1
|
Sheikh M, Qassem M, Kyriacou PA. Optical determination of lithium therapeutic levels in micro-volumes of interstitial fluid. Bipolar Disord 2023; 25:136-147. [PMID: 36591648 DOI: 10.1111/bdi.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Long-term management of bipolar disorder (BD), characterized by mood fluctuating between episodes of mania and depression, involves the regular taking of lithium preparations as the most reliable mood stabilizer for bipolar patients. However, despite its effectiveness in preventing and reducing mood swings and suicidality, lithium has a very narrow therapeutic index and it is crucial to carefully monitor lithium plasma levels as concentrations >1.2 mmol/L are potentially toxic and can be fatal. Current methods of lithium therapeutic monitoring involve frequent blood tests, which have several drawbacks related to the invasiveness of the technique, comfort, cost and reliability. Dermal interstitial fluid (ISF) is an accessible and information-rich biofluid, and correlations have been found between blood and ISF levels of lithium medication. METHODS In the current study, we sought to investigate the optical determination of lithium therapeutic concentrations in samples of ISF extracted from porcine skin utilizing a microneedle-based approach. Monitoring of lithium levels in porcine ISF was achieved by employing a spectrophotometric method based on the reaction between the chromogenic agent Quinizarin and lithium. RESULTS The resulting spectra show spectral variations which relate to lithium concentrations of lithium in samples of porcine ISF with a coefficient of determination (R2 ) of 0.9. This study has demonstrated successfully that therapeutic levels of lithium in micro-volumes of porcine ISF can be measured with a high level of accuracy utilizing spectroscopic techniques. CONCLUSIONS The results support the future development of a miniaturized and minimally-invasive device for lithium monitoring in bipolar patients.
Collapse
Affiliation(s)
- Mahsa Sheikh
- Research Centre for Biomedical Engineering, City University of London, London, UK
| | - Meha Qassem
- Research Centre for Biomedical Engineering, City University of London, London, UK
| | | |
Collapse
|
2
|
Sheikh M, Qassem M, Kyriacou PA. A paper-based colorimetric method for monitoring of lithium therapeutic levels. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:979-986. [PMID: 36727666 DOI: 10.1039/d2ay01743a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lithium remains the "gold standard" for both acute and maintenance treatment of bipolar disorder (BD), a serious life-long condition characterised by recurrent episodes of depressed and manic mood states. However, lithium has a very narrow therapeutic range (0.4-1.2 mmol L-1) and despite its effectiveness in preventing and reducing mood swings and suicidality, it is a potentially hazardous drug. While it is crucial to carefully monitor lithium plasma levels, the current techniques of lithium monitoring are cumbersome and require frequent blood tests with the consequent discomfort which results in patients evading treatment. Therefore, development of low-cost and facile lithium detection techniques that can be translated into point-of-care devices for personal monitoring will be a major advance in the management of BD. In the current study, we present colorimetric determination of lithium therapeutic levels utilizing test paper strips, based on its reaction with the chromogenic agent Quinizarin. Exposure of Quinizarin-dipped test papers to samples of interstitial fluid (ISF) or dH2O spiked with therapeutic concentrations of lithium resulted in colour changes that were monitored using optical spectroscopy. The acquired spectra from the test papers show spectral variations which are related to lithium concentrations in spiked samples of dh2O and artificial ISF with a coefficient of determination (R2) of 0.9 and 0.8, respectively. Altogether, the spectrophotometric and colorimetric analyses demonstrated strong correlations between the observed colour changes and the concentrations of lithium present in the sample. Therefore, this study has demonstrated that Quinizarin-treated cellulose-based papers are suitable for the precise detection of changes in lithium therapeutic levels. This method is simple and very convenient and serves as a foundation for the future development of a paper-based colorimetric sensor for monitoring of lithium therapeutic levels in ISF and other non-invasive biological fluids.
