1
|
Wang G, Yan H, Li W, Sheng D, Ren L, Wang Q, Zhang H, Zhang G, Yu T, Wang G. Seizure detection using the wristband accelerometer, gyroscope, and surface electromyogram signals based on in-hospital and out-of-hospital dataset. Seizure 2025; 127:127-134. [PMID: 40147052 DOI: 10.1016/j.seizure.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVE Wearable devices are effective for detecting generalized tonic-clonic seizures (GTCS). However, many daily activities are often misclassified as GTCS, leading to a decline in user confidence. This study recommends utilizing wristband three-axis accelerometer (ACC), three-axis gyroscope (GYRO), and surface electromyography (sEMG) signals for GTCS detection and presents a novel seizure detection algorithm that offers high sensitivity and a reduced false alarm rate (FAR). METHODS Inpatients with epilepsy and out-of-hospital healthy subjects were recruited and required to wear a wristband device to collect wristband signals. The proposed algorithm comprises five steps: preprocessing, motion filtering, feature extraction, classification, and postprocessing. The variations in performance across different signal combinations were compared. Additionally, the impact of training the model using only inpatient data versus the complete dataset on the algorithm's performance was also investigated. RESULTS Wristband signals were collected from 45 patients and 30 healthy subjects, encompassing a total of 3367.3 h and including 60 GTCS. The proposed algorithm achieved 100 % sensitivity and a FAR of 0.1070/24 h. It demonstrated higher sensitivity and lower FAR compared to combinations with fewer signal modalities. In addition, the model trained on only in-hospital data demonstrates high sensitivity (98.33 %) and high FAR (0.9845/24 h). SIGNIFICANCE The algorithm proposed for detecting GTCS using wristband ACC, GYRO, and sEMG signals achieved encouraging results, demonstrating the feasibility of this signal combination. Furthermore, incorporating out-of-hospital data into model training proved to be an effective solution for reducing FAR, which could facilitate the clinical application of seizure detection algorithms.
Collapse
Affiliation(s)
- Guangming Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Yan
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Wen Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Duozheng Sheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, PR China
| | - Hua Zhang
- Department of Neurosurgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Guojun Zhang
- Department of Functional Neurosurgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing 100045, PR China
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China.
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
2
|
Caroppo A, Manni A, Rescio G, Carluccio AM, Siciliano PA, Leone A. Movement Disorders and Smart Wrist Devices: A Comprehensive Study. SENSORS (BASEL, SWITZERLAND) 2025; 25:266. [PMID: 39797057 PMCID: PMC11723440 DOI: 10.3390/s25010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
In the medical field, there are several very different movement disorders, such as tremors, Parkinson's disease, or Huntington's disease. A wide range of motor and non-motor symptoms characterizes them. It is evident that in the modern era, the use of smart wrist devices, such as smartwatches, wristbands, and smart bracelets is spreading among all categories of people. This diffusion is justified by the limited costs, ease of use, and less invasiveness (and consequently greater acceptability) than other types of sensors used for health status monitoring. This systematic review aims to synthesize research studies using smart wrist devices for a specific class of movement disorders. Following PRISMA-S guidelines, 130 studies were selected and analyzed. For each selected study, information is provided relating to the smartwatch/wristband/bracelet model used (whether it is commercial or not), the number of end-users involved in the experimentation stage, and finally the characteristics of the benchmark dataset possibly used for testing. Moreover, some articles also reported the type of raw data extracted from the smart wrist device, the implemented designed algorithmic pipeline, and the data classification methodology. It turned out that most of the studies have been published in the last ten years, showing a growing interest in the scientific community. The selected articles mainly investigate the relationship between smart wrist devices and Parkinson's disease. Epilepsy and seizure detection are also research topics of interest, while there are few papers analyzing gait disorders, Huntington's Disease, ataxia, or Tourette Syndrome. However, the results of this review highlight the difficulties still present in the use of the smartwatch/wristband/bracelet for the identified categories of movement disorders, despite the advantages these technologies could bring in the dissemination of low-cost solutions usable directly within living environments and without the need for caregivers or medical personnel.
Collapse
Affiliation(s)
- Andrea Caroppo
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy; (G.R.); (A.M.C.); (P.A.S.); (A.L.)
| | - Andrea Manni
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy; (G.R.); (A.M.C.); (P.A.S.); (A.L.)
| | | | | | | | | |
Collapse
|
3
|
Jafleh EA, Alnaqbi FA, Almaeeni HA, Faqeeh S, Alzaabi MA, Al Zaman K. The Role of Wearable Devices in Chronic Disease Monitoring and Patient Care: A Comprehensive Review. Cureus 2024; 16:e68921. [PMID: 39381470 PMCID: PMC11461032 DOI: 10.7759/cureus.68921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/10/2024] Open
Abstract
Wearable health devices are becoming vital in chronic disease management because they offer real-time monitoring and personalized care. This review explores their effectiveness and challenges across medical fields, including cardiology, respiratory health, neurology, endocrinology, orthopedics, oncology, and mental health. A thorough literature search identified studies focusing on wearable devices' impact on patient outcomes. In cardiology, wearables have proven effective for monitoring hypertension, detecting arrhythmias, and aiding cardiac rehabilitation. In respiratory health, these devices enhance asthma management and continuous monitoring of critical parameters. Neurological applications include seizure detection and Parkinson's disease management, with wearables showing promising results in improving patient outcomes. In endocrinology, wearable technology advances thyroid dysfunction monitoring, fertility tracking, and diabetes management. Orthopedic applications include improved postsurgical recovery and rehabilitation, while wearables help in early complication detection in oncology. Mental health benefits include anxiety detection, post-traumatic stress disorder management, and stress reduction through wearable biofeedback. In conclusion, wearable health devices offer transformative potential for managing chronic illnesses by enhancing real-time monitoring and patient engagement. Despite significant improvements in adherence and outcomes, challenges with data accuracy and privacy persist. However, with ongoing innovation and collaboration, we can all be part of the solution to maximize the benefits of wearable technologies in healthcare.
