities to seizures act as major noise sources and can be misinterpreted as seizures. This paper presents a combined seizure and artifacts detection framework targeting wearable EEG devices based on Gradient Boosted Trees. The seizure detector achieves nearly zero false alarms with average sensitivity values of [Formula: see text] for 182 seizures from the CHB-MIT dataset and [Formula: see text] for 25 seizures from the private dataset with no preliminary artifact detection or removal. The artifact detector achieves a state-of-the-art accuracy of [Formula: see text] (on the TUH-EEG Artifact Corpus dataset). Integrating artifact and seizure detection significantly reduces false alarms-up to [Formula: see text] compared to standalone seizure detection. Optimized for a Parallel Ultra-Low Power platform, these algorithms enable extended monitoring with a battery lifespan reaching 300 h. These findings highlight the benefits of integrating artifact detection in wearable epilepsy monitoring devices to limit the number of false positives.
Collapse
Affiliation(s)
| | - Simone Benatti
- University of Bologna, 40126, Bologna, Italy
- University of Modena and Reggio Emilia, 41121, Reggio Emilia, Italy
| | | | - Adriano Bernini
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Pauline Ducouret
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Philippe Ryvlin
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Sandor Beniczky
- Aarhus University Hospital, 8200, Aarhus, Denmark
- Danish Epilepsy Centre (Filadelfia), 4293, Dianalund, Denmark
| | - Luca Benini
- ETH Zürich, D-ITET, 8092, Zürich, Switzerland
- University of Bologna, 40126, Bologna, Italy
| | | |
Collapse
|
9
|
Asgarinejad F, Yu X, Jiang D, Morris J, Rosing T, Aksanli B. Enhanced Noise-Resilient Pressure Mat System Based on Hyperdimensional Computing. SENSORS (BASEL, SWITZERLAND) 2024; 24:1014. [PMID: 38339732 PMCID: PMC10857401 DOI: 10.3390/s24031014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Traditional systems for indoor pressure sensing and human activity recognition (HAR) rely on costly, high-resolution mats and computationally intensive neural network-based (NN-based) models that are prone to noise. In contrast, we design a cost-effective and noise-resilient pressure mat system for HAR, leveraging Velostat for intelligent pressure sensing and a novel hyperdimensional computing (HDC) classifier that is lightweight and highly noise resilient. To measure the performance of our system, we collected two datasets, capturing the static and continuous nature of human movements. Our HDC-based classification algorithm shows an accuracy of 93.19%, improving the accuracy by 9.47% over state-of-the-art CNNs, along with an 85% reduction in energy consumption. We propose a new HDC noise-resilient algorithm and analyze the performance of our proposed method in the presence of three different kinds of noise, including memory and communication, input, and sensor noise. Our system is more resilient across all three noise types. Specifically, in the presence of Gaussian noise, we achieve an accuracy of 92.15% (97.51% for static data), representing a 13.19% (8.77%) improvement compared to state-of-the-art CNNs.
Collapse
Affiliation(s)
- Fatemeh Asgarinejad
- Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA; (F.A.); (X.Y.); (D.J.)
- Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Xiaofan Yu
- Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA; (F.A.); (X.Y.); (D.J.)
| | - Danlin Jiang
- Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA; (F.A.); (X.Y.); (D.J.)
| | - Justin Morris
- Computer Science and Information Systems, California State University San Marcos, San Marcos, CA 92096, USA;
| | - Tajana Rosing
- Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA; (F.A.); (X.Y.); (D.J.)
| | - Baris Aksanli
- Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
10
|
Rani TJ, Kavitha D. Effective Epileptic Seizure Detection Using Enhanced Salp Swarm Algorithm-based Long Short-Term Memory Network. IETE JOURNAL OF RESEARCH 2024; 70:1538-1555. [DOI: 10.1080/03772063.2022.2153090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- T. Jhansi Rani
- Department of Computer Science & Engineering, Jawaharlal Nehru Technological University, Anantapur, Andhra Pradesh, India
| | - D. Kavitha
- Department of Computer Science & Engineering, G. Pulla Reddy Engineering College (Autonomous), Kurnool, Andhra Pradesh, India
| |
Collapse
|
11
|
Rakhmatulin I, Dao MS, Nassibi A, Mandic D. Exploring Convolutional Neural Network Architectures for EEG Feature Extraction. SENSORS (BASEL, SWITZERLAND) 2024; 24:877. [PMID: 38339594 PMCID: PMC10856895 DOI: 10.3390/s24030877] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The main purpose of this paper is to provide information on how to create a convolutional neural network (CNN) for extracting features from EEG signals. Our task was to understand the primary aspects of creating and fine-tuning CNNs for various application scenarios. We considered the characteristics of EEG signals, coupled with an exploration of various signal processing and data preparation techniques. These techniques include noise reduction, filtering, encoding, decoding, and dimension reduction, among others. In addition, we conduct an in-depth analysis of well-known CNN architectures, categorizing them into four distinct groups: standard implementation, recurrent convolutional, decoder architecture, and combined architecture. This paper further offers a comprehensive evaluation of these architectures, covering accuracy metrics, hyperparameters, and an appendix that contains a table outlining the parameters of commonly used CNN architectures for feature extraction from EEG signals.
Collapse
Affiliation(s)
- Ildar Rakhmatulin
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| | - Minh-Son Dao
- National Institute of Information and Communications Technology (NICT), Tokyo 184-0015, Japan
| | - Amir Nassibi
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| | - Danilo Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| |
Collapse
|
12
|
Arunkumar N, Nagaraj B, Keziah MR. EpilepIndex: A novel feature engineering tool to detect epilepsy using EEG signals. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:21670-21691. [PMID: 38124615 DOI: 10.3934/mbe.2023959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Epilepsy is a common neurological disease characterized by seizures. A person with a seizure onset can lose consciousness which in turn can lead to fatal accidents. Electroencephalogram (EEG) is a recording of the electrical signals from the brain which is used to analyse the epileptic seizures. Physical visual examination of the EEG by trained neurologists is subjective and highly difficult due to the non-linear complex nature of the EEG. This opens a window for automatic detection of epileptic seizures using machine learning methods. In this work, we have used a standard database that consists of five different sets of EEG data including the epileptic EEG. Using this data, we have devised a novel 22 possible clinically significant cases with the combination of binary and multi class type of classification problem to automatically classify epileptic EEG. As the EEG is non-linear, we have devised 11 statistically significant non-linear entropy features to extract from this database. These features are fed to 10 different classifiers of various types for each of the 22 clinically significant cases and their classification accuracy is reported for 10-fold cross validation. Random Forest and Optimized Forest classifiers reported accuracies above 90% for all 22 cases considered in this study. Such vast possible clinically significant 22 cases from the combination of the data from the database considered has not been in the literature with the best of the knowledge of the authors. Comparing with the literature, several studies have presented one or few combinations of these 22 cases in this work. In comparison to similar works, the accuracies obtained by the classifiers were highly competitive. In addition, a novel integrated epilepsy detection index named EpilepIndex (IED) is able to differentiate between epileptic EEG and a normal EEG with 100% accuracy.
