1
|
Park C, Youn I, Han S. Single-lead ECG based autonomic nervous system assessment for meditation monitoring. Sci Rep 2022; 12:22513. [PMID: 36581715 PMCID: PMC9800362 DOI: 10.1038/s41598-022-27121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
We propose a single-lead ECG-based heart rate variability (HRV) analysis algorithm to quantify autonomic nervous system activity during meditation. Respiratory sinus arrhythmia (RSA) induced by breathing is a dominant component of HRV, but its frequency depends on an individual's breathing speed. To address this RSA issue, we designed a novel HRV tachogram decomposition algorithm and new HRV indices. The proposed method was validated by using a simulation, and applied to our experimental (mindfulness meditation) data and the WESAD open-source data. During meditation, our proposed HRV indices related to vagal and sympathetic tones were significantly increased (p < 0.000005) and decreased (p < 0.000005), respectively. These results were consistent with self-reports and experimental protocols, and identified parasympathetic activation and sympathetic inhibition during meditation. In conclusion, the proposed method successfully assessed autonomic nervous system activity during meditation when respiration influences disrupted classical HRV. The proposed method can be considered a reliable approach to quantify autonomic nervous system activity.
Collapse
Affiliation(s)
- Chanki Park
- grid.36303.350000 0000 9148 4899Future and Basic Technology Research Division, ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, CybreBrain Research Section, Daejeon, 34129 Republic of Korea
| | - Inchan Youn
- grid.35541.360000000121053345Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea ,grid.35541.360000000121053345Division of Bio‑Medical Science and Technology, Korea Institute of Science and Technology School, Seoul, 02792 Republic of Korea ,grid.289247.20000 0001 2171 7818KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Seongbuk-gu 02447 Republic of Korea
| | - Sungmin Han
- grid.35541.360000000121053345Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea ,grid.35541.360000000121053345Division of Bio‑Medical Science and Technology, Korea Institute of Science and Technology School, Seoul, 02792 Republic of Korea
| |
Collapse
|
2
|
Kontaxis S, Lazaro J, Gil E, Laguna P, Bailon R. The Added Value of Nonlinear Cardiorespiratory Coupling Indices in the Assessment of Depression . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5473-5476. [PMID: 34892364 DOI: 10.1109/embc46164.2021.9631096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study investigates the differences in autonomic nervous system (ANS) function and stress response between patients with major depressive disorder (MDD) and healthy subjects by measuring changes in ANS biomarkers. ANS-related parameters are derived from various biosignals during a mental stress protocol consisting of a basal, stress, and recovery phase. The feature set consists of ANS biomarkers such as the heart rate (HR) derived from the electrocardiogram, the respiratory rate derived from the respiration signal, vascular parameters obtained from a model-based photoplethysmographic pulse waveform analysis, and cardiorespiratory coupling indices derived from the joint analysis of the heart rate variability (HRV) and respiratory signals. In particular, linear cardiorespiratory interactions are quantified by means of time-frequency coherence, while interactions of quadratic nonlinear nature between HRV and respiration are quantified by means of real wavelet biphase. The intra-subject difference of a feature value between two phases of the protocol, the so-called autonomic reactivity, is considered as a ANS biomarker as well. The performance of ANS biomarkers on discriminating MDD patients is evaluated using a classification pipeline. The results show that the most discriminative ANS biomarkers are related with differences in HR and autonomic reactivity of both vascular and nonlinear cardiorespiratory coupling indices. Differences in autonomic reactivity imply that MDD and healthy subjects differ in their ability to cope with stress. Considering only HR and vascular characteristics a linear support-vector machine classifier yields to accuracy 72.5% and F1-score 73.2%. However, taking into account the nonlinear cardiorespiratory coupling indices, the classification performance improves, yielding to accuracy 77.5% and F1-score 78.0%.Clinical relevance- Changes in the nonlinear properties of the cardiorespiratory system during stress may yield additional information on the assessment of depression.
Collapse
|
3
|
Armañac-Julián P, Hernando D, Lázaro J, de Haro C, Magrans R, Morales J, Moeyersons J, Sarlabous L, López-Aguilar J, Subirà C, Fernández R, Orini M, Laguna P, Varon C, Gil E, Bailón R, Blanch L. Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation. Sci Rep 2021; 11:16014. [PMID: 34362950 PMCID: PMC8346488 DOI: 10.1038/s41598-021-95282-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients' readiness, there is still around 15-20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation -being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness.