Collapse
Affiliation(s)
- Eman A Jafleh
- College of Dentistry, University of Sharjah, Sharjah, ARE
| | | | | | - Shooq Faqeeh
- College of Medicine, University of Sharjah, Sharjah, ARE
| | - Moza A Alzaabi
- Internal Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, ARE
| | - Khaled Al Zaman
- General Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, ARE
| |
Collapse
|
4
|
Singh B, Chastin S, Miatke A, Curtis R, Dumuid D, Brinsley J, Ferguson T, Szeto K, Simpson C, Eglitis E, Willems I, Maher C. Real-World Accuracy of Wearable Activity Trackers for Detecting Medical Conditions: Systematic Review and Meta-Analysis. JMIR Mhealth Uhealth 2024; 12:e56972. [PMID: 39213525 PMCID: PMC11399740 DOI: 10.2196/56972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Wearable activity trackers, including fitness bands and smartwatches, offer the potential for disease detection by monitoring physiological parameters. However, their accuracy as specific disease diagnostic tools remains uncertain. OBJECTIVE This systematic review and meta-analysis aims to evaluate whether wearable activity trackers can be used to detect disease and medical events. METHODS Ten electronic databases were searched for studies published from inception to April 1, 2023. Studies were eligible if they used a wearable activity tracker to diagnose or detect a medical condition or event (eg, falls) in free-living conditions in adults. Meta-analyses were performed to assess the overall area under the curve (%), accuracy (%), sensitivity (%), specificity (%), and positive predictive value (%). Subgroup analyses were performed to assess device type (Fitbit, Oura ring, and mixed). The risk of bias was assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Diagnostic Test Accuracy Studies. RESULTS A total of 28 studies were included, involving a total of 1,226,801 participants (age range 28.6-78.3). In total, 16 (57%) studies used wearables for diagnosis of COVID-19, 5 (18%) studies for atrial fibrillation, 3 (11%) studies for arrhythmia or abnormal pulse, 3 (11%) studies for falls, and 1 (4%) study for viral symptoms. The devices used were Fitbit (n=6), Apple watch (n=6), Oura ring (n=3), a combination of devices (n=7), Empatica E4 (n=1), Dynaport MoveMonitor (n=2), Samsung Galaxy Watch (n=1), and other or not specified (n=2). For COVID-19 detection, meta-analyses showed a pooled area under the curve of 80.2% (95% CI 71.0%-89.3%), an accuracy of 87.5% (95% CI 81.6%-93.5%), a sensitivity of 79.5% (95% CI 67.7%-91.3%), and specificity of 76.8% (95% CI 69.4%-84.1%). For atrial fibrillation detection, pooled positive predictive value was 87.4% (95% CI 75.7%-99.1%), sensitivity was 94.2% (95% CI 88.7%-99.7%), and specificity was 95.3% (95% CI 91.8%-98.8%). For fall detection, pooled sensitivity was 81.9% (95% CI 75.1%-88.1%) and specificity was 62.5% (95% CI 14.4%-100%). CONCLUSIONS Wearable activity trackers show promise in disease detection, with notable accuracy in identifying atrial fibrillation and COVID-19. While these findings are encouraging, further research and improvements are required to enhance their diagnostic precision and applicability. TRIAL REGISTRATION Prospero CRD42023407867; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=407867.
Collapse
Affiliation(s)
- Ben Singh
- Allied Health & Human Performance, University of South Australia, Adelaide, Australia
| | - Sebastien Chastin
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Aaron Miatke
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Rachel Curtis
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Dorothea Dumuid
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Jacinta Brinsley
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Ty Ferguson
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Kimberley Szeto
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Catherine Simpson
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Emily Eglitis
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Iris Willems
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Carol Maher
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Zhang J, Swinnen L, Chatzichristos C, Van Paesschen W, De Vos M. Learning Robust Representations of Tonic-Clonic Seizures With Cyclic Transformer. IEEE J Biomed Health Inform 2024; 28:3721-3731. [PMID: 38457319 DOI: 10.1109/jbhi.2024.3375123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Tonic-clonic seizures (TCSs) pose a significant risk for sudden unexpected death in epilepsy (SUDEP). Previous research has highlighted the potential of multimodal wearable seizure detection systems in accurately detecting TCSs through continuous monitoring, enabling timely alarms and potentially preventing SUDEP. However, such multimodal systems carry a higher risk of sensor malfunction. In this paper, we propose a cyclic transformer approach to address these challenges. The cyclic transformer learns a robust representation by performing circular modal translations between the source and target modalities. It leverages back-translation as regularization technique to enhance the discriminative power of the learned representation. Notably, the proposed cyclic transformer is trained on paired multimodal data but requires only a single source modality during deployment. This characteristic ensures the robustness of the cyclic transformer to perturbations or missing information in the target modality. Experimental results demonstrate that the proposed cyclic transformer achieves competitive performance compared with existing multimodal systems. While both approaches were trained using EEG and EMG data, the cyclic transformer exclusively employs EEG data for testing, diverging from the state-of-the-art's utilization of both EEG and EMG data during test. This showcases the effectiveness of the cyclic transformer in multimodal TCSs detection, offering a promising approach for enhancing the accuracy and robustness of seizure detection systems while mitigating the risks associated with sensor malfunction.
Collapse
|
6
|
Ali E, Angelova M, Karmakar C. Epileptic seizure detection using CHB-MIT dataset: The overlooked perspectives. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230601. [PMID: 39076791 PMCID: PMC11286169 DOI: 10.1098/rsos.230601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/23/2023] [Accepted: 03/28/2024] [Indexed: 07/31/2024]
Abstract
Epilepsy is a life-threatening neurological condition. Manual detection of epileptic seizures (ES) is laborious and burdensome. Machine learning techniques applied to electroencephalography (EEG) signals are widely used for automatic seizure detection. Some key factors are worth considering for the real-world applicability of such systems: (i) continuous EEG data typically has a higher class imbalance; (ii) higher variability across subjects is present in physiological signals such as EEG; and (iii) seizure event detection is more practical than random segment detection. Most prior studies failed to address these crucial factors altogether for seizure detection. In this study, we intend to investigate a generalized cross-subject seizure event detection system using the continuous EEG signals from the CHB-MIT dataset that considers all these overlooked aspects. A 5-second non-overlapping window is used to extract 92 features from 22 EEG channels; however, the most significant 32 features from each channel are used in experimentation. Seizure classification is done using a Random Forest (RF) classifier for segment detection, followed by a post-processing method used for event detection. Adopting all the above-mentioned essential aspects, the proposed event detection system achieved 72.63% and 75.34% sensitivity for subject-wise 5-fold and leave-one-out analyses, respectively. This study presents the real-world scenario for ES event detectors and furthers the understanding of such detection systems.
Collapse
Affiliation(s)
- Emran Ali
- School of Information Technology, Deakin University, Melbourne Burwood Campus, Melbourne, Victoria3125, Australia
| | - Maia Angelova
- School of Information Technology, Deakin University, Melbourne Burwood Campus, Melbourne, Victoria3125, Australia
- Aston Digital Futures Institute, EPS, Aston University, Birmingham, UK
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Chandan Karmakar
- School of Information Technology, Deakin University, Melbourne Burwood Campus, Melbourne, Victoria3125, Australia
| |
Collapse
|
7
|
Kerr WT, McFarlane KN. Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist. Curr Neurol Neurosci Rep 2023; 23:869-879. [PMID: 38060133 DOI: 10.1007/s11910-023-01318-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Machine Learning (ML) and Artificial Intelligence (AI) are data-driven techniques to translate raw data into applicable and interpretable insights that can assist in clinical decision making. Some of these tools have extremely promising initial results, earning both great excitement and creating hype. This non-technical article reviews recent developments in ML/AI in epilepsy to assist the current practicing epileptologist in understanding both the benefits and limitations of integrating ML/AI tools into their clinical practice. RECENT FINDINGS ML/AI tools have been developed to assist clinicians in almost every clinical decision including (1) predicting future epilepsy in people at risk, (2) detecting and monitoring for seizures, (3) differentiating epilepsy from mimics, (4) using data to improve neuroanatomic localization and lateralization, and (5) tracking and predicting response to medical and surgical treatments. We also discuss practical, ethical, and equity considerations in the development and application of ML/AI tools including chatbots based on Large Language Models (e.g., ChatGPT). ML/AI tools will change how clinical medicine is practiced, but, with rare exceptions, the transferability to other centers, effectiveness, and safety of these approaches have not yet been established rigorously. In the future, ML/AI will not replace epileptologists, but epileptologists with ML/AI will replace epileptologists without ML/AI.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Informatics, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA.