Collapse
Affiliation(s)
- N Arunkumar
- Faculty of Electronics and Communication Engineering, Anna University, Chennai, India
| | - B Nagaraj
- Department of ECE, Rathinam Technical Campus, Coimbatore
| | - M Ruth Keziah
- Faculty of Technology, Rathinam Technical Campus, Anna University, Chennai, India
| |
Collapse
|
13
|
Statsenko Y, Babushkin V, Talako T, Kurbatova T, Smetanina D, Simiyu GL, Habuza T, Ismail F, Almansoori TM, Gorkom KNV, Szólics M, Hassan A, Ljubisavljevic M. Automatic Detection and Classification of Epileptic Seizures from EEG Data: Finding Optimal Acquisition Settings and Testing Interpretable Machine Learning Approach. Biomedicines 2023; 11:2370. [PMID: 37760815 PMCID: PMC10525492 DOI: 10.3390/biomedicines11092370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 09/29/2023] Open
Abstract
Deep learning (DL) is emerging as a successful technique for automatic detection and differentiation of spontaneous seizures that may otherwise be missed or misclassified. Herein, we propose a system architecture based on top-performing DL models for binary and multigroup classifications with the non-overlapping window technique, which we tested on the TUSZ dataset. The system accurately detects seizure episodes (87.7% Sn, 91.16% Sp) and carefully distinguishes eight seizure types (95-100% Acc). An increase in EEG sampling rate from 50 to 250 Hz boosted model performance: the precision of seizure detection rose by 5%, and seizure differentiation by 7%. A low sampling rate is a reasonable solution for training reliable models with EEG data. Decreasing the number of EEG electrodes from 21 to 8 did not affect seizure detection but worsened seizure differentiation significantly: 98.24 ± 0.17 vs. 85.14 ± 3.14% recall. In detecting epileptic episodes, all electrodes provided equally informative input, but in seizure differentiation, their informative value varied. We improved model explainability with interpretable ML. Activation maximization highlighted the presence of EEG patterns specific to eight seizure types. Cortical projection of epileptic sources depicted differences between generalized and focal seizures. Interpretable ML techniques confirmed that our system recognizes biologically meaningful features as indicators of epileptic activity in EEG.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain P.O. Box 15551, United Arab Emirates
- Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Vladimir Babushkin
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Tatsiana Talako
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Oncohematology, Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology, 220089 Minsk, Belarus
| | - Tetiana Kurbatova
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Darya Smetanina
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Gillian Lylian Simiyu
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Tetiana Habuza
- Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Fatima Ismail
- Pediatric Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Taleb M. Almansoori
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Klaus N.-V. Gorkom
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Miklós Szólics
- Neurology Division, Medicine Department, Tawam Hospital, Al Ain P.O. Box 15258, United Arab Emirates
- Internal Medicine Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali Hassan
- Neurology Division, Medicine Department, Tawam Hospital, Al Ain P.O. Box 15258, United Arab Emirates
| | - Milos Ljubisavljevic
- Physiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
14
|
Zhang X, Dong S, Shen Q, Zhou J, Min J. Deep extreme learning machine with knowledge augmentation for EEG seizure signal recognition. Front Neuroinform 2023; 17:1205529. [PMID: 37692360 PMCID: PMC10483404 DOI: 10.3389/fninf.2023.1205529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Intelligent recognition of electroencephalogram (EEG) signals can remarkably improve the accuracy of epileptic seizure prediction, which is essential for epileptic diagnosis. Extreme learning machine (ELM) has been applied to EEG signals recognition, however, the artifacts and noises in EEG signals have a serious effect on recognition efficiency. Deep learning is capable of noise resistance, contributing to removing the noise in raw EEG signals. But traditional deep networks suffer from time-consuming training and slow convergence. Methods Therefore, a novel deep learning based ELM (denoted as DELM) motivated by stacking generalization principle is proposed in this paper. Deep extreme learning machine (DELM) is a hierarchical network composed of several independent ELM modules. Augmented EEG knowledge is taken as complementary component, which will then be mapped into next module. This learning process is so simple and fast, meanwhile, it can excavate the implicit knowledge in raw data to a greater extent. Additionally, the proposed method is operated in a single-direction manner, so there is no need to perform parameters fine-tuning, which saves the expense of time. Results Extensive experiments are conducted on the public Bonn EEG dataset. The experimental results demonstrate that compared with the commonly-used seizure prediction methods, the proposed DELM wins the best average accuracies in 13 out of the 22 data and the best average F-measure scores in 10 out of the 22 data. And the running time of DELM is more than two times quickly than deep learning methods. Discussion Therefore, DELM is superior to traditional and some state-of-the-art machine learning methods. The proposed architecture demonstrates its feasibility and superiority in epileptic EEG signal recognition. The proposed less computationally intensive deep classifier enables faster seizure onset detection, which is showing great potential on the application of real-time EEG signal classification.
Collapse
Affiliation(s)
- Xiongtao Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
- Zhejiang Province Key Laboratory of Smart Management and Application of Modern Agricultural Resources, Huzhou University, Huzhou, China
| | - Shuai Dong
- School of Information Engineering, Huzhou University, Huzhou, China
- Zhejiang Province Key Laboratory of Smart Management and Application of Modern Agricultural Resources, Huzhou University, Huzhou, China
| | - Qing Shen
- School of Information Engineering, Huzhou University, Huzhou, China
- Zhejiang Province Key Laboratory of Smart Management and Application of Modern Agricultural Resources, Huzhou University, Huzhou, China
| | - Jie Zhou
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China
| | - Jingjing Min
- Department of Neurology, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
15
|
Avvaru S, Parhi KK. Effective Brain Connectivity Extraction by Frequency-Domain Convergent Cross-Mapping (FDCCM) and Its Application in Parkinson's Disease Classification. IEEE Trans Biomed Eng 2023; 70:2475-2485. [PMID: 37027754 DOI: 10.1109/tbme.2023.3250355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
OBJECTIVE Inferring causal or effective connectivity between measured timeseries is crucial to understanding directed interactions in complex systems. This task is especially challenging in the brain as the underlying dynamics are not well-understood. This paper aims to introduce a novel causality measure called frequency-domain convergent cross-mapping (FDCCM) that utilizes frequency-domain dynamics through nonlinear state-space reconstruction. METHOD Using synthesized chaotic timeseries, we investigate general applicability of FDCCM at different causal strengths and noise levels. We also apply our method on two resting-state Parkinson's datasets with 31 and 54 subjects, respectively. To this end, we construct causal networks, extract network features, and perform machine learning analysis to distinguish Parkinson's disease patients (PD) from age and gender-matched healthy controls (HC). Specifically, we use the FDCCM networks to compute the betweenness centrality of the network nodes, which act as features for the classification models. RESULT The analysis on simulated data showed that FDCCM is resilient to additive Gaussian noise, making it suitable for real-world applications. Our proposed method also decodes scalp-EEG signals to classify the PD and HC groups with approximately 97% leave-one-subject-out cross-validation accuracy. We compared decoders from six cortical regions to find that features derived from the left temporal lobe lead to a higher classification accuracy of 84.5% compared to other regions. Moreover, when the classifier trained using FDCCM networks from one dataset was tested on an independent out-of-sample dataset, it attained an accuracy of 84%. This accuracy is significantly higher than correlational networks (45.2%) and CCM networks (54.84%). SIGNIFICANCE These findings suggest that our spectral-based causality measure can improve classification performance and reveal useful network biomarkers of Parkinson's disease.