Collapse
Affiliation(s)
- Mahsa Sheikh
- Research Centre for Biomedical Engineering, City University of London, London EC1V 0HB, UK.
| | - Meha Qassem
- Research Centre for Biomedical Engineering, City University of London, London EC1V 0HB, UK.
| | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City University of London, London EC1V 0HB, UK.
| |
Collapse
|
3
|
Sheikh M, Qassem M, Kyriacou PA. Optical Detection of Lithium Therapeutic Levels in Porcine Interstitial Fluid Collected Using a Hollow Microneedle. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4257-4260. [PMID: 36086355 DOI: 10.1109/embc48229.2022.9871289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bipolar disorder (BD), a recurrent chronic disorder characterized by mood fluctuating between episodes of mood elevation and depression, is a leading cause of disability worldwide. Lithium is the most widely used medication for management of BD. However, despite its effectiveness in preventing and reducing mood swings and suicidality, it is a potentially hazardous drug. Lithium has a very narrow therapeutic range (0.4-1.2 mmol/L) with the upper limit being uncomfortably close to toxic levels, hence lithium levels should be monitored regularly. The current techniques of monitoring lithium levels require frequent blood tests and elaborate laboratory methods that cannot be translated into point of care devices for personal monitoring. Dermal interstitial fluid (ISF), an underutilized information-rich biofluid, can be accessed using non-invasive techniques and the lithium concentration in ISF has been found to be proportional to concentration in serum. In the current study a microneedle-based sampling method to extract ISF from porcine skin, as it is similar in anatomy to human skin, was employed. Optical determination of lithium therapeutic concentrations in porcine ISF using a colorimetric method based on the reaction between chromogenic agent Quinizarin and Li+ ion was then performed. The resulting spectra show spectral variations which are related to lithium concentrations in spiked samples of porcine ISF, hence suggesting the feasibility of utilizing ISF for real-time and minimally-invasive lithium drug monitoring.
Collapse
|
4
|
Sheikh M, Qassem M, Triantis IF, Kyriacou PA. Advances in Therapeutic Monitoring of Lithium in the Management of Bipolar Disorder. SENSORS (BASEL, SWITZERLAND) 2022; 22:736. [PMID: 35161482 PMCID: PMC8838674 DOI: 10.3390/s22030736] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Since the mid-20th century, lithium continues to be prescribed as a first-line mood stabilizer for the management of bipolar disorder (BD). However, lithium has a very narrow therapeutic index, and it is crucial to carefully monitor lithium plasma levels as concentrations greater than 1.2 mmol/L are potentially toxic and can be fatal. The quantification of lithium in clinical laboratories is performed by atomic absorption spectrometry, flame emission photometry, or conventional ion-selective electrodes. All these techniques are cumbersome and require frequent blood tests with consequent discomfort which results in patients evading treatment. Furthermore, the current techniques for lithium monitoring require highly qualified personnel and expensive equipment; hence, it is crucial to develop low-cost and easy-to-use devices for decentralized monitoring of lithium. The current paper seeks to review the pertinent literature rigorously and critically with a focus on different lithium-monitoring techniques which could lead towards the development of automatic and point-of-care analytical devices for lithium determination.
Collapse
Affiliation(s)
- Mahsa Sheikh
- Research Centre for Biomedical Engineering, City University of London, London EC1V 0HB, UK; (M.Q.); (I.F.T.); (P.A.K.)
| | | | | | | |
Collapse
|
5
|
Sheikh M, Qassem M, Kyriacou PA. Optical Determination of Lithium Levels in Artificial Interstitial Fluid for Treatment Management of Bipolar Disorder. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6851-6854. [PMID: 34892680 DOI: 10.1109/embc46164.2021.9630680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bipolar Disorder (BD), characterized by mood fluctuating between episodes of mood elevation and depression, is a leading cause of disability worldwide. Lithium continues to be prescribed as a first-line mood stabilizer for the management of BD. However, lithium has a very narrow therapeutic index and it is crucial to carefully monitor lithium plasma levels as concentrations greater than 1.2 mmol/L are potentially toxic and can be fatal. The current techniques of lithium monitoring are cumbersome and require frequent blood tests with the consequent discomfort which results in patients evading treatment. Dermal interstitial fluid (ISF), an underutilized information-rich biofluid, can be a proxy for direct blood sampling and allow lithium drug monitoring as its lithium concentration is proportional to the concentrations in blood. Therefore, in this study we seek to investigate the measurement of lithium therapeutic concentrations in artificial ISF. Our study employs a colorimetric method, based on the reaction between chromogenic agent Quinizarin and Li+ ion which can be detected using optical spectroscopy in the visible region (400-800 nm), to determine lithium levels in artificial ISF. The resulting spectra of our experiments show spectral variations which are related to lithium concentrations in spiked samples of artificial ISF, with a correlation coefficient (R) of 0.9. Future work will focus on investigating the feasibility of utilizing ISF for real-time and minimally-invasive lithium drug monitoring.