Collapse
Affiliation(s)
- Pablo Armañac-Julián
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - David Hernando
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Lázaro
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Candelaria de Haro
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació Parc Taulí I3PT, Universitat Autónoma de Barcelona, Sabadell, Spain
- CIBER de Enfermedades Respiratorias (CIBER-ES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - John Morales
- Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Jonathan Moeyersons
- Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Leonardo Sarlabous
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació Parc Taulí I3PT, Universitat Autónoma de Barcelona, Sabadell, Spain
| | - Josefina López-Aguilar
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació Parc Taulí I3PT, Universitat Autónoma de Barcelona, Sabadell, Spain
- CIBER de Enfermedades Respiratorias (CIBER-ES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Subirà
- Department of Intensive Care, Fundació Althaia, Universitat Internacional de Catalunya, Manresa, Spain
| | - Rafael Fernández
- CIBER de Enfermedades Respiratorias (CIBER-ES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Intensive Care, Fundació Althaia, Universitat Internacional de Catalunya, Manresa, Spain
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomews Hospital, University College London, London, UK
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Varon
- Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
- Circuits and Systems (CAS) group, Delft University of Technology, Delft, The Netherlands
| | - Eduardo Gil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluís Blanch
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació Parc Taulí I3PT, Universitat Autónoma de Barcelona, Sabadell, Spain
- CIBER de Enfermedades Respiratorias (CIBER-ES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Varon C, Morales J, Lázaro J, Orini M, Deviaene M, Kontaxis S, Testelmans D, Buyse B, Borzée P, Sörnmo L, Laguna P, Gil E, Bailón R. A Comparative Study of ECG-derived Respiration in Ambulatory Monitoring using the Single-lead ECG. Sci Rep 2020; 10:5704. [PMID: 32235865 PMCID: PMC7109157 DOI: 10.1038/s41598-020-62624-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/14/2020] [Indexed: 11/08/2022] Open
Abstract
Cardiorespiratory monitoring is crucial for the diagnosis and management of multiple conditions such as stress and sleep disorders. Therefore, the development of ambulatory systems providing continuous, comfortable, and inexpensive means for monitoring represents an important research topic. Several techniques have been proposed in the literature to derive respiratory information from the ECG signal. Ten methods to compute single-lead ECG-derived respiration (EDR) were compared under multiple conditions, including different recording systems, baseline wander, normal and abnormal breathing patterns, changes in breathing rate, noise, and artifacts. Respiratory rates, wave morphology, and cardiorespiratory information were derived from the ECG and compared to those extracted from a reference respiratory signal. Three datasets were considered for analysis, involving a total 59 482 one-min, single-lead ECG segments recorded from 156 subjects. The results indicate that the methods based on QRS slopes outperform the other methods. This result is particularly interesting since simplicity is crucial for the development of ECG-based ambulatory systems.
Collapse
Affiliation(s)
- Carolina Varon
- Delft University of Technology, Circuits and Systems (CAS) group, Delft, 2600 AA, the Netherlands.
- KU Leuven, Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Leuven, 3001, Belgium.
| | - John Morales
- KU Leuven, Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Leuven, 3001, Belgium
| | - Jesús Lázaro
- University of Connecticut, Department of Electrical Engineering, Storrs, CT, 06268, USA
- University of Zaragoza, BSICoS Group, Aragón Institute of Engineering Research (I3A), IISAragon, Zaragoza, 50015, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Michele Orini
- University College London, Institute of Cardiovascular Science, London, WC1E 6BT, UK
- University College London, Barts Heart centre at St Bartholomews Hospital, London, EC1A 7BE, UK
| | - Margot Deviaene
- KU Leuven, Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Leuven, 3001, Belgium
| | - Spyridon Kontaxis
- University of Zaragoza, BSICoS Group, Aragón Institute of Engineering Research (I3A), IISAragon, Zaragoza, 50015, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | | - Bertien Buyse
- UZ Leuven, Department of Pneumology, Leuven, 3001, Belgium
| | - Pascal Borzée
- UZ Leuven, Department of Pneumology, Leuven, 3001, Belgium
| | - Leif Sörnmo
- Lund University, Department of Biomedical Engineering, Lund, 118, 221 00, Sweden
| | - Pablo Laguna
- University of Zaragoza, BSICoS Group, Aragón Institute of Engineering Research (I3A), IISAragon, Zaragoza, 50015, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Eduardo Gil
- University of Zaragoza, BSICoS Group, Aragón Institute of Engineering Research (I3A), IISAragon, Zaragoza, 50015, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Raquel Bailón
- University of Zaragoza, BSICoS Group, Aragón Institute of Engineering Research (I3A), IISAragon, Zaragoza, 50015, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
5
|
Valderas MT, Bolea J, Laguna P, Bailón R, Vallverdú M. Mutual information between heart rate variability and respiration for emotion characterization. Physiol Meas 2019; 40:084001. [DOI: 10.1088/1361-6579/ab310a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|