Collapse
|
16
|
Du M, Wei J, Li MY, Gao ZK, Kurths J. Interconnected ordinal pattern complex network for characterizing the spatial coupling behavior of gas-liquid two-phase flow. CHAOS (WOODBURY, N.Y.) 2023; 33:2894468. [PMID: 37276554 DOI: 10.1063/5.0146259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023]
Abstract
The complex phase interactions of the two-phase flow are a key factor in understanding the flow pattern evolutional mechanisms, yet these complex flow behaviors have not been well understood. In this paper, we employ a series of gas-liquid two-phase flow multivariate fluctuation signals as observations and propose a novel interconnected ordinal pattern network to investigate the spatial coupling behaviors of the gas-liquid two-phase flow patterns. In addition, we use two network indices, which are the global subnetwork mutual information (I) and the global subnetwork clustering coefficient (C), to quantitatively measure the spatial coupling strength of different gas-liquid flow patterns. The gas-liquid two-phase flow pattern evolutionary behaviors are further characterized by calculating the two proposed coupling indices under different flow conditions. The proposed interconnected ordinal pattern network provides a novel tool for a deeper understanding of the evolutional mechanisms of the multi-phase flow system, and it can also be used to investigate the coupling behaviors of other complex systems with multiple observations.
Collapse
Affiliation(s)
- Meng Du
- School of Electrical Engineering and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jie Wei
- School of Electrical Engineering and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Meng-Yu Li
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Zhong-Ke Gao
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Jürgen Kurths
- Research Department Complexity Science, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
- Institute of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
| |
Collapse
|
17
|
Aydın S. Investigation of global brain dynamics depending on emotion regulation strategies indicated by graph theoretical brain network measures at system level. Cogn Neurodyn 2023; 17:331-344. [PMID: 37007189 PMCID: PMC10050309 DOI: 10.1007/s11571-022-09843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
In the present study, new findings reveal the close association between graph theoretic global brain connectivity measures and cognitive abilities the ability to manage and regulate negative emotions in healthy adults. Functional brain connectivity measures have been estimated from both eyes-opened and eyes-closed resting-state EEG recordings in four groups including individuals who use opposite Emotion Regulation Strategies (ERS) as follow: While 20 individuals who frequently use two opposing strategies, such as rumination and cognitive distraction, are included in 1st group, 20 individuals who don't use these cognitive strategies are included in 2nd group. In 3rd and 4th groups, there are matched individuals who use both Expressive Suppression and Cognitive Reappraisal strategies together frequently and never use them, respectively. EEG measurements and psychometric scores of individuals were both downloaded from a public dataset LEMON. Since it is not sensitive to volume conduction, Directed Transfer Function has been applied to 62-channel recordings to obtain cortical connectivity estimations across the whole cortex. Regarding well defined threshold, connectivity estimations have been transformed into binary numbers for implementation of Brain Connectivity Toolbox. The groups are compared to each other through both statistical logistic regression models and deep learning models driven by frequency band specific network measures referring segregation, integration and modularity of the brain. Overall results show that high classification accuracies of 96.05% (1st vs 2nd) and 89.66% (3rd vs 4th) are obtained in analyzing full-band ( 0.5 - 45 H z ) EEG. In conclusion, negative strategies may upset the balance between segregation and integration. In particular, graphical results show that frequent use of rumination induces the decrease in assortativity referring network resilience. The psychometric scores are found to be highly correlated with brain network measures of global efficiency, local efficiency, clustering coefficient, transitivity and assortativity in even resting-state.
Collapse
Affiliation(s)
- Serap Aydın
- Medical Faculty, Biophysics Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Li C, Liu S, Wang Z, Yuan G. Classifying epileptic phase-amplitude coupling in SEEG using complex-valued convolutional neural network. Front Physiol 2023; 13:1085530. [PMID: 36685186 PMCID: PMC9849379 DOI: 10.3389/fphys.2022.1085530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
EEG phase-amplitude coupling (PAC), the amplitude of high-frequency oscillations modulated by the phase of low-frequency oscillations (LFOs), is a useful biomarker to localize epileptogenic tissue. It is commonly represented in a comodulogram of coupling strength but without coupled phase information. The phase-amplitude coupling is also found in the normal brain, and it is difficult to discriminate pathological phase-amplitude couplings from normal ones. This study proposes a novel approach based on complex-valued phase-amplitude coupling (CV-PAC) for classifying epileptic phase-amplitude coupling. The CV-PAC combines both the coupling strengths and the coupled phases of low-frequency oscillations. The complex-valued convolutional neural network (CV-CNN) is then used to classify epileptic CV-PAC. Stereo-electroencephalography (SEEG) recordings from nine intractable epilepsy patients were analyzed. The leave-one-out cross-validation is performed, and the area-under-curve (AUC) value is used as the indicator of the performance of different measures. Our result shows that the area-under-curve value is .92 for classifying epileptic CV-PAC using CV-CNN. The area-under-curve value decreases to .89, .80, and .88 while using traditional convolutional neural networks, support vector machine, and random forest, respectively. The phases of delta (1-4 Hz) and alpha (8-10 Hz) bands are different between epileptic and normal CV-PAC. The phase information of CV-PAC is important for improving classification performance. The proposed approach of CV-PAC/CV-CNN promises to identify more accurate epileptic brain activities for potential surgical intervention.