Collapse
|
6
|
Bian D, Zhou X, Liu J, Li W, Shen D, Zheng Y, Gu W, Jiang J, Li M, Chu X, Ma L, Wang X, Zhang Y, Leeflang S, Zhou J. Degradation behaviors and in-vivo biocompatibility of a rare earth- and aluminum-free magnesium-based stent. Acta Biomater 2021; 124:382-397. [PMID: 33508506 DOI: 10.1016/j.actbio.2021.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Biodegradable stents can provide scaffolding and anti-restenosis benefits in the short term and then gradually disappear over time to free the vessel, among which the Mg-based biodegradable metal stents have been prosperously developed. In the present study, a Mg-8.5Li (wt.%) alloy (RE- and Al-free) with high ductility (> 40%) was processed into mini-tubes, and further fabricated into finished stent through laser cutting and electropolishing. In-vitro degradation test was performed to evaluate the durability of this stent before and after balloon dilation. The influence of plastic deformation and residual stress (derived from the dilation process) on the degradation was checked with the assistance of finite element analysis. In addition, in-vivo degradation behaviors and biocompatibility of the stent were evaluated by performing implantation in iliac artery of minipigs. The balloon dilation process did not lead to deteriorated degradation, and this stent exhibited a decent degradation rate (0.15 mm/y) in vitro, but divergent result (> 0.6 mm/y) was found in vivo. The stent was almost completely degraded in 3 months, revealing an insufficient scaffolding time. Meanwhile, it did not induce possible thrombus, and it was tolerable by surrounding tissues in pigs. Besides, endothelial coverage in 1 month was achieved even under the severe degradation condition. In the end, the feasibility of this stent for treatment of benign vascular stenosis was generally discussed, and perspectives on future improvement of Mg-Li-based stents were proposed.
Collapse
Affiliation(s)
- Dong Bian
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiaochen Zhou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianing Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wenting Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Danni Shen
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yufeng Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China; Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Wenda Gu
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jingjun Jiang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Mei Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiao Chu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiaolan Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Sander Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| |
Collapse
|
7
|
Villa-Arango S, Betancur D, Torres R, Kyriacou P. Use of Transient Time Response as a Measure to Characterize Phononic Crystal Sensors. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3618. [PMID: 30366380 PMCID: PMC6263472 DOI: 10.3390/s18113618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 02/04/2023]
Abstract
Phononic crystals are periodic composite structures with specific resonant features that are gaining popularity in the field as liquid sensors. The introduction of a structural defect in an otherwise periodic regular arrangement can generate a resonant mode, also called defect mode, inside the characteristic band gaps of phononic crystals. The morphology, as well as the frequency in which these defect modes appear, can give useful information on the composition and properties of an analyte. Currently, only gain and frequency measurements are performed using phononic crystal sensors. Other measurements like the transient response have been implemented in resonant sensors such as quartz microbalances showing great results and proving to be a great complimentary measure to the gain and frequency measurements. In the present paper, a study of the feasibility of using the transient response as a measure to acquire additional information about the analyte is presented. Theoretical studies using the transmission line model were realized to show the impact of variations in the concentration of an analyte, in this case, lithium carbonate solutions, in the transient time of the system. Experimental realizations were also performed showing that the proposed measurement scheme presents significant changes in the resulting data, indicating the potential use of this measure in phononic crystal sensors. This proposed measure could be implemented as a stand-alone measure or as a compliment to current sensing modalities.
Collapse
Affiliation(s)
- Simón Villa-Arango
- Biomedical Engineering Research Group (GIBEC), EIA University, Envigado 055428, Colombia.
- Research Centre for Biomedical Engineering (RCBE), City University of London, London EC1V 0HB, UK.
| | - David Betancur
- Biomedical Engineering Research Group (GIBEC), EIA University, Envigado 055428, Colombia.
| | - Róbinson Torres
- Biomedical Engineering Research Group (GIBEC), EIA University, Envigado 055428, Colombia.
| | - Panayiotis Kyriacou
- Research Centre for Biomedical Engineering (RCBE), City University of London, London EC1V 0HB, UK.
| |
Collapse
|