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Katherine N McFarlane
- Department of Neurology, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA
| |
Collapse
|
8
|
Sopic D, Teijeiro T, Atienza D, Aminifar A, Ryvlin P. Personalized seizure signature: An interpretable approach to false alarm reduction for long-term epileptic seizure detection. Epilepsia 2023; 64 Suppl 4:S23-S33. [PMID: 35113451 DOI: 10.1111/epi.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Long-term automatic detection of focal seizures remains one of the major challenges in epilepsy due to the unacceptably high number of false alarms from state-of-the-art methods. Our aim was to investigate to what extent a new patient-specific approach based on similarly occurring morphological electroencephalographic (EEG) signal patterns could be used to distinguish seizures from nonseizure events, as well as to estimate its maximum performance. METHODS We evaluated our approach on >5500 h of long-term EEG recordings using two public datasets: the PhysioNet.org Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) Scalp EEG database and the EPILEPSIAE European epilepsy database. We visually identified a set of similarly occurring morphological patterns (seizure signature) seen simultaneously over two different EEG channels, and within two randomly selected seizures from each individual. The same seizure signature was then searched for in the entire recording from the same patient using dynamic time warping (DTW) as a similarity metric, with a threshold set to reflect the maximum sensitivity our algorithm could achieve without false alarm. RESULTS At a DTW threshold providing no false alarm during the entire recordings, the mean seizure detection sensitivity across patients was 84%, including 96% for the CHB-MIT database and 74% for the European epilepsy database. A 100% sensitivity was reached in 50% of patients, including 79% from the CHB-MIT database and 27% from the European epilepsy database. The median latency from seizure onset to its detection was 17 ± 10 s, with 84% of seizures being detected within 40 s. SIGNIFICANCE Personalized EEG signature combined with DTW appears to be a promising method to detect ictal events from a limited number of EEG channels with high sensitivity despite low rate of false alarms, high degree of interpretability, and low computational complexity, compatible with its future use in wearable devices.
Collapse
Affiliation(s)
- Dionisije Sopic
- Embedded Systems Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Tomas Teijeiro
- Embedded Systems Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - David Atienza
- Embedded Systems Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Amir Aminifar
- Department of Electrical and Information Technology, Lund University, Lund, Sweden
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Neurology Service, Lausanne University Hospital (Vaud University Hospital Center), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Prieto-Avalos G, Sánchez-Morales LN, Alor-Hernández G, Sánchez-Cervantes JL. A Review of Commercial and Non-Commercial Wearables Devices for Monitoring Motor Impairments Caused by Neurodegenerative Diseases. BIOSENSORS 2022; 13:72. [PMID: 36671907 PMCID: PMC9856141 DOI: 10.3390/bios13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Neurodegenerative diseases (NDDs) are among the 10 causes of death worldwide. The effects of NDDs, including irreversible motor impairments, have an impact not only on patients themselves but also on their families and social environments. One strategy to mitigate the pain of NDDs is to early identify and remotely monitor related motor impairments using wearable devices. Technological progress has contributed to reducing the hardware complexity of mobile devices while simultaneously improving their efficiency in terms of data collection and processing and energy consumption. However, perhaps the greatest challenges of current mobile devices are to successfully manage the security and privacy of patient medical data and maintain reasonable costs with respect to the traditional patient consultation scheme. In this work, we conclude: (1) Falls are most monitored for Parkinson's disease, while tremors predominate in epilepsy and Alzheimer's disease. These findings will provide guidance for wearable device manufacturers to strengthen areas of opportunity that need to be addressed, and (2) Of the total universe of commercial wearables devices that are available on the market, only a few have FDA approval, which means that there is a large number of devices that do not safeguard the integrity of the users who use them.
Collapse
Affiliation(s)
- Guillermo Prieto-Avalos
- Tecnológico Nacional de México/I.T. Orizaba, Av. Oriente 9 No. 852 Col. Emiliano Zapata, Orizaba 94320, Veracruz, Mexico
| | - Laura Nely Sánchez-Morales
- CONACYT-Tecnológico Nacional de México/I.T. Orizaba, Av. Oriente 9 No. 852 Col. Emiliano Zapata, Orizaba 94320, Veracruz, Mexico
| | - Giner Alor-Hernández
- Tecnológico Nacional de México/I.T. Orizaba, Av. Oriente 9 No. 852 Col. Emiliano Zapata, Orizaba 94320, Veracruz, Mexico
| | - José Luis Sánchez-Cervantes
- CONACYT-Tecnológico Nacional de México/I.T. Orizaba, Av. Oriente 9 No. 852 Col. Emiliano Zapata, Orizaba 94320, Veracruz, Mexico
| |
Collapse
|
10
|
Zambrana-Vinaroz D, Vicente-Samper JM, Manrique-Cordoba J, Sabater-Navarro JM. Wearable Epileptic Seizure Prediction System Based on Machine Learning Techniques Using ECG, PPG and EEG Signals. SENSORS (BASEL, SWITZERLAND) 2022; 22:9372. [PMID: 36502071 PMCID: PMC9736525 DOI: 10.3390/s22239372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Epileptic seizures have a great impact on the quality of life of people who suffer from them and further limit their independence. For this reason, a device that would be able to monitor patients' health status and warn them for a possible epileptic seizure would improve their quality of life. With this aim, this article proposes the first seizure predictive model based on Ear EEG, ECG and PPG signals obtained by means of a device that can be used in a static and outpatient setting. This device has been tested with epileptic people in a clinical environment. By processing these data and using supervised machine learning techniques, different predictive models capable of classifying the state of the epileptic person into normal, pre-seizure and seizure have been developed. Subsequently, a reduced model based on Boosted Trees has been validated, obtaining a prediction accuracy of 91.5% and a sensitivity of 85.4%. Thus, based on the accuracy of the predictive model obtained, it can potentially serve as a support tool to determine the status epilepticus and prevent a seizure, thereby improving the quality of life of these people.