Collapse
Affiliation(s)
- Chunsheng Li
- Department of Biomedical Engineering, School of Electrical Engineering, Shenyang University of Technology, Shenyang, China,*Correspondence: Chunsheng Li,
| | - Shiyue Liu
- Department of Biomedical Engineering, School of Electrical Engineering, Shenyang University of Technology, Shenyang, China
| | - Zeyu Wang
- Department of Biomedical Engineering, School of Electrical Engineering, Shenyang University of Technology, Shenyang, China,Department of Electrical Engineering and Information Systems, University of Pannonia, Veszprem, Hungary
| | - Guanqian Yuan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
19
|
Mishra S, Kumar Satapathy S, Mohanty SN, Pattnaik CR. A DM-ELM based classifier for EEG brain signal classification for epileptic seizure detection. Commun Integr Biol 2022; 16:2153648. [PMID: 36531748 PMCID: PMC9757406 DOI: 10.1080/19420889.2022.2153648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epilepsy is one of the dreaded conditions that had taken billions of people under its cloud worldwide. Detecting the seizure at the correct time in an individual is something that medical practitioners focus in order to help people save their lives. Analysis of the Electroencephalogram (EEG) signal from the scalp area of the human brain can help in detecting the seizure beforehand. This paper presents a novel classification technique to classify EEG brain signals for epilepsy identification based on Discrete Wavelet Transform and Moth Flame Optimization-based Extreme Learning Machine (DM-ELM). ELM is a very popular machine learning method based on Neural Networks (NN) where the model is trained rigorously to get the minimized error rate and maximized accuracy. Here we have used several experimental evaluations to compare the performance of basic ELM and DM-ELM and it has been experimentally proved that DM-ELM outperforms basic ELM but with few time constraints.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Computer Science & Engineering, Vellore Institute of Technology, Chennai, india
| | - Sandeep Kumar Satapathy
- Department of Computer Science & Engineering, Vellore Institute of Technology, Chennai, india
| | - Sachi Nandan Mohanty
- School of Computer Science &Engineering, VIT-AP University, Amaravati, India,CONTACT Sachi Nandan Mohanty School of Computer Science &Engineering, VIT-AP University, Amaravati, India
| | - Chinmaya Ranjan Pattnaik
- Department of Computer Science & Engineering, Ajay Binaya Institute of Technology, Cuttack, India
| |
Collapse
|
20
|
Eltrass AS, Tayel MB, El-Qady AF. Identification and classification of epileptic EEG signals using invertible constant- Qtransform-based deep convolutional neural network. J Neural Eng 2022; 19. [PMID: 36541556 DOI: 10.1088/1741-2552/aca82c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Context.Epilepsy is the most widespread disorder of the nervous system, affecting humans of all ages and races. The most common diagnostic test in epilepsy is the electroencephalography (EEG).Objective.In this paper, a novel automated deep learning approach based on integrating a pre-trained convolutional neural network (CNN) structure, called AlexNet, with the constant-Qnon-stationary Gabor transform (CQ-NSGT) algorithm is proposed for classifying seizure versus seizure-free EEG records.Approach.The CQ-NSGT method is introduced to transform the input 1D EEG signal into 2D spectrogram which is sent to the AlexNet CNN model. The AlexNet architecture is utilized to capture the discriminating features of the 2D image corresponding to each EEG signal in order to distinguish seizure and non-seizure subjects using multi-layer perceptron algorithm.Main results. The robustness of the introduced CQ-NSGT technique in transforming the 1D EEG signals into 2D spectrograms is assessed by comparing its classification results with the continuous wavelet transform method, and the results elucidate the high performance of the CQ-NSGT technique. The suggested epileptic seizure classification framework is investigated with clinical EEG data acquired from the Bonn University database, and the experimental results reveal the superior performance of the proposed framework over other state-of-the-art approaches with an accuracy of 99.56%, sensitivity of 99.12%, specificity of 99.67%, and precision of 98.69%.Significance.This elucidates the importance of the proposed automated system in helping neurologists to accurately interpret and classify epileptic EEG records without necessitating tedious visual inspection or massive data analysis for long-term EEG signals.
Collapse
Affiliation(s)
- Ahmed S Eltrass
- Electrical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Mazhar B Tayel
- Electrical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Qady
- Communications and Electronics Department, Higher Institute of Engineering and Technology King Marriott Academy, Alexandria, Egypt
| |
Collapse
|
21
|
Yedurkar DP, Metkar SP, Al-Turjman F, Stephan T, Kolhar M, Altrjman C. A Novel Approach for Multichannel Epileptic Seizure Classification Based on Internet of Things Framework Using Critical Spectral Verge Feature Derived from Flower Pollination Algorithm. SENSORS (BASEL, SWITZERLAND) 2022; 22:9302. [PMID: 36502005 PMCID: PMC9737714 DOI: 10.3390/s22239302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
A novel approach for multichannel epilepsy seizure classification which will help to automatically locate seizure activity present in the focal brain region was proposed. This paper suggested an Internet of Things (IoT) framework based on a smart phone by utilizing a novel feature termed multiresolution critical spectral verge (MCSV), based on frequency-derived information for epileptic seizure classification which was optimized using a flower pollination algorithm (FPA). A wireless sensor technology (WSN) was utilized to record the electroencephalography (EEG) signal of epileptic patients. Next, the EEG signal was pre-processed utilizing a multiresolution-based adaptive filtering (MRAF) method. Then, the maximal frequency point at which the power spectral density (PSD) of each EEG segment was greater than the average spectral power of the corresponding frequency band was computed. This point was further optimized to extract a point termed as critical spectral verge (CSV) to extract the exact high frequency oscillations representing the actual seizure activity present in the EEG signal. Next, a support vector machine (SVM) classifier was used for channel-wise classification of the seizure and non-seizure regions using CSV as a feature. This process of classification using the CSV feature extracted from the MRAF output is referred to as the MCSV approach. As a final step, cloud-based services were employed to analyze the EEG information from the subject's smart phone. An exhaustive analysis was undertaken to assess the performance of the MCSV approach for two datasets. The presented approach showed an improved performance with a 93.83% average sensitivity, a 97.94% average specificity, a 97.38% average accuracy with the SVM classifier, and a 95.89% average detection rate as compared with other state-of-the-art studies such as deep learning. The methods presented in the literature were unable to precisely localize the origination of the seizure activity in the brain region and reported a low seizure detection rate. This work introduced an optimized CSV feature which was effectively used for multichannel seizure classification and localization of seizure origination. The proposed MCSV approach will help diagnose epileptic behavior from multichannel EEG signals which will be extremely useful for neuro-experts to analyze seizure details from different regions of the brain.
Collapse
Affiliation(s)
| | - Shilpa P. Metkar
- Department of Electronics and Telecommunication Engineering, College of Engineering Pune, Pune 411005, India
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 10, Turkey
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Turkey
| | - Thompson Stephan
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Manjur Kolhar
- Department of Computer Science, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Chadi Altrjman
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Turkey
- Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
22
|
Sreenivasan N, Gargiulo GD, Gunawardana U, Naik G, Nikpour A. Seizure Detection: A Low Computational Effective Approach without Classification Methods. SENSORS (BASEL, SWITZERLAND) 2022; 22:8444. [PMID: 36366141 PMCID: PMC9657642 DOI: 10.3390/s22218444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Epilepsy is a severe neurological disorder that is usually diagnosed by using an electroencephalogram (EEG). However, EEG signals are complex, nonlinear, and dynamic, thus generating large amounts of data polluted by many artefacts, lowering the signal-to-noise ratio, and hampering expert interpretation. The traditional seizure-detection method of professional review of long-term EEG signals is an expensive, time-consuming, and challenging task. To reduce the complexity and cost of the task, researchers have developed several seizure-detection approaches, primarily focusing on classification systems and spectral feature extraction. While these methods can achieve high/optimal performances, the system may require retraining and following up with the feature extraction for each new patient, thus making it impractical for real-world applications. Herein, we present a straightforward manual/automated detection system based on the simple seizure feature amplification analysis to minimize these practical difficulties. Our algorithm (a simplified version is available as additional material), borrowing from the telecommunication discipline, treats the seizure as the carrier of information and tunes filters to this specific bandwidth, yielding a viable, computationally inexpensive solution. Manual tests gave 93% sensitivity and 96% specificity at a false detection rate of 0.04/h. Automated analyses showed 88% and 97% sensitivity and specificity, respectively. Moreover, our proposed method can accurately detect seizure locations within the brain. In summary, the proposed method has excellent potential, does not require training on new patient data, and can aid in the localization of seizure focus/origin.
Collapse
Affiliation(s)
- Neethu Sreenivasan
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gaetano D. Gargiulo
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
- The MARCS Institute, Westmead, NSW 2145, Australia
- Translational Research Health Institute, Westmead, NSW 2145, Australia
- The Ingam Institute for Medical Research, Liverpool, NSW 2170, Australia
| | - Upul Gunawardana
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ganesh Naik
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Armin Nikpour
- Neurology Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Central Clinical School, The University of Sydney, Darlington, NSW 2008, Australia
| |
Collapse
|
23
|
He J, Yang L, Liu D, Song Z. Automatic Recognition of High-Density Epileptic EEG Using Support Vector Machine and Gradient-Boosting Decision Tree. Brain Sci 2022; 12:brainsci12091197. [PMID: 36138933 PMCID: PMC9497056 DOI: 10.3390/brainsci12091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Epilepsy (Ep) is a chronic neural disease. The diagnosis of epilepsy depends on detailed seizure history and scalp electroencephalogram (EEG) examinations. The automatic recognition of epileptic EEG is an artificial intelligence application developed from machine learning (ML). Purpose: This study compares the classification effects of two kinds of classifiers by controlling the EEG data source and characteristic values. Method: All EEG data were collected by GSN HydroCel 256 leads and high-density EEG from Xiangya Third Hospital. This study used time-domain features (mean, kurtosis and skewness processed by empirical mode decomposition (EMD) and three IMFs), a frequency-domain feature (power spectrum density, PSD) and a non-linear feature (Shannon entropy). Support vector machine (SVM) and gradient-boosting decision tree (GBDT) classifiers were used to recognize epileptic EEG. Result: The result of the SVM classifier showed an accuracy of 72.00%, precision of 73.98%, and an F1_score of 82.28%. Meanwhile, the result of the GBDT classifier showed a sensitivity of 98.57%, precision of 89.13%, F1_score of 93.40%, and an AUC of 0.9119. Conclusion: The comparison of GBDT and SVM by controlling the variables of the feature values and parameters of a classifier is presented. GBDT obtained the better classification accuracy (90.00%) and F1_score (93.40%).
Collapse
Affiliation(s)
| | | | | | - Zhi Song
- Correspondence: ; Tel.: +86-13974814092
| |
Collapse
|
24
|
Perera D, Wang YK, Lin CT, Nguyen H, Chai R. Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166230. [PMID: 36015991 PMCID: PMC9414352 DOI: 10.3390/s22166230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 05/28/2023]
Abstract
This paper discusses a novel approach to an EEG (electroencephalogram)-based driver distraction classification by using brain connectivity estimators as features. Ten healthy volunteers with more than one year of driving experience and an average age of 24.3 participated in a virtual reality environment with two conditions, a simple math problem-solving task and a lane-keeping task to mimic the distracted driving task and a non-distracted driving task, respectively. Independent component analysis (ICA) was conducted on the selected epochs of six selected components relevant to the frontal, central, parietal, occipital, left motor, and right motor areas. Granger-Geweke causality (GGC), directed transfer function (DTF), partial directed coherence (PDC), and generalized partial directed coherence (GPDC) brain connectivity estimators were used to calculate the connectivity matrixes. These connectivity matrixes were used as features to train the support vector machine (SVM) with the radial basis function (RBF) and classify the distracted and non-distracted driving tasks. GGC, DTF, PDC, and GPDC connectivity estimators yielded the classification accuracies of 82.27%, 70.02%, 86.19%, and 80.95%, respectively. Further analysis of the PDC connectivity estimator was conducted to determine the best window to differentiate between the distracted and non-distracted driving tasks. This study suggests that the PDC connectivity estimator can yield better classification accuracy for driver distractions.
Collapse
Affiliation(s)
- Dulan Perera
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Yu-Kai Wang
- School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Chin-Teng Lin
- School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hung Nguyen
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Rifai Chai
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
25
|
A seizure detection method based on hypergraph features and machine learning. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Zhou W, Zhao X, Wang X, Zhou Y, Wang Y, Meng L, Fan J, Shen N, Zhou S, Chen W, Chen C. A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1920-1930. [PMID: 35763464 DOI: 10.1109/tnsre.2022.3186942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESES. While most of the existing automatic ESES quantification systems ignore the morphological variations of the signal as well as the individual variability among subjects. To address these issues, this paper presents a hybrid expert system that dedicates to mimicking the decision-making process of clinicians in ESES quantification by taking the morphological variations, individual variability, and medical knowledge into consideration. The proposed hybrid system not only offers a general scheme that could propel a semi-auto morphology analysis-based expert decision model to a fully automated ESES quantification with biogeography-based optimization (BBO), but also proposes a more precise individualized quantification system to involve the personalized characteristics by adopting an individualized parameters-selection framework. The feasibility and reliability of the proposed method are evaluated on a clinical dataset collected from twenty subjects at Children's Hospital of Fudan University, Shanghai, China. The estimation error for the individualized quantitative descriptor ESES is 0-4.32% and the average estimation error is 0.95% for all subjects. Experimental results show the presented system outperforms existing works and the individualized system significantly improves the performance of ESES quantification. The favorable results indicate that the proposed hybrid expert system for automatic ESES quantification is promising to support the diagnosis of ESES.