Collapse
Affiliation(s)
- David Zambrana-Vinaroz
- Neuroengineering Biomedical Research Group, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Jose Maria Vicente-Samper
- Neuroengineering Biomedical Research Group, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Juliana Manrique-Cordoba
- Neuroengineering Biomedical Research Group, Miguel Hernández University of Elche, 03202 Elche, Spain
| | | |
Collapse
|
11
|
Chen F, Chen I, Zafar M, Sinha SR, Hu X. Seizures detection using multimodal signals: a scoping review. Physiol Meas 2022; 43:07TR01. [PMID: 35724654 DOI: 10.1088/1361-6579/ac7a8d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/20/2022] [Indexed: 11/12/2022]
Abstract
Introduction. Epileptic seizures are common neurological disorders in the world, impacting 65 million people globally. Around 30% of patients with seizures suffer from refractory epilepsy, where seizures are not controlled by medications. The unpredictability of seizures makes it essential to have a continuous seizure monitoring system outside clinical settings for the purpose of minimizing patients' injuries and providing additional pathways for evaluation and treatment follow-up. Autonomic changes related to seizure events have been extensively studied and attempts made to apply them for seizure detection and prediction tasks. This scoping review aims to depict current research activities associated with the implementation of portable, wearable devices for seizure detection or prediction and inform future direction in continuous seizure tracking in ambulatory settings.Methods. Overall methodology framework includes 5 essential stages: research questions identification, relevant studies identification, selection of studies, data charting and summarizing the findings. A systematic searching strategy guided by systematic reviews and meta-analysis (PRISMA) was implemented to identify relevant records on two databases (PubMed, IEEE).Results. A total of 30 articles were included in our final analysis. Most of the studies were conducted off-line and employed consumer-graded wearable device. ACM is the dominant modality to be used in seizure detection, and widely deployed algorithms entail Support Vector Machine, Random Forest and threshold-based approach. The sensitivity ranged from 33.2% to 100% for single modality with a false alarm rate (FAR) ranging from 0.096 to 14.8 d-1. Multimodality has a sensitivity ranging from 51% to 100% with FAR ranging from 0.12 to 17.7 d-1.Conclusion. The overall performance in seizure detection system based on non-cerebral physiological signals is promising, especially for the detection of motor seizures and seizures accompanied with intense ictal autonomic changes.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Ina Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Muhammad Zafar
- Department of Paediatrics, Neurology, School of Medicine, Duke University, Durham, NC, United States of America
| | - Saurabh R Sinha
- Duke Comprehensive Epilepsy Center, Department of Neurology, School of Medicine, Duke University, Durham, NC, United States of America
| | - Xiao Hu
- Department of Biomedical Engineering, Biostatistics & Bioinformatics, School of Medicine, School of Nursing, Duke University, Durham, NC, United States of America
| |
Collapse
|
12
|
Agrahri A, Tyagi A, Kumar D, Kusumakar S, Palaniswami M, Yan B. Detection of Epileptic Seizure Using Accelerometer Time Series Data and Hidden Markov Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2426-2429. [PMID: 36086544 DOI: 10.1109/embc48229.2022.9871914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epilepsy is one of the most prevalent neurological diseases globally, which causes seizures in the patient. As per a survey done worldwide, it is found that approximately 70 million people are living with epilepsy (~1% of the total population of the world). Effective detection of these seizures requires specialized approaches such as video and electroencephalography monitoring, which are expensive and are mainly available at specialized hospitals and institutes. Hence, there is a need to develop simpler and affordable systems that can be made available to health care centers and patients for accurate detection of epileptic seizures. A wireless remote monitoring system based on a wrist-worn accelerometer is an optimum choice for the same. Sophisticated algorithms need to be developed for effectively detecting seizure events from this accelerometer data with minimal false alarms. This paper presents a Hidden Markov Model (HMM) based probabilistic approach applied to the reduced-dimension feature vector representation of time-series accelerometer data to detect epileptic seizures. The results obtained from the HMM were compared with three commonly used machine learning models viz. support vector machine (SVM), logistic regression, and random forest. The proposed approach was able to detect 95.7% of seizures with a low false alarm rate of 14.8% with a run time of just under 24 seconds.
Collapse
|
13
|
Kok XH, Imtiaz SA, Rodriguez-Villegas E. Assessing the Feasibility of Acoustic Based Seizure Detection. IEEE Trans Biomed Eng 2022; 69:2379-2389. [PMID: 35061585 DOI: 10.1109/tbme.2022.3144634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Long-term monitoring of epilepsy patients outside of hospital settings is impractical due to the complexity and costs associated with electroencephalogram (EEG) systems. Alternative sensing modalities that can acquire, and automatically interpret signals through easy-to-use wearable devices, are needed to help with at-home management of the disease. In this paper, a novel machine learning algorithm is presented for detecting epileptic seizures using acoustic physiological signals acquired from the neck using a wearable device. METHODS Acoustic signals from an existing database, were processed, to extract their Mel-frequency Cepstral Coefficients (MFCCs) which were used to train RUSBoost classifiers to identify ictal and non-ictal acoustic segments. A postprocessing stage was then applied to the segment classification results to identify seizures episodes. RESULTS Tested on 667 hours of acoustic data acquired from 15 patients with at least one seizure, the algorithm achieved a detection sensitivity of 88.1% (95% CI: 79%-97%) from a total of 36 seizures, out of which 24 had no motor manifestations, with a FPR of 0.83/h, and a median detection latency of -42 s. CONCLUSION The results demonstrated for the first time the ability to identify seizures using acoustic internal body signals acquired on the neck. SIGNIFICANCE The results of this paper validate the feasibility of using internal physiological sounds for seizure detection, which could potentially be of use for the development of novel, wearable, very simple to use, long term monitoring, or seizure detection systems; circumventing the practical limitations of EEG monitoring outside hospital settings, or systems based on sensing modalities that work on convulsive seizures only.
Collapse
|
14
|
Naganur V, Sivathamboo S, Chen Z, Kusmakar S, Antonic-Baker A, O'Brien TJ, Kwan P. Automated seizure detection with non-invasive wearable devices: A systematic review and meta-analysis. Epilepsia 2022; 63:1930-1941. [PMID: 35545836 PMCID: PMC9545631 DOI: 10.1111/epi.17297] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Objective This study was undertaken to review the reported performance of noninvasive wearable devices in detecting epileptic seizures and psychogenic nonepileptic seizures (PNES). Methods We conducted a systematic review and meta‐analysis of studies reported up to November 15, 2021. We included studies that used video‐electroencephalographic (EEG) monitoring as the gold standard to determine the sensitivity and false alarm rate (FAR) of noninvasive wearables for automated seizure detection. Results Twenty‐eight studies met the criteria for the systematic review, of which 23 were eligible for meta‐analysis. These studies (1269 patients in total, median recording time = 52.9 h per patient) investigated devices for tonic–clonic seizures using wrist‐worn and/or ankle‐worn devices to measure three‐dimensional accelerometry (15 studies), and/or wearable surface devices to measure electromyography (eight studies). The mean sensitivity for detecting tonic–clonic seizures was .91 (95% confidence interval [CI] = .85–.96, I2 = 83.8%); sensitivity was similar between the wrist‐worn (.93) and surface devices (.90). The overall FAR was 2.1/24 h (95% CI = 1.7–2.6, I2 = 99.7%); FAR was higher in wrist‐worn (2.5/24 h) than in wearable surface devices (.96/24 h). Three of the 23 studies also detected PNES; the mean sensitivity and FAR from these studies were 62.9% and .79/24 h, respectively. Four studies detected both focal and tonic–clonic seizures, and one study detected focal seizures only; the sensitivities ranged from 31.1% to 93.1% in these studies. Significance Reported noninvasive wearable devices had high sensitivity but relatively high FARs in detecting tonic–clonic seizures during limited recording time in a video‐EEG setting. Future studies should focus on reducing FAR, detection of other seizure types and PNES, and longer recording in the community.