Collapse
|
27
|
Li M, Zhang N. A dynamic directed transfer function for brain functional network-based feature extraction. Brain Inform 2022; 9:7. [PMID: 35304652 PMCID: PMC8933605 DOI: 10.1186/s40708-022-00154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/19/2022] [Indexed: 11/29/2024] Open
Abstract
Directed transfer function (DTF) is good at characterizing the pairwise interactions from whole brain network and has been applied in discrimination of motor imagery (MI) tasks. Considering the fact that MI electroencephalogram signals are more non-stationary in frequency domain than in time domain, and the activated intensities of α band (8–13 Hz) and β band [13–30 Hz, with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta_{1}$$\end{document}β1(13–21 Hz) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta_{2}$$\end{document}β2(21–30 Hz) included] have considerable differences for different subjects, a dynamic DTF (DDTF) with variable model order and frequency band is proposed to construct the brain functional networks (BFNs), whose information flows and outflows are further calculated as network features and evaluated by support vector machine. Extensive experiments are conducted based on a public BCI competition dataset and a real-world dataset, the highest recognition rate achieve 100% and 86%, respectively. The experimental results suggest that DDTF can reflect the dynamic evolution of BFN, the best subject-based DDTF appears in one of four frequency sub-bands (α, β, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta_{1} ,$$\end{document}β1,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${ }\beta_{2}$$\end{document}β2) for discrimination of MI tasks and is much more related to the current and previous states. Besides, DDTF is superior compared to granger causality-based and traditional feature extraction methods, the t-test and Kappa values show its statistical significance and high consistency as well.
Collapse
Affiliation(s)
- Mingai Li
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.,Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China.,Engineering Research Center of Digital Community, Ministry of Education, Beijing, 100124, China
| | - Na Zhang
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
28
|
Bahador N, Kortelainen J. Deep learning-based classification of multichannel bio-signals using directedness transfer learning. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Kaleem M, Guergachi A, Krishnan S. Comparison of Empirical Mode Decomposition, Wavelets, and Different Machine Learning Approaches for Patient-Specific Seizure Detection Using Signal-Derived Empirical Dictionary Approach. Front Digit Health 2021; 3:738996. [PMID: 34966902 PMCID: PMC8710482 DOI: 10.3389/fdgth.2021.738996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
Analysis of long-term multichannel EEG signals for automatic seizure detection is an active area of research that has seen application of methods from different domains of signal processing and machine learning. The majority of approaches developed in this context consist of extraction of hand-crafted features that are used to train a classifier for eventual seizure detection. Approaches that are data-driven, do not use hand-crafted features, and use small amounts of patients' historical EEG data for classifier training are few in number. The approach presented in this paper falls in the latter category, and is based on a signal-derived empirical dictionary approach, which utilizes empirical mode decomposition (EMD) and discrete wavelet transform (DWT) based dictionaries learned using a framework inspired by traditional methods of dictionary learning. Three features associated with traditional dictionary learning approaches, namely projection coefficients, coefficient vector and reconstruction error, are extracted from both EMD and DWT based dictionaries for automated seizure detection. This is the first time these features have been applied for automatic seizure detection using an empirical dictionary approach. Small amounts of patients' historical multi-channel EEG data are used for classifier training, and multiple classifiers are used for seizure detection using newer data. In addition, the seizure detection results are validated using 5-fold cross-validation to rule out any bias in the results. The CHB-MIT benchmark database containing long-term EEG recordings of pediatric patients is used for validation of the approach, and seizure detection performance comparable to the state-of-the-art is obtained. Seizure detection is performed using five classifiers, thereby allowing a comparison of the dictionary approaches, features extracted, and classifiers used. The best seizure detection performance is obtained using EMD based dictionary and reconstruction error feature and support vector machine classifier, with accuracy, sensitivity and specificity values of 88.2, 90.3, and 88.1%, respectively. Comparison is also made with other recent studies using the same database. The methodology presented in this paper is shown to be computationally efficient and robust for patient-specific automatic seizure detection. A data-driven methodology utilizing a small amount of patients' historical data is hence demonstrated as a practical solution for automatic seizure detection.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Electrical Engineering, University of Management and Technology, Lahore, Pakistan
| | - Aziz Guergachi
- Department of Information Technology Management, Ted Rogers School of Management, Ryerson University, Toronto, ON, Canada
| | - Sridhar Krishnan
- Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
30
|
Jaglan S, Dhull SK, Singh KK. Tertiary wavelet model based automatic epilepsy classification system. INTERNATIONAL JOURNAL OF INTELLIGENT UNMANNED SYSTEMS 2021. [DOI: 10.1108/ijius-10-2021-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThis work proposes a tertiary wavelet model based automatic epilepsy classification system using electroencephalogram (EEG) signals.Design/methodology/approachIn this paper, a three-stage system has been proposed for automated classification of epilepsy signals. In the first stage, a tertiary wavelet model uses the orthonormal M-band wavelet transform. This model decomposes EEG signals into three bands of different frequencies. In the second stage, the decomposed EEG signals are analyzed to find novel statistical features. The statistical values of the features are demonstrated using multi-parameters graph comparing normal and epileptic signals. In the last stage, the features are inputted to different conventional classifiers that classify pre-ictal, inter-ictal (epileptic with seizure-free interval) and ictal (seizure) EEG segments.FindingsFor the proposed system the performance of five different classifiers, namely, KNN, DT, XGBoost, SVM and RF is evaluated for the University of BONN data set using different performance parameters. It is observed that RF classifier gives the best performance among the above said classifiers, with an average accuracy of 99.47%.Originality/valueEpilepsy is a neurological condition in which two or more spontaneous seizures occur repeatedly. EEG signals are widely used and it is an important method for detecting epilepsy. EEG signals contain information about the brain's electrical activity. Clinicians manually examine the EEG waveforms to detect epileptic anomalies, which is a time-consuming and error-prone process. An automated epilepsy classification system is proposed in this paper based on combination of signal processing (tertiary wavelet model) and novel features-based classification using the EEG signals.