Collapse
Affiliation(s)
- Vaidehi Naganur
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, 3000, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| | - Shobi Sivathamboo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, 3000, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia.,Chronic Disease and Ageing, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Shitanshu Kusmakar
- Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, Australia
| | - Ana Antonic-Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, 3000, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia.,Department of Medicine, The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, 3000, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| |
Collapse
|
15
|
Intra- and Inter-Subject Perspectives on the Detection of Focal Onset Motor Seizures in Epilepsy Patients. SENSORS 2022; 22:s22093318. [PMID: 35591007 PMCID: PMC9105312 DOI: 10.3390/s22093318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/15/2023]
Abstract
Focal onset epileptic seizures are highly heterogeneous in their clinical manifestations, and a robust seizure detection across patient cohorts has to date not been achieved. Here, we assess and discuss the potential of supervised machine learning models for the detection of focal onset motor seizures by means of a wrist-worn wearable device, both in a personalized context as well as across patients. Wearable data were recorded in-hospital from patients with epilepsy at two epilepsy centers. Accelerometry, electrodermal activity, and blood volume pulse data were processed and features for each of the biosignal modalities were calculated. Following a leave-one-out approach, a gradient tree boosting machine learning model was optimized and tested in an intra-subject and inter-subject evaluation. In total, 20 seizures from 9 patients were included and we report sensitivities of 67% to 100% and false alarm rates of down to 0.85 per 24 h in the individualized assessment. Conversely, for an inter-subject seizure detection methodology tested on an out-of-sample data set, an optimized model could only achieve a sensitivity of 75% at a false alarm rate of 13.4 per 24 h. We demonstrate that robustly detecting focal onset motor seizures with tonic or clonic movements from wearable data may be possible for individuals, depending on specific seizure manifestations.
Collapse
|
16
|
Zhang J, Chatzichristos C, Vandecasteele K, Swinnen L, Broux V, Cleeren E, Van Paesschen W, De Vos M. Automatic annotation correction for wearable EEG based epileptic seizure detection. J Neural Eng 2022; 19. [PMID: 35158349 DOI: 10.1088/1741-2552/ac54c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Video-electroencephalography (vEEG), which defines the ground truth for the detection of epileptic seizures, is inadequate for long-term home monitoring. Thanks to their advantages in comfort and unobtrusiveness, wearable EEG devices have been suggested as a solution for home monitoring. However, one of the challenges in data-driven automated seizure detection with wearable EEG data is to have reliable seizure annotations. Seizure annotations on the gold-standard 25-channel vEEG recordings may not be optimal to delineate seizure activity on the concomitantly recorded wearable EEG, due to artifacts or absence of ictal activity on the limited set of electrodes of the wearable EEG. This paper aims to develop an automatic approach to correct the imperfect annotations of seizure activity on wearable EEG, which can be used to train seizure detection algorithms. APPROACH This paper first investigates the effectiveness of correcting the seizure annotations for the training set with a visual annotation correction. Then a novel approach has been proposed to automatically remove non-seizure data from wearable EEG in epochs annotated as seizures in gold-standard video-EEG recordings. The performance of the automatic annotation correction approach was evaluated by comparing the seizure detection models trained with 1. original vEEG seizure annotations, 2. visually corrected seizure annotations, and 3. automatically corrected seizure annotations. RESULTS The automatic seizure detection approach trained with automatically corrected seizure annotations was more sensitive and had fewer false-positive detections compared to the approach trained with visually corrected seizure annotations, and the approach trained with the original seizure annotations from gold-standard vEEG. SIGNIFICANCE The wearable EEG seizure detection approach performs better when trained with automatic seizure annotation correction.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Electrical Engineering, STADIUS, KU Leuven, Kasteelpark Arenberg 10, Leuven, Flanders, 3000, BELGIUM
| | - Christos Chatzichristos
- Department of Electrical Engineering, STADIUS, KU Leuven, Kasteelpark Arenberg 10 - box 2446, Leuven, Flanders, 3000, BELGIUM
| | - Kaat Vandecasteele
- Department of Electrical Engineering, STADIUS, KU Leuven, Kasteelpark Arenberg 10, Leuven, Flanders, 3000, BELGIUM
| | - Lauren Swinnen
- KU Leuven, ON V Herestraat 49 - box 1022, Leuven, Flanders, 3000, BELGIUM
| | - Victoria Broux
- Katholieke Universiteit Leuven UZ Leuven, UZ Herestraat 49, Leuven, Flanders, 3000, BELGIUM
| | - Evy Cleeren
- Katholieke Universiteit Leuven UZ Leuven, ON II Herestraat 49 - box 1021, Leuven, Flanders, 3000, BELGIUM
| | - Wim Van Paesschen
- Katholieke Universiteit Leuven UZ Leuven, UZ Herestraat 49 - box 7003, Leuven, Flanders, 3000, BELGIUM
| | - Maarten De Vos
- Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10 - box 2440, Leuven, Flanders, 3000, BELGIUM
| |
Collapse
|
17
|
Munch Nielsen J, Zibrandtsen IC, Masulli P, Lykke Sørensen T, Andersen TS, Wesenberg Kjær T. Towards a wearable multi-modal seizure detection system in epilepsy: a pilot study. Clin Neurophysiol 2022; 136:40-48. [DOI: 10.1016/j.clinph.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
|
18
|
Dong C, Ye T, Long X, Aarts RM, van Dijk JP, Shang C, Liao X, Chen W, Lai W, Chen L, Wang Y. A Two-Layer Ensemble Method for Detecting Epileptic Seizures Using a Self-Annotation Bracelet With Motor Sensors. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2022. [DOI: 10.1109/tim.2022.3173270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chunjiao Dong
- Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) and the Department of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Tianchun Ye
- Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS), Beijing, China
| | - Xi Long
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
| | - Ronald M. Aarts
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
| | - Johannes P. van Dijk
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
| | - Chunheng Shang
- Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS), Beijing, China
| | - Xiwen Liao
- Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS), Beijing, China
| | - Wei Chen
- Department of Electronic Engineering, School of Information Science and Technology, Center for Intelligent Medical Electronics, Fudan University, Shanghai, China
| | - Wanlin Lai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfeng Wang
- Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS), Beijing, China
| |
Collapse
|
19
|
Glasstetter M, Böttcher S, Zabler N, Epitashvili N, Dümpelmann M, Richardson MP, Schulze-Bonhage A. Identification of Ictal Tachycardia in Focal Motor- and Non-Motor Seizures by Means of a Wearable PPG Sensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:6017. [PMID: 34577222 PMCID: PMC8470979 DOI: 10.3390/s21186017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Photoplethysmography (PPG) as an additional biosignal for a seizure detector has been underutilized so far, which is possibly due to its susceptibility to motion artifacts. We investigated 62 focal seizures from 28 patients with electrocardiography-based evidence of ictal tachycardia (IT). Seizures were divided into subgroups: those without epileptic movements and those with epileptic movements not affecting and affecting the extremities. PPG-based heart rate (HR) derived from a wrist-worn device was calculated for sections with high signal quality, which were identified using spectral entropy. Overall, IT based on PPG was identified in 37 of 62 (60%) seizures (9/19, 7/8, and 21/35 in the three groups, respectively) and could be found prior to the onset of epileptic movements affecting the extremities in 14/21 seizures. In 30/37 seizures, PPG-based IT was in good temporal agreement (<10 s) with ECG-based IT, with an average delay of 5.0 s relative to EEG onset. In summary, we observed that the identification of IT by means of a wearable PPG sensor is possible not only for non-motor seizures but also in motor seizures, which is due to the early manifestation of IT in a relevant subset of focal seizures. However, both spontaneous and epileptic movements can impair PPG-based seizure detection.
Collapse
Affiliation(s)
- Martin Glasstetter
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.B.); (N.Z.); (N.E.); (M.D.); (A.S.-B.)
| | - Sebastian Böttcher
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.B.); (N.Z.); (N.E.); (M.D.); (A.S.-B.)
| | - Nicolas Zabler
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.B.); (N.Z.); (N.E.); (M.D.); (A.S.-B.)
| | - Nino Epitashvili
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.B.); (N.Z.); (N.E.); (M.D.); (A.S.-B.)
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.B.); (N.Z.); (N.E.); (M.D.); (A.S.-B.)
| | - Mark P. Richardson
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience King’s College London, London SE5 9RT, UK;
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.B.); (N.Z.); (N.E.); (M.D.); (A.S.-B.)
| |
Collapse
|
20
|
Yang Y, Sarkis RA, Atrache RE, Loddenkemper T, Meisel C. Video-Based Detection of Generalized Tonic-Clonic Seizures Using Deep Learning. IEEE J Biomed Health Inform 2021; 25:2997-3008. [PMID: 33406048 DOI: 10.1109/jbhi.2021.3049649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Timely detection of seizures is crucial to implement optimal interventions, and may help reduce the risk of sudden unexpected death in epilepsy (SUDEP) in patients with generalized tonic-clonic seizures (GTCSs). While video-based automated seizure detection systems may be able to provide seizure alarms in both in-hospital and at-home settings, earlier studies have primarily employed hand-designed features for such a task. In contrast, deep learning-based approaches do not rely on prior feature selection and have demonstrated outstanding performance in many data classification tasks. Despite these advantages, neural network-based video classification has rarely been attempted for seizure detection. We here assessed the feasibility and efficacy of automated GTCSs detection from videos using deep learning. We retrospectively identified 76 GTCS videos from 37 participants who underwent long-term video-EEG monitoring (LTM) along with interictal video data from the same patients, and 10 full-night seizure-free recordings from additional patients. Using a leave-one-subject-out cross-validation approach (LOSO-CV), we evaluated the performance to detect seizures based on individual video frames (convolutional neural networks, CNNs) or video sequences [CNN+long short-term memory (LSTM) networks]. CNN+LSTM networks based on video sequences outperformed GTCS detection based on individual frames yielding a mean sensitivity of 88% and mean specificity of 92% across patients. The average detection latency after presumed clinical seizure onset was 22 seconds. Detection performance increased as a function of training dataset size. Collectively, we demonstrated that automated video-based GTCS detection with deep learning is feasible and efficacious. Deep learning-based methods may be able to overcome some limitations associated with traditional approaches using hand-crafted features, serve as a benchmark for future methods and analyses, and improve further with larger datasets.
Collapse
|
21
|
Kusmakar S, Karmakar C, Zhu Y, Shelyag S, Drummond SPA, Ellis JG, Angelova M. A machine learning model for multi-night actigraphic detection of chronic insomnia: development and validation of a pre-screening tool. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202264. [PMID: 34150313 PMCID: PMC8206690 DOI: 10.1098/rsos.202264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We propose a novel machine learning-based method for analysing multi-night actigraphy signals to objectively classify and differentiate nocturnal awakenings in individuals with chronic insomnia (CI) and their cohabiting healthy partners. We analysed nocturnal actigraphy signals from 40 cohabiting couples with one partner seeking treatment for insomnia. We extracted 12 time-domain dynamic and nonlinear features from the actigraphy signals to classify nocturnal awakenings in healthy individuals and those with CI. These features were then used to train two machine learning classifiers, random forest (RF) and support vector machine (SVM). An optimization algorithm that incorporated the predicted quality of each night for each individual was used to classify individuals into CI or healthy sleepers. Using the proposed actigraphic signal analysis technique, coupled with a rigorous leave-one-out validation approach, we achieved a classification accuracy of 80% (sensitivity: 76%, specificity: 82%) in classifying CI individuals and their healthy bed partners. The RF classifier (accuracy: 80%) showed a better performance than SVM (accuracy: 75%). Our approach to analysing the multi-night nocturnal actigraphy recordings provides a new method for screening individuals with CI, using wrist-actigraphy devices, facilitating home monitoring.
Collapse
Affiliation(s)
- S. Kusmakar
- School of Information Technology, Deakin University, Geelong, Victoria 3125, Australia
| | - C. Karmakar
- School of Information Technology, Deakin University, Geelong, Victoria 3125, Australia
| | - Y. Zhu
- School of Information Technology, Deakin University, Geelong, Victoria 3125, Australia
| | - S. Shelyag
- School of Information Technology, Deakin University, Geelong, Victoria 3125, Australia
| | - S. P. A. Drummond
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - J. G. Ellis
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - M. Angelova
- School of Information Technology, Deakin University, Geelong, Victoria 3125, Australia
| |
Collapse
|
22
|
Affiliation(s)
- Mark Manford
- Neurology, Cambridge University, Cambridge CB2 1TN, UK
| |
Collapse
|
23
|
Nasseri M, Pal Attia T, Joseph B, Gregg NM, Nurse ES, Viana PF, Schulze-Bonhage A, Dümpelmann M, Worrell G, Freestone DR, Richardson MP, Brinkmann BH. Non-invasive wearable seizure detection using long-short-term memory networks with transfer learning. J Neural Eng 2021; 18:056017. [PMID: 33730713 DOI: 10.1088/1741-2552/abef8a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/17/2021] [Indexed: 11/12/2022]
Abstract
Objective. The detection of seizures using wearable devices would improve epilepsy management, but reliable detection of seizures in an ambulatory environment remains challenging, and current studies lack concurrent validation of seizures using electroencephalography (EEG) data.Approach. An adaptively trained long-short-term memory deep neural network was developed and trained using a modest number of seizure data sets from wrist-worn devices. Transfer learning was used to adapt a classifier that was initially trained on intracranial electroencephalography (iEEG) signals to facilitate classification of non-EEG physiological datasets comprising accelerometry, blood volume pulse, skin electrodermal activity, heart rate, and temperature signals. The algorithm's performance was assessed with and without pre-training on iEEG signals and transfer learning. To assess the performance of the seizure detection classifier using long-term ambulatory data, wearable devices were used for multiple months with an implanted neurostimulator capable of recording iEEG signals, which provided independent electrographic seizure detections that were reviewed by a board-certified epileptologist.Main results. For 19 motor seizures from 10 in-hospital patients, the algorithm yielded a mean area under curve (AUC), a sensitivity, and an false alarm rate per day (FAR/day) of 0.98, 0.93, and 2.3, respectively. Additionally, for eight seizures with probable motor semiology from two ambulatory patients, the classifier achieved a mean AUC of 0.97 and an FAR of 2.45 events/day at a sensitivity of 0.9. For all seizure types in the ambulatory setting, the classifier had a mean AUC of 0.82 with a sensitivity of 0.47 and an FAR of 7.2 events/day.Significance. The performance of the algorithm was evaluated using motor and non-motor seizures during in-hospital and ambulatory use. The classifier was able to detect multiple types of motor and non-motor seizures, but performed significantly better on motor seizures.