Collapse
|
31
|
Machine Learning-Based Epileptic Seizure Detection Methods Using Wavelet and EMD-Based Decomposition Techniques: A Review. SENSORS 2021; 21:s21248485. [PMID: 34960577 PMCID: PMC8703715 DOI: 10.3390/s21248485] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
Epileptic seizures are temporary episodes of convulsions, where approximately 70 percent of the diagnosed population can successfully manage their condition with proper medication and lead a normal life. Over 50 million people worldwide are affected by some form of epileptic seizures, and their accurate detection can help millions in the proper management of this condition. Increasing research in machine learning has made a great impact on biomedical signal processing and especially in electroencephalogram (EEG) data analysis. The availability of various feature extraction techniques and classification methods makes it difficult to choose the most suitable combination for resource-efficient and correct detection. This paper intends to review the relevant studies of wavelet and empirical mode decomposition-based feature extraction techniques used for seizure detection in epileptic EEG data. The articles were chosen for review based on their Journal Citation Report, feature selection methods, and classifiers used. The high-dimensional EEG data falls under the category of ‘3N’ biosignals—nonstationary, nonlinear, and noisy; hence, two popular classifiers, namely random forest and support vector machine, were taken for review, as they are capable of handling high-dimensional data and have a low risk of over-fitting. The main metrics used are sensitivity, specificity, and accuracy; hence, some papers reviewed were excluded due to insufficient metrics. To evaluate the overall performances of the reviewed papers, a simple mean value of all metrics was used. This review indicates that the system that used a Stockwell transform wavelet variant as a feature extractor and SVM classifiers led to a potentially better result.
Collapse
|
32
|
Wu M, Qin H, Wan X, Du Y. HFO Detection in Epilepsy: A Stacked Denoising Autoencoder and Sample Weight Adjusting Factors-Based Method. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1965-1976. [PMID: 34529568 DOI: 10.1109/tnsre.2021.3113293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-frequency oscillations (HFOs) recorded by the intracranial electroencephalography (iEEG) are the promising biomarkers of epileptogenic zones. Accurate detection of HFOs is the key to pre-operative assessment for epilepsy. Due to the subjective bias caused by manual features and the class imbalance between HFOs and false HFOs, it is difficult to obtain satisfactory detection performance by the existing methods. To solve these problems, we put forward a novel method to accurately detect HFOs based on the stacked denoising autoencoder (SDAE) and the ensemble classifier with sample weight adjusting factors. First, the adjustable threshold of Hilbert envelopes is proposed to isolate the events of interest (EoIs) from background activities. Then, the SDAE network is utilized to automatically extract features of EoIs in the time-frequency domain. Finally, the AdaBoost-based support vector machine ensemble classifier with sample weight adjusting factors is devised to separate HFOs from EoIs by using the extracted features. These adjusting factors are used to solve the class imbalance problem by adjusting sample weights when learning the base classifiers. Our HFO detection method is evaluated by using clinical iEEG data recorded from 20 patients with medically refractory epilepsy. The experimental results show that our detection method outperforms some existing methods in terms of sensitivity and false discovery rate. In addition, the HFOs detected by our method are effective for localizing seizure onset zones.
Collapse
|
33
|
Eltrass AS, Tayel MB, EL-qady AF. Automatic epileptic seizure detection approach based on multi-stage Quantized Kernel Least Mean Square filters. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.103031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Baghersalimi S, Teijeiro T, Atienza D, Aminifar A. Personalized Real-Time Federated Learning for Epileptic Seizure Detection. IEEE J Biomed Health Inform 2021; 26:898-909. [PMID: 34242177 DOI: 10.1109/jbhi.2021.3096127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epilepsy is one of the most prevalent paroxystic neurological disorders. It is characterized by the occurrence of spontaneous seizures. About 1 out of 3 patients have drug-resistant epilepsy, thus their seizures cannot be controlled by medication. Automatic detection of epileptic seizures can substantially improve the patient's quality of life. To achieve a high-quality model, we have to collect data from various patients in a central server. However, sending the patient's raw data to this central server puts patient privacy at risk and consumes a significant amount of energy. To address these challenges, in this work, we have designed and evaluated a standard federated learning framework in the context of epileptic seizure detection using a deep learning-based approach, which operates across a cluster of machines. We evaluated the accuracy and performance of our proposed approach on the NVIDIA Jetson Nano Developer Kit based on the EPILEPSIAE database, which is one of the largest public epilepsy datasets for seizure detection. Our proposed framework achieved a sensitivity of 81.25%, a specificity of 82.00%, and a geometric mean of 81.62%. It can be implemented on embedded platforms that complete the entire training process in 1.86 hours using 344.34 mAh energy on a single battery charge. We also studied a personalized variant of the federated learning, where each machine is responsible for training a deep neural network (DNN) to learn the discriminative electrocardiography (ECG) features of the epileptic seizures of the specific person monitored based on its local data. In this context, the DNN benefitted from a well-trained model without sharing the patient's raw data with a server or a central cloud repository. We observe in our results that personalized federated learning provides an increase in all the performance metric, with a sensitivity of 90.24%, a specificity of 91.58%, and a geometric mean of 90.90%.
Collapse
|
35
|
Abdelhameed A, Bayoumi M. A Deep Learning Approach for Automatic Seizure Detection in Children With Epilepsy. Front Comput Neurosci 2021; 15:650050. [PMID: 33897397 PMCID: PMC8060463 DOI: 10.3389/fncom.2021.650050] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022] Open
Abstract
Over the last few decades, electroencephalogram (EEG) has become one of the most vital tools used by physicians to diagnose several neurological disorders of the human brain and, in particular, to detect seizures. Because of its peculiar nature, the consequent impact of epileptic seizures on the quality of life of patients made the precise diagnosis of epilepsy extremely essential. Therefore, this article proposes a novel deep-learning approach for detecting seizures in pediatric patients based on the classification of raw multichannel EEG signal recordings that are minimally pre-processed. The new approach takes advantage of the automatic feature learning capabilities of a two-dimensional deep convolution autoencoder (2D-DCAE) linked to a neural network-based classifier to form a unified system that is trained in a supervised way to achieve the best classification accuracy between the ictal and interictal brain state signals. For testing and evaluating our approach, two models were designed and assessed using three different EEG data segment lengths and a 10-fold cross-validation scheme. Based on five evaluation metrics, the best performing model was a supervised deep convolutional autoencoder (SDCAE) model that uses a bidirectional long short-term memory (Bi-LSTM) – based classifier, and EEG segment length of 4 s. Using the public dataset collected from the Children’s Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), this model has obtained 98.79 ± 0.53% accuracy, 98.72 ± 0.77% sensitivity, 98.86 ± 0.53% specificity, 98.86 ± 0.53% precision, and an F1-score of 98.79 ± 0.53%, respectively. Based on these results, our new approach was able to present one of the most effective seizure detection methods compared to other existing state-of-the-art methods applied to the same dataset.