Collapse
Affiliation(s)
- Mona Nasseri
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
- School of Engineering, University of North Florida, Jacksonville, FL, United States of America
| | - Tal Pal Attia
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Boney Joseph
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Nicholas M Gregg
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Ewan S Nurse
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
- Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Melbourne, VIC, Australia
| | - Pedro F Viana
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | - Andreas Schulze-Bonhage
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Dümpelmann
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gregory Worrell
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Dean R Freestone
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
- Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Melbourne, VIC, Australia
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Benjamin H Brinkmann
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| |
Collapse
|
24
|
Beniczky S, Wiebe S, Jeppesen J, Tatum WO, Brazdil M, Wang Y, Herman ST, Ryvlin P. Automated seizure detection using wearable devices: A clinical practice guideline of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology. Epilepsia 2021; 62:632-646. [PMID: 33666944 DOI: 10.1111/epi.16818] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The objective of this clinical practice guideline (CPG) is to provide recommendations for healthcare personnel working with patients with epilepsy on the use of wearable devices for automated seizure detection in patients with epilepsy, in outpatient, ambulatory settings. The Working Group of the International League Against Epilepsy (ILAE) and the International Federation of Clinical Neurophysiology (IFCN) developed the CPG according to the methodology proposed by the ILAE Epilepsy Guidelines Working Group. We reviewed the published evidence using The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement and evaluated the evidence and formulated the recommendations following the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. We found high level of evidence for the accuracy of automated detection of generalized tonic-clonic seizures (GTCS) and focal-to-bilateral tonic-clonic seizures (FBTCS) and recommend the use of wearable automated seizure detection devices for selected patients when accurate detection of GTCS and FBTCS is recommended as a clinical adjunct. We also found a moderate level of evidence for seizure types without GTCS or FBTCS. However, it was uncertain whether the detected alarms resulted in meaningful clinical outcomes for the patients. We recommend using clinically validated devices for automated detection of GTCS and FBTCS, especially in unsupervised patients, where alarms can result in rapid intervention (weak/conditional recommendation). At present, we do not recommend clinical use of the currently available devices for other seizure types (weak/conditional recommendation). Further research and development are needed to improve the performance of automated seizure detection and to document their accuracy and clinical utility.
Collapse
Affiliation(s)
- Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre and Aarhus University Hospital, Dianalund, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Samuel Wiebe
- Department of Clinical Neurosciences and Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jesper Jeppesen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus C, Denmark
| | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Milan Brazdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic.,Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Susan T Herman
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Automated seizure detection using wearable devices: A clinical practice guideline of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology. Clin Neurophysiol 2021; 132:1173-1184. [PMID: 33678577 DOI: 10.1016/j.clinph.2020.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The objective of this clinical practice guideline (CPG) is to provide recommendations for healthcare personnel working with patients with epilepsy, on the use of wearable devices for automated seizure detection in patients with epilepsy, in outpatient, ambulatory settings. The Working Group of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology developed the CPG according to the methodology proposed by the ILAE Epilepsy Guidelines Working Group. We reviewed the published evidence using The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement and evaluated the evidence and formulated the recommendations following the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. We found high level of evidence for the accuracy of automated detection of generalized tonic-clonic seizures (GTCS) and focal-to-bilateral tonic-clonic seizures (FBTCS) and recommend use of wearable automated seizure detection devices for selected patients when accurate detection of GTCS and FBTCS is recommended as a clinical adjunct. We also found moderate level of evidence for seizure types without GTCs or FBTCs. However, it was uncertain whether the detected alarms resulted in meaningful clinical outcomes for the patients. We recommend using clinically validated devices for automated detection of GTCS and FBTCS, especially in unsupervised patients, where alarms can result in rapid intervention (weak/conditional recommendation). At present, we do not recommend clinical use of the currently available devices for other seizure types (weak/conditional recommendation). Further research and development are needed to improve the performance of automated seizure detection and to document their accuracy and clinical utility.
Collapse
|
26
|
Kerr WT, Zhang X, Hill CE, Janio EA, Chau AM, Braesch CT, Le JM, Hori JM, Patel AB, Allas CH, Karimi AH, Dubey I, Sreenivasan SS, Gallardo NL, Bauirjan J, Hwang ES, Davis EC, D'Ambrosio SR, Al Banna M, Cho AY, Dewar SR, Engel J, Feusner JD, Stern JM. Factors associated with delay to video-EEG in dissociative seizures. Seizure 2021; 86:155-160. [PMID: 33621828 DOI: 10.1016/j.seizure.2021.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
PURPOSE While certain clinical factors suggest a diagnosis of dissociative seizures (DS), otherwise known as functional or psychogenic nonepileptic seizures (PNES), ictal video-electroencephalography monitoring (VEM) is the gold standard for diagnosis. Diagnostic delays were associated with worse quality of life and more seizures, even after treatment. To understand why diagnoses were delayed, we evaluated which factors were associated with delay to VEM. METHODS Using data from 341 consecutive patients with VEM-documented dissociative seizures, we used multivariate log-normal regression with recursive feature elimination (RFE) and multiple imputation of some missing data to evaluate which of 76 clinical factors were associated with time from first dissociative seizure to VEM. RESULTS The mean delay to VEM was 8.4 years (median 3 years, IQR 1-10 years). In the RFE multivariate model, the factors associated with longer delay to VEM included more past antiseizure medications (0.19 log-years/medication, standard error (SE) 0.05), more medications for other medical conditions (0.06 log-years/medication, SE 0.03), history of physical abuse (0.75 log-years, SE 0.27), and more seizure types (0.36 log-years/type, SE 0.11). Factors associated with shorter delay included active employment or student status (-1.05 log-years, SE 0.21) and higher seizure frequency (0.14 log-years/log[seizure/month], SE 0.06). CONCLUSIONS Patients with greater medical and seizure complexity had longer delays. Delays in multiple domains of healthcare can be common for victims of physical abuse. Unemployed and non-student patients may have had more barriers to access VEM. These results support earlier referral of complex cases to a comprehensive epilepsy center.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States.
| | - Xingruo Zhang
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Chloe E Hill
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Emily A Janio
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Andrea M Chau
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Chelsea T Braesch
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Justine M Le
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Jessica M Hori
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Akash B Patel
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Corinne H Allas
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Ishita Dubey
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Siddhika S Sreenivasan
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Norma L Gallardo
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Janar Bauirjan
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Eric S Hwang
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Emily C Davis
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Shannon R D'Ambrosio
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Mona Al Banna
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Andrew Y Cho
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Sandra R Dewar
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
27
|
Kerr WT, Zhang X, Janio EA, Karimi AH, Allas CH, Dubey I, Sreenivasan SS, Bauirjan J, D'Ambrosio SR, Al Banna M, Cho AY, Engel J, Cohen MS, Feusner JD, Stern JM. Reliability of additional reported seizure manifestations to identify dissociative seizures. Epilepsy Behav 2021; 115:107696. [PMID: 33388672 PMCID: PMC7882023 DOI: 10.1016/j.yebeh.2020.107696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Descriptions of seizure manifestations (SM), or semiology, can help localize the symptomatogenic zone and subsequently included brain regions involved in epileptic seizures, as well as identify patients with dissociative seizures (DS). Patients and witnesses are not trained observers, so these descriptions may vary from expert review of seizure video recordings of seizures. To better understand how reported factors can help identify patients with DS or epileptic seizures (ES), we evaluated the associations between more than 30 SMs and diagnosis using standardized interviews. METHODS Based on patient- and observer-reported data from 490 patients with diagnoses documented by video-electoencephalography, we compared the rate of each SM in five mutually exclusive groups: epileptic seizures (ES), DS, physiologic seizure-like events (PSLE), mixed DS and ES, and inconclusive testing. RESULTS In addition to SMs that we described in a prior manuscript, the following were associated with DS: light triggers, emotional stress trigger, pre-ictal and post-ictal headache, post-ictal muscle soreness, and ictal sensory symptoms. The following were associated with ES: triggered by missing medication, aura of déjà vu, and leftward eye deviation. There were numerous manifestations separately associated with mixed ES and DS. CONCLUSIONS Reported SM can help identify patients with DS, but no manifestation is pathognomonic for either ES or DS. Patients with mixed ES and DS reported factors divergent from both ES-alone and DS-alone.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Xingruo Zhang
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emily A Janio
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Corinne H Allas
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ishita Dubey
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Janar Bauirjan
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shannon R D'Ambrosio
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mona Al Banna
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew Y Cho
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA; Departments of Radiology, Psychology, Biomedical Physics, and Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Mark S Cohen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
28
|
Verdru J, Van Paesschen W. Wearable seizure detection devices in refractory epilepsy. Acta Neurol Belg 2020; 120:1271-1281. [PMID: 32632710 DOI: 10.1007/s13760-020-01417-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Abstract
Epilepsy affects 50 million patients and their caregivers worldwide. Devices that facilitate the detection of seizures can have a large influence on a patient's quality of life, therapeutic decisions and the conduct of clinical trials with anti-epileptic drugs. This article provides an up-to-date overview and comparison between wearable seizure detection devices (WSDDs), taking into account the newly proposed standards for testing and clinical validation of devices. 16 devices were included in our comparison. The F1-score, combining the device's accurate recall and precision, was calculated for each of these devices and used to evaluate their performance. The devices were separated by development phase and ranked by F1-score from highest to lowest. We describe 16 WSDDs: 6 of which were accelerometry (ACM)-based, 3 surface electromyography-based, 1 was a wearable application of EEG, 4 had multimodal sensors and 2 other types of sensors. We observed a significant inconsistency in the description of performance measures. The devices in the most advanced development phase with the highest F1-scores incorporated ACM- and sEMG-based sensors to detect tonic-clonic seizures. This review highlights the importance of implementing standards for an optimal comparison and, therefore, improving the research and development of WSDDs. WSDDs can improve the patient's care and quality of life, decrease seizure underreporting and they could potentially prevent sudden-unexpected-death in epilepsy. We discuss the central role of the neurologist in the use of WSDDs, and why a business to business to consumer model is better than the current business to consumer model of most WSDDs.
Collapse
Affiliation(s)
- Julie Verdru
- Faculty of Medicine/UZ Leuven, KU Leuven, Leuven, Belgium.
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Neurology, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
29
|
Naganur VD, Kusmakar S, Chen Z, Palaniswami MS, Kwan P, O'Brien TJ. The utility of an automated and ambulatory device for detecting and differentiating epileptic and psychogenic non-epileptic seizures. Epilepsia Open 2019; 4:309-317. [PMID: 31168498 PMCID: PMC6546070 DOI: 10.1002/epi4.12327] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Accurate differentiation between epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) can be challenging based on history alone. Inpatient video EEG monitoring (VEM) is often needed for a definitive diagnosis. However, VEM is highly resource intensive, is of limited availability, and cannot be undertaken over long periods. Previous research has shown that time-frequency analysis of accelerometer data could be utilized to differentiate between ES and PNES. Using a seizure detection and classification algorithm, we sought to examine the diagnostic utility of an automated analysis with an ambulatory accelerometer. METHODS A wrist-worn device was used to collect accelerometer data from patients during VEM admission, for diagnostic evaluation of convulsive seizures. An automated process, that involved the use of K-means clustering and support vector machines, was used to detect and classify each seizure as ES or PNES. The results were compared with VEM diagnoses determined by epileptologists blinded to the accelerometer data. RESULTS Twenty-four convulsive seizures, consisting of at least 20 seconds of sustained continuous activity, recorded from 11 patients during inpatient VEM (13 PNES from five patients and 11 ES from six patients) were included for analysis. The automated system detected all convulsive seizures (ES, PNES) from >661 hours of recording with 67 false alarms (2.4 per 24 hours). The sensitivity and specificity for classifying ES from PNES were 72.7% and 100%, respectively. The positive and negative predictive values for classifying PNES were 81.3% and 100%, respectively. There was no significant difference between the classification results obtained from the automation process and the VEM diagnoses. SIGNIFICANCE This automated system can potentially provide a wearable out-of-hospital seizure diagnostic monitoring system.
Collapse
Affiliation(s)
- Vaidehi D. Naganur
- Departments of Neurology and MedicineThe Melbourne Brain Centre, The Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Shitanshu Kusmakar
- Department of Electrical EngineeringThe University of MelbourneParkvilleVictoriaAustralia
| | - Zhibin Chen
- Department of Electrical EngineeringThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Patrick Kwan
- Departments of Neurology and MedicineThe Melbourne Brain Centre, The Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Terence J. O'Brien
- Departments of Neurology and MedicineThe Melbourne Brain Centre, The Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
30
|
Kusmakar S, Karmakar C, Yan B, Muthuganapathy R, Kwan P, O'Brien TJ, Palaniswami MS. Novel features for capturing temporal variations of rhythmic limb movement to distinguish convulsive epileptic and psychogenic nonepileptic seizures. Epilepsia 2018; 60:165-174. [PMID: 30536390 DOI: 10.1111/epi.14619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the characteristics of motor manifestation during convulsive epileptic and psychogenic nonepileptic seizures (PNES), captured using a wrist-worn accelerometer (ACM) device. The main goal was to find quantitative ACM features that can differentiate between convulsive epileptic and convulsive PNES. METHODS In this study, motor data were recorded using wrist-worn ACM-based devices. A total of 83 clinical events were recorded: 39 generalized tonic-clonic seizures (GTCS) from 12 patients with epilepsy, and 44 convulsive PNES from 7 patients (one patient had both GTCS and PNES). The temporal variations in the ACM traces corresponding to 39 GTCS and 44 convulsive PNES events were extracted using Poincaré maps. Two new indices-tonic index (TI) and dispersion decay index (DDI)-were used to quantify the Poincaré-derived temporal variations for every GTCS and convulsive PNES event. RESULTS The TI and DDI of Poincaré-derived temporal variations for GTCS events were higher in comparison to convulsive PNES events (P < 0.001). The onset and the subsiding patterns captured by TI and DDI differentiated between epileptic and convulsive nonepileptic seizures. An automated classifier built using TI and DDI of Poincaré-derived temporal variations could correctly differentiate 42 (sensitivity: 95.45%) of 44 convulsive PNES events and 37 (specificity: 94.87%) of 39 GTCS events. A blinded review of the Poincaré-derived temporal variations in GTCS and convulsive PNES by epileptologists differentiated 26 (sensitivity: 70.27%) of 44 PNES events and 33 (specificity: 86.84%) of 39 GTCS events correctly. SIGNIFICANCE In addition to quantifying the motor manifestation mechanism of GTCS and convulsive PNES, the proposed approach also has diagnostic significance. The new ACM features incorporate clinical characteristics of GTCS and PNES, thus providing an accurate, low-cost, and practical alternative to differential diagnosis of PNES.
Collapse
Affiliation(s)
- Shitanshu Kusmakar
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chandan Karmakar
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia.,School of Information Technology, Deakin University, Geelong, Victoria, Australia
| | - Bernard Yan
- Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Patrick Kwan
- Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences and Neurology, The Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia.,Department of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences and Neurology, The Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia.,Department of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marimuthu Swami Palaniswami
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|