Collapse
Affiliation(s)
- Ahmed Abdelhameed
- Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Magdy Bayoumi
- Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA, United States
| |
Collapse
|
36
|
Li M, Chen W. FFT-based deep feature learning method for EEG classification. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Oliva JT, Rosa JLG. Binary and multiclass classifiers based on multitaper spectral features for epilepsy detection. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Wang D, Liu Z, Tao Y, Chen W, Chen B, Wang Q, Yan X, Wang G. Improvement in EEG Source Imaging Accuracy by Means of Wavelet Packet Transform and Subspace Component Selection. IEEE Trans Neural Syst Rehabil Eng 2021; 29:650-661. [PMID: 33687844 DOI: 10.1109/tnsre.2021.3064665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The electroencephalograph (EEG) source imaging (ESI) method is a non-invasive method that provides high temporal resolution imaging of brain electrical activity on the cortex. However, because the accuracy of EEG source imaging is often affected by unwanted signals such as noise or other source-irrelevant signals, the results of ESI are often incongruous with the real sources of brain activities. This study presents a novel ESI method (WPESI) that is based on wavelet packet transform (WPT) and subspace component selection to image the cerebral activities of EEG signals on the cortex. First, the original EEG signals are decomposed into several subspace components by WPT. Second, the subspaces associated with brain sources are selected and the relevant signals are reconstructed by WPT. Finally, the current density distribution in the cerebral cortex is obtained by establishing a boundary element model (BEM) from head MRI and applying the appropriate inverse calculation. In this study, the localization results obtained by this proposed approach were better than those of the original sLORETA approach (OESI) in the computer simulations and visual evoked potential (VEP) experiments. For epilepsy patients, the activity sources estimated by this proposed algorithm conformed to the seizure onset zones. The WPESI approach is easy to implement achieved favorable accuracy in terms of EEG source imaging. This demonstrates the potential for use of the WPESI algorithm to localize epileptogenic foci from scalp EEG signals.
Collapse
|
39
|
Wang G, Wang D, Du C, Li K, Zhang J, Liu Z, Tao Y, Wang M, Cao Z, Yan X. Seizure Prediction Using Directed Transfer Function and Convolution Neural Network on Intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2711-2720. [DOI: 10.1109/tnsre.2020.3035836] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Polat K, Nour M. Epileptic Seizure Detection Based on New Hybrid Models with Electroencephalogram Signals. Ing Rech Biomed 2020. [DOI: 10.1016/j.irbm.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Li M, Sun X, Chen W. Patient-specific seizure detection method using nonlinear mode decomposition for long-term EEG signals. Med Biol Eng Comput 2020; 58:3075-3088. [DOI: 10.1007/s11517-020-02279-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
|
42
|
Bari MF, Anowarul Fattah S. Epileptic seizure detection in EEG signals using normalized IMFs in CEEMDAN domain and quadratic discriminant classifier. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Xu K, Zheng Y, Zhang F, Jiang Z, Qi Y, Chen H, Zhu J. An Energy Efficient AdaBoost Cascade Method for Long-Term Seizure Detection in Portable Neurostimulators. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2274-2283. [DOI: 10.1109/tnsre.2019.2947426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Wang G, Liu Z, Feng Y, Li J, Dong H, Wang D, Li J, Yan N, Liu T, Yan X. Monitoring the Depth of Anesthesia Through the Use of Cerebral Hemodynamic Measurements Based on Sample Entropy Algorithm. IEEE Trans Biomed Eng 2019; 67:807-816. [PMID: 31180830 DOI: 10.1109/tbme.2019.2921362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of this study is to explore the relationship between the depth of anesthesia and the cerebral hemodynamic variables during the complete anesthesia process. METHODS In this study, near-infrared spectroscopy signals were used to record eight kinds of cerebral hemodynamic variables, including left, right, proximal, distal deoxygenated (Hb) and oxygenated (HbO2) hemoglobin concentration changes. Then, by measuring the complexity information of cerebral hemodynamic variables, the sample entropy was calculated as a new index of monitoring the depth of anesthesia. RESULTS By means of receiver operating characteristic curve analysis, the sample entropy approach was proved to effectively discriminate anesthesia maintenance and waking phases. The discriminatory ability of HbO2 signals was stronger than that of Hb signals and the distal signals had weaker discrimination capability when compared with the proximal signals. In addition, there was statistical consistency between the bispectral index and sample entropy of cerebral hemodynamic variables during the complete anesthesia process. Moreover, the cerebral hemodynamic signals could not be interfered by clinical electrical devices. CONCLUSION The sample entropy of cerebral hemodynamic variables could be suitable as a new index for monitoring the depth of anesthesia. SIGNIFICANCE This study is very meaningful for developing new modality and decoding methods in perspective of anesthesia surveillance and may result in the anesthesia monitoring system with high performance.
Collapse
|
45
|
Wang X, Gong G, Li N, Qiu S. Detection Analysis of Epileptic EEG Using a Novel Random Forest Model Combined With Grid Search Optimization. Front Hum Neurosci 2019; 13:52. [PMID: 30846934 PMCID: PMC6393755 DOI: 10.3389/fnhum.2019.00052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/30/2019] [Indexed: 01/21/2023] Open
Abstract
In the automatic detection of epileptic seizures, the monitoring of critically ill patients with time varying EEG signals is an essential procedure in intensive care units. There is an increasing interest in using EEG analysis to detect seizure, and in this study we aim to get a better understanding of how to visualize the information in the EEG time-frequency feature, and design and train a novel random forest algorithm for EEG decoding, especially for multiple-levels of illness. Here, we propose an automatic detection framework for epileptic seizure based on multiple time-frequency analysis approaches; it involves a novel random forest model combined with grid search optimization. The short-time Fourier transformation visualizes seizure features after normalization. The dimensionality of features is reduced through principal component analysis before feeding them into the classification model. The training parameters are optimized using grid search optimization to improve detection performance and diagnostic accuracy by in the recognition of three different levels epileptic of conditions (healthy subjects, seizure-free intervals, seizure activity). Our proposed model was used to classify 500 samples of raw EEG data, and multiple cross-validations were adopted to boost the modeling accuracy. Experimental results were evaluated by an accuracy, a confusion matrix, a receiver operating characteristic curve, and an area under the curve. The evaluations indicated that our model achieved the more effective classification than some previous typical methods. Such a scheme for computer-assisted clinical diagnosis of seizures has a potential guiding significance, which not only relieves the suffering of patient with epilepsy to improve quality of life, but also helps neurologists reduce their workload.
Collapse
Affiliation(s)
- Xiashuang Wang
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China.,Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Guanghong Gong
- Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Ni Li
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China.,Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Shi Qiu
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
46
|
Classification of EEG Signals Using Hybrid Feature Extraction and Ensemble Extreme Learning Machine. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9919